Package ‘mExplorer’

August 24, 2017

Version 1.0.0
License GPL (>= 2)
Description The method ‘m:Explorer’ associates a given list of target genes (e.g. those involved in a biological process) to gene regulators such as transcription factors. Transcription factors that bind DNA near significantly many target genes or correlate with target genes in transcriptional (microarray or RNAseq data) are selected. Selection of candidate master regulators is carried out using multinomial regression models, likelihood ratio tests and multiple testing correction. Reference: m:Explorer: multinomial regression models reveal positive and negative regulators of longevity in yeast quiescence. Juri Reimand, Anu Aun, Jaak Vilo, Juan M Vaquerizas, Juhan Sedman and Nicholas M Luscombe. Genome Biology (2012) 13:R55 <doi:10.1186/gb-2012-13-6-r55>.

Title Identifying Master Gene Regulators from Gene Expression and DNA-Binding Data

Depends R (>= 3.0)
Imports stats, utils, nnet, parallel, qusage
Collate 'mExplorer.R'

NeedsCompilation no
RoxygenNote 6.0.1.9000
Author Juri Reimand [aut, cre]
Maintainer Juri Reimand <juri.reimand@utoronto.ca>
Repository CRAN

Date/Publication 2017-08-24 14:51:44 UTC

R topics documented:

mExplorer ... 2
prepare_gmt_input ... 3
small_test_dframe .. 4
small_test_response_vec .. 4
yeastCCgenes ... 4
yeastTFdata .. 5

Index 6
mExplorer

Selection of process-specific regulators from high-throughput data using multinomial regression models.

Description

Selection of process-specific regulators from high-throughput data using multinomial regression models.

Usage

```r
mExplorer(dframe, response, interactions = F, significance = 0.05, n_cores = 1, multitest = "BY")
```

Arguments

- `dframe`: Data frame of predictors. Row and column names are required for identifying samples (genes) and predictors (gene regulators), respectively.
- `response`: Vector of factors. Names of vector need to correspond to rownames in `dframe`.
- `interactions`: If enabled, pairs of predictors as interactions will be evaluated (much slower).
- `significance`: Significance cutoff for p-values from log likelihood ratio tests.
- `n_cores`: Number of processor cores to engage in computation. Use all available cores by default (`n_cores`=0).
- `multitest`: Method to perform multiple testing correction for p-values from predictor evaluation. See `p.adjust()` for details.

Value

Vector of scores, with names corresponding to predictors.

Author(s)

Juri Reimand <juri.reimand@utoronto.ca>

References

m:Explorer - multinomial regression models reveal positive and negative regulators of longevity in yeast quiescence (2012, Genome Biology) by Juri Reimand, Anu Aun, Jaak Vilo, Juan M. Vaquerizas, Juhan Sedman, and Nicholas M. Luscombe
prepare_gmt_input

Examples

```r
data(yeastCCgenes)
data(yeastTFdata)
mExplorer(yeastTFdata, yeastCCgenes)

data(mExplorer_small_test_data)
small_test_results = mExplorer(small_test_dframe, small_test_response_vec)
```

Description

Creation of m:Explorer input data frame from GMT files

Usage

```r
prepare_gmt_input(gmt_filename, min_genes = NA, max_genes = NA)
```

Arguments

- `gmt_filename`: Path to GMT file to convert.
- `min_genes`: Numeric indicating to discard pathways with less than `min_genes` genes. If `NA`, there is no lower bound on the number of genes. Default is `NA`.
- `max_genes`: Numeric indicating to discard pathways with more than `max_genes` genes. If `NA`, there is no upper bound on the number of genes. Default is `NA`.

Value

Data frame with pathways as columns, genes as rows. Gene/pathway combinations are marked with "pw" if that gene is in the pathway, or "." if not.

Examples

```r
# Create m:Explorer input data frame from GMT "small_gmt.gmt," discarding
# pathways with less than 5 genes and more than 1000 genes
gmt_file = system.file("extdata", "small_gmt.gmt", package = "mExplorer")
gmt = prepare_gmt_input(gmt_file, 5, 1000)
```
small_test_dframe
Small sample of predictor data for testing m:Explorer

Description
Small sample of predictor data for testing m:Explorer

Usage
```
data(mExplorer_small_test_data)
```

Format
A data frame with 10 observations of 18 variables

small_test_response_vec
Small vector of yeast transcription factors for testing m:Explorer

Description
Small vector of yeast transcription factors for testing m:Explorer

Usage
```
data(mExplorer_small_test_data)
```

Format
A named character vector with 4 elements

yeastCCgenes
Example vector of yeast transcription factors for m:Explorer

Description
Example vector of yeast transcription factors for m:Explorer

Usage
```
data(yeastCCgenes)
```

Format
A named character vector with 186 elements
yeastTFdata

Example predictor data for m:Explorer

Description

Example predictor data for m:Explorer

Usage

data(yeastTFdata)

Format

A data frame with 6253 observations of 18 variables
Index

*Topic datasets
 small_test_dframe, 4
 small_test_response_vec, 4
 yeastCCgenes, 4
 yeastTFdata, 5

mExplorer, 2

prepare_gmt_input, 3

small_test_dframe, 4
small_test_response_vec, 4

yeastCCgenes, 4
yeastTFdata, 5