Package ‘lunar’

October 13, 2022

Type Package
Title Calculate Lunar Phase & Distance, Seasons and Related Environmental Factors
Author Emmanuel Lazaridis [aut, cre]
Maintainer Emmanuel Lazaridis <emmanuel@strategicarrow.com>
Depends R (>= 2.10.0)
Description Provides functions to calculate lunar and other related environmental covariates.
License MIT + file LICENSE
Encoding UTF-8
LazyLoad no
Version 0.2-1
Date 2022-06-13
RoxygenNote 7.2.0
NeedsCompilation no
Repository CRAN
Date/Publication 2022-06-13 15:40:02 UTC

R topics documented:

lunar-package .. 2
lunar.4phases ... 2
lunar.8phases .. 3
lunar.distance .. 4
lunar.distance.mean ... 5
lunar.distances .. 5
lunar.illumination ... 6
lunar.illumination.mean ... 7
lunar.metric.mean .. 8
lunar.phase ... 9
terrestrial.season ... 10
terrestrial.seasons .. 11
The lunar Package

Description

Lunar Phase & Distance, Seasons and Other Environmental Factors.

Provides functions to calculate the phase of the moon, its distance from the earth, the season and possibly other environmental factors, based on date and location.

Details

- Package: lunar
- Type: Package
- Version: 0.2-01
- Date: 2022-06-13
- Depends: R (>= 2.10.0)
- Encoding: UTF-8
- License: MIT
- LazyLoad: no

Provides functions to calculate lunar and other environmental covariates.

This package is used by the author to calculate covariates for studies of lunar effect on health and healthcare. It is based on an astronomical calculation that considers the moon’s phase and its distance from the earth to calculate theoretical relative amount of moonlight on any given night. The package is not based on luminance data. It does not consider local cloud cover, for example, so it only provides maximum possible moonlight, not actual moonlight.

References forthcoming.

Author(s)

Emmanuel Lazaridis

Lunar Phase Categories (4)

Description

Return 4 category labels for lunar phases.

Usage

lunar.4phases
Format

An object of class character of length 4.

Details

These are category names corresponding to phases of the moon. Moon phase category names may be returned in the output of the `lunar.phase` function if its name option is set to TRUE.

See Also

`lunar.phase`

Examples

```r
print(lunar.4phases)
```

lunar.8phases

Lunar Phase Categories (8)

Description

Return 8 category labels for lunar phases.

Usage

`lunar.8phases`

Format

An object of class character of length 8.

Details

These are category names corresponding to phases of the moon. Moon phase category names may be returned in the output of the `lunar.phase` function if its name option is set to TRUE.

See Also

`lunar.phase`

Examples

```r
print(lunar.8phases)
```
lunar.distance Lunar Distance

Description

Returns the distance of the moon from the earth on specified dates.

Usage

lunar.distance(x, shift = 0, ..., name = FALSE, strict = FALSE)

Arguments

x A vector of Date values.

shift The number of hours by which to shift the distance calculation. By default distance is calculated at 12 noon UT.

... Other optional arguments are ignored.

name Optional parameter indicating whether the return is a factor variable consisting of a lunar distance label, or the lunar distance in earth radii. By default lunar phase is returned in earth radii.

strict Optional parameter indicating whether the return should employ strict definitions for distance labels, that is, with apogee and perigee within 5 definition breaks the distance categories evenly into 20 The ’average’ category is the same in both definitions.

Details

Distance to the moon is returned in units of earth radii, or as a 5-level factor variable referring to the moon’s perigee (at about 56 earth radii) and apogee (at about 63.8 earth radii).

See Also

lunar.distances

Examples

lunar.distance(as.Date("2004-03-24"))
lunar.distance.mean Average Lunar Distance

Description
Returns the average lunar distance around specified dates.

Usage
lunar.distance.mean(
 x,
 towards = -6,
 ...,
 by = c("date", "hours", "day", "night")
)

Arguments
- **x**: A vector of Date values.
- **towards**: The directed window size from x in days. By default the window looks back 7 days including x.
- **...**: Other optional arguments are ignored.
- **by**: The exposure interval and integration basis. The default is to represent a day’s distance by the distance at 12 noon UT. The other options integrate midrange distances over hours.

See Also
- lunar.distance

Examples
lunar.distance.mean(as.Date("2004-03-24"))

lunar.distances Lunar Distance Categories

Description
Return category labels for lunar distances.

Usage
lunar.distances
lunar.illumination

Lunar Illumination

Description

Returns the proportion of lunar illumination on specified dates.

Usage

lunar.illumination(x, shift = 0)

Arguments

- **x**: A vector of Date values.
- **shift**: The number of hours by which to shift the calculation of lunar phase. By default lunar phase is calculated at 12 noon UT.

Details

Adapted from function moon.illumination in from the R4MFCL project (not an R package), which was developed by the Secretariat of the Pacific Community (SPC). The R4MFCL project was led by Simon Hoyle, and also includes code by Shelton Harley, Nick Davies, and Adam Langley of the SPC, and Pierre Kleiber of the US National Marine Fisheries Service. Pierre Kleiber is the author of the moon.illumination function.

Code from project R4MFCL is distributed under the MIT License: https://opensource.org/licenses/mit-license.php

Here is a link to the R4MFCL project: https://code.google.com/archive/p/r4mfcl/

Format

An object of class character of length 5.

Details

These are category names corresponding to distances from the center of the Earth to the center of its moon. Distance category names are used in the output of the lunar.distance function if its name option is set to TRUE.

The perigee occurs at roughly 56 Earth radii, and the apogee at about 62.8 Earth radii. These categories are not determined according to any common standard. They may have different precise definitions for their bounds in different analyses.

See Also

lunar.distance

Examples

print(lunar.distances)
See Also

lunar.illumination.mean

Examples

lunar.illumination(as.Date("2004-03-24"))
lunar.metric.mean Average Lunar Metrics

Description

Returns an average measurement around specified dates.

Usage

lunar.metric.mean(
 x,
 towards = -6,
 ...,
 by = c("date", "hours", "day", "night"),
 type = c("illumination", "distance")
)

Arguments

x A vector of Date values.

 towards The directed window size from x in days. By default the window looks back 7 days including x.

 ... Other optional arguments are ignored.

 by The exposure interval and integration basis. The default is to represent a day’s illumination by the illumination at 12 noon UT. The other options integrate midrange illuminations over hours. Options ‘day’ and ‘night’ are not currently implemented, but will be used to limit exposure intervals. The use of an unimplemented option in a function call will result in a NULL value being returned.

 type Whether illumination or distance metrics are to be returned. The use of an unimplemented option in a function call will result in a NULL value being returned.

Details

This is an internal support function that integrates a lunar measurement over time using step sizes of days or hours.

See Also

lunar.illumination
lunar.distance

Examples

Not run:
lunar.metric.mean(as.Date("2004-03-24"), type="illumination")

End(Not run)
lunar.phase

Lunar Phase

Description

Returns the lunar phase on specified dates.

Usage

`lunar.phase(x, shift = 0, ..., name = FALSE)`

Arguments

- **x**: A vector of `Date` values.
- **shift**: The number of hours by which to shift the calculation of lunar phase. By default lunar phase is calculated at 12 noon UT.
- **...**: Other optional arguments are ignored.
- **name**: Optional parameter indicating whether the return is a factor variable. By default lunar phase is returned in radians. If assigned the value 8, it returns a factor variable with 8 phase levels. If `TRUE` or any value other than 0 or 8, it returns a factor variable with 4 phase labels.

Details

Adapted from function `moon.illumination` in from the R4MFCL project (not an R package), which was developed by the Secretariat of the Pacific Community (SPC). The R4MFCL project was led by Simon Hoyle, and also includes code by Shelton Harley, Nick Davies, and Adam Langley of the SPC, and Pierre Kleiber of the US National Marine Fisheries Service. Pierre Kleiber is the author of the `moon.illumination` function.

Code from project R4MFCL is distributed under the MIT License:
https://opensource.org/licenses/mit-license.php

Here is a link to the R4MFCL project:
https://code.google.com/archive/p/r4mfcl/

The R4MFCL code was modified as follows:

- Changed function name from `moonphase` to `lunar.phase`.
- Changed input date to be in `Date` format (as opposed to `POSIXct`).
- Removed reliance on other R4MFCL functions.
- Changed name of primary input from `ptime` to `x`.
- Added optional `shift` term (in hours) relative to 12h UT.
- Added optional `name` term to control whether phase names as opposed to radians should be returned.
- Changed the documentation.
Where radians are returned:

- 0 refers to the new moon
- \(\pi/2 \) refers to the first quarter
- \(\pi \) refers to the full moon
- \(3\pi/2 \) refers to the last quarter

See Also

- lunar.4phases
- lunar.8phases

Examples

lunar.phase(as.Date("2013-05-06"))

terrestrial.season

Terrestrial Season

Description

Returns the season on specified dates.

Usage

```
terrestrial.season(
  x,                          # A vector of Date values.
  cutoffs = c(80, 172, 263, 354),
  southern.hemisphere = FALSE # The season labels follow a northern hemisphere order unless this option is set to TRUE.
)
```

Arguments

- `x`: A vector of Date values.
- `cutoffs`: A vector of numbers corresponding to days of the year when season labels change.
- `southern.hemisphere`: The season labels follow a northern hemisphere order unless this option is set to TRUE.
Details

The definitions for non-leap years are as follows (dates are inclusive):

- **Winter**: 21 December through 21 March
- **Spring**: 22 March through 21 June
- **Summer**: 22 June through 20 September
- **Autumn**: 21 September through 20 December

In leap years spring comes a day early! Thanks to Mehis Rohtla for finding an error in the 0.1-04 version code.

See Also

- **terrestrial.seasons**

Examples

```r
terrestrial.season(as.Date("2017-03-21"))
terrestrial.season(as.Date("2017-03-22"))
terrestrial.season(as.Date("2017-12-20"), southern.hemisphere = TRUE)
terrestrial.season(as.Date("2017-12-21"), southern.hemisphere = TRUE)
```

terrestrial.seasons *Terrestrial Season Categories*

Description

Return category labels for the seasons on Earth.

Usage

terrestrial.seasons

Format

An object of class character of length 4.

Details

These are category names corresponding to the seasons of the planet Earth.

Examples

```r
print(terrestrial.seasons)
```
Index

* covariate
 lunar.metric.mean, 8

* distance
 lunar.distance.mean, 5
 lunar.distances, 5

* earth
 terrestrial.season, 10
 terrestrial.seasons, 11

* illumination
 lunar.illumination, 6
 lunar.illumination.mean, 7

* light
 lunar.illumination, 6
 lunar.illumination.mean, 7

* lunar
 lunar.4phases, 2
 lunar.8phases, 3
 lunar.distance, 4
 lunar.distance.mean, 5
 lunar.distances, 5
 lunar.illumination, 6
 lunar.illumination.mean, 7
 lunar.metric.mean, 8
 lunar.phase, 9

* metric
 lunar.metric.mean, 8

* moon
 lunar.4phases, 2
 lunar.8phases, 3
 lunar.distance, 4
 lunar.distance.mean, 5
 lunar.distances, 5
 lunar.illumination, 6
 lunar.illumination.mean, 7
 lunar.metric.mean, 8
 lunar.phase, 9

* package
 lunar-package, 2

* phase

 lunar.4phases, 2
 lunar.8phases, 3
 lunar.phase, 9

* season
 terrestrial.season, 10
 terrestrial.seasons, 11

Date, 4–10

lunar-package, 2
lunar.4phases, 2, 10
lunar.8phases, 3, 10
lunar.distance, 4, 5, 6, 8
lunar.distance.mean, 5
lunar.distances, 4, 5
lunar.illumination, 6, 7, 8
lunar.illumination.mean, 7, 7
lunar.metric.mean, 8
lunar.phase, 3, 9

POSIXct, 9

terrestrial.season, 10
terrestrial.seasons, 11