# Package ‘mHMMbayes’

October 13, 2022

**Type** Package  
**Title** Multilevel Hidden Markov Models Using Bayesian Estimation  
**Version** 0.2.0  
**Depends** R (>= 3.5.0)  
**Imports** MCMCpack, mvtnorm, stats, Rdpack, Rcpp  
**Maintainer** Emmeke Aarts &lt;e.aarts@uu.nl&gt;  
**Description** An implementation of the multilevel (also known as mixed or random effects) hidden Markov model using Bayesian estimation in R. The multilevel hidden Markov model (HMM) is a generalization of the well-known hidden Markov model, for the latter see Rabiner (1989) &lt;doi:10.1109/5.18626&gt;. The multilevel HMM is tailored to accommodate (intense) longitudinal data of multiple individuals simultaneously, see e.g., de Haan-Rietdijk et al. &lt;doi:10.1080/00273171.2017.1370364&gt;. Using a multilevel framework, we allow for heterogeneity in the model parameters (transition probability matrix and conditional distribution), while estimating one overall HMM. The model can be fitted on multivariate data with a categorical distribution, and include individual level covariates (allowing for e.g., group comparisons on model parameters). Parameters are estimated using Bayesian estimation utilizing the forward-backward recursion within a hybrid Metropolis within Gibbs sampler. The package also includes various visualization options, a function to simulate data, and a function to obtain the most likely hidden state sequence for each individual using the Viterbi algorithm.

**URL** https://github.com/emmekearts/mHMMbayes  
**BugReports** https://github.com/emmekearts/mHMMbayes/issues  
**License** GPL-3  
**Encoding** UTF-8  
**LazyData** true  
**RoxygenNote** 7.2.0  
**Suggests** knitr, rmarkdown, alluvial, grDevices, RColorBrewer, testthat  
(>= 2.1.0)  
**VignetteBuilder** knitr
**int_to_prob**

**RdMacros** Rdpack

**SystemRequirements** GNU make

**LinkingTo** Rcpp

**NeedsCompilation** yes

**Author** Emmeke Aarts [aut, cre],
Sebastian Mildiner Moraga [ctb]

**Repository** CRAN

**Date/Publication** 2022-08-17 16:00:02 UTC

---

**R topics documented:**

- `int_to_prob` ................................................................. 2
- `mHMM` ................................................................. 3
- `mHMMbayes` ............................................................. 9
- `nonverbal` ............................................................. 10
- `nonverbal_cov` .......................................................... 11
- `obtain_emiss` ............................................................. 12
- `obtain_gamma` ............................................................. 13
- `pd_RW_emiss_cat` .......................................................... 15
- `pd_RW_gamma` ............................................................. 18
- `plot.mHMM` ............................................................... 20
- `plot.mHMM_gamma` .......................................................... 23
- `prior_emiss_cat` ........................................................... 24
- `prior_gamma` ............................................................... 29
- `prob_to_int` ............................................................... 32
- `sim_mHMM` ................................................................. 33
- `vit_mHMM` ................................................................. 38

**Index**

---

| `int_to_prob` | Transforming a set of Multinomial logit regression intercepts to probabilities |

**Description**

`int_to_prob` transforms a set of Multinomial logit regression intercepts to the corresponding state transition or categorical emission observation probabilities. Note that the first state or category is assumed to be the reference category, hence no intercept is to specified for the first state or category.

**Usage**

`int_to_prob(int_matrix)`
**mHMM**

### Arguments

**int_matrix**  
A matrix with (number of states OR categories - 1) columns and number of rows to be determined by the user. For obtaining the set of probabilities of the complete transition probability matrix gamma or categorical emission distribution matrix, the number of rows equals the number of states $m$. The first state / category is assumed to be the reference category, no intercept is to be specified for this first category.

### Details

Designed to ease the specification of informative hyper-prior values for the mean intercepts of the transition probability matrix gamma and categorical emission distribution(s) of the multilevel hidden Markov model through the functions `prior_gamma` and `prior_emiss_cat`. No check is performed on correct specifications of the dimensions.

### Value

`int_to_prob` returns a matrix containing probabilities with each row summing to one, with the number of columns equal to the number of states / categories and the number of rows equal to the number rows specified in the input matrix.

### See Also

`prob_to_int` for transforming a set of probabilities to a set of Multinomial logit regression intercepts, `prior_gamma` and `prior_emiss_cat` for specifying informative hyper-priors for the the multilevel hidden Markov model and `mHMM` to fit a multilevel hidden Markov model.

### Examples

```r
# example for transition probability matrix gamma with 3 states
m <- 3
gamma_int <- matrix(c(-1, -1,
                      3, 0,
                      0, 2), ncol = m-1, nrow = m, byrow = TRUE)
gamma_prob <- int_to_prob(gamma_int)
gamma_prob
```

---

**mHMM**

*Multilevel hidden Markov model using Bayesian estimation*

### Description

`mHMM` fits a multilevel (also known as mixed or random effects) hidden Markov model (HMM) to intense longitudinal data with categorical observations of multiple subjects using Bayesian estimation, and creates an object of class `mHMM`. By using a multilevel framework, we allow for heterogeneity in the model parameters between subjects, while estimating one overall HMM. The
function includes the possibility to add covariates at level 2 (i.e., at the subject level) and have varying observation lengths over subjects. For a short description of the package see mHMM-bayes. See vignette("tutorial-mhmm") for an introduction to multilevel hidden Markov models and the package, and see vignette("estimation-mhmm") for an overview of the used estimation algorithms.

Usage

```r
mHMM(
  s_data,
  gen,
  xx = NULL,
  start_val,
  mcmc,
  return_path = FALSE,
  print_iter,
  show_progress = TRUE,
  gamma_hyp_prior = NULL,
  emiss_hyp_prior = NULL,
  gamma_sampler = NULL,
  emiss_sampler = NULL
)
```

Arguments

- **s_data**: A matrix containing the observations to be modeled, where the rows represent the observations over time. In `s_data`, the first column indicates subject id number. Hence, the id number is repeated over rows equal to the number of observations for that subject. The subsequent columns contain the dependent variable(s). Note that the dependent variables have to be numeric, i.e., they cannot be a (set of) factor variable(s). The total number of rows are equal to the sum over the number of observations of each subject, and the number of columns are equal to the number of dependent variables \((n_{dep}) + 1\). The number of observations can vary over subjects.

- **gen**: List containing the following elements denoting the general model properties:
  - \(m\): numeric vector with length 1 denoting the number of hidden states
  - \(n_{dep}\): numeric vector with length 1 denoting the number of dependent variables
  - \(q_{emiss}\): numeric vector with length \(n_{dep}\) denoting the number of observed categories for the categorical emission distribution for each of the dependent variables.

- **xx**: An optional list of (level 2) covariates to predict the transition matrix and/or the emission probabilities. Level 2 covariate(s) means that there is one observation per subject of each covariate. The first element in the list \(xx\) is used to predict the transition matrix. Subsequent elements in the list are used to predict the emission distribution of (each of) the dependent variable(s). Each element in the list is a matrix, with the number of rows equal to the number of subjects. The first column of each matrix represents the intercept, that is, a column only
consisting of ones. Subsequent columns correspond to covariates used to predict the transition matrix / emission distribution. See Details for more information on the use of covariates.

If xx is omitted completely, xx defaults to NULL, resembling no covariates. Specific elements in the list can also be left empty (i.e., set to NULL) to signify that either the transition probability matrix or a specific emission distribution is not predicted by covariates.

**start_val**
List containing the start values for the transition probability matrix gamma and the emission distribution(s). The first element of the list contains a m by m matrix with the start values for gamma. The subsequent elements contain m by q\_emiss[k] matrices for the start values for each of the k in n\_dep emission distribution(s). Note that start\_val should not contain nested lists (i.e., lists within lists).

**mcmc**
List of Markov chain Monte Carlo (MCMC) arguments, containing the following elements:

- **J**: numeric vector with length 1 denoting the number of iterations of the MCMC algorithm
- **burn\_in**: numeric vector with length 1 denoting the burn-in period for the MCMC algorithm.

**return_path**
A logical scalar. Should the sampled state sequence obtained at each iteration and for each subject be returned by the function (sample\_path = TRUE) or not (sample\_path = FALSE). Note that the sampled state sequence is quite a large object, hence the default setting is sample\_path = FALSE. Can be used for local decoding purposes.

**print_iter**
The argument print_iter is deprecated; please use show\_progress instead to show the progress of the algorithm.

**show_progress**
A logical scaler. Should the function show a text progress bar in the R console to represent the progress of the algorithm (show\_progress = TRUE) or not (show\_progress = FALSE). Defaults to show\_progress = TRUE.

**gamma\_hyp\_prior**
An optional object of class mHMM\_prior\_gamma containing user specified parameter values for the hyper-prior distribution on the transition probability matrix gamma, generated by the function prior\_gamma.

**emiss\_hyp\_prior**
An optional object of the class mHMM\_prior\_emiss containing user specified parameter values for the hyper-prior distribution on categorical the emission distribution, generated by the function prior\_emiss\_cat.

**gamma\_sampler**
An optional object of the class mHMM\_pdRW\_gamma containing user specified settings for the proposal distribution of the random walk (RW) Metropolis sampler on the subject level transition probability matrix parameters, generated by the function pd\_RW\_gamma.

**emiss\_sampler**
An optional object of the class mHMM\_pdRW\_emiss containing user specified settings for the proposal distribution of the random walk (RW) Metropolis sampler on the subject level emission distribution(s) parameters, generated by the function pd\_RW\_emiss\_cat.
Details
Covariates specified in xx can either be dichotomous or continuous variables. Dichotomous variables have to be coded as 0/1 variables. Categorical or factor variables can as yet not be used as predictor covariates. The user can however break up the categorical variable in multiple dummy variables (i.e., dichotomous variables), which can be used simultaneously in the analysis. Continuous predictors are automatically centered. That is, the mean value of the covariate is subtracted from all values of the covariate such that the new mean equals zero. This is done such that the presented probabilities in the output (i.e., for the population transition probability matrix and population emission probabilities) correspond to the predicted probabilities at the average value of the covariate(s).

Value
mHMM returns an object of class mHMM, which has print and summary methods to see the results. The object contains the following components:

- PD_subj A list containing one matrix per subject with the subject level parameter estimates and the log likelihood over the iterations of the hybrid Metropolis within Gibbs sampler. The iterations of the sampler are contained in the rows, and the columns contain the subject level (parameter) estimates of subsequently the emission probabilities, the transition probabilities and the log likelihood.

- gamma_prob_bar A matrix containing the group level parameter estimates of the transition probabilities over the iterations of the hybrid Metropolis within Gibbs sampler. The iterations of the sampler are contained in the rows, and the columns contain the group level parameter estimates. If covariates were included in the analysis, the group level probabilities represent the predicted probability given that the covariate is at the average value for continuous covariates, or given that the covariate equals zero for dichotomous covariates.

- gamma_int_bar A matrix containing the group level intercepts of the Multinomial logistic regression modeling the transition probabilities over the iterations of the hybrid Metropolis within Gibbs sampler. The iterations of the sampler are contained in the rows, and the columns contain the group level intercepts.

- gamma_cov_bar A matrix containing the group level regression coefficients of the Multinomial logistic regression predicting the transition probabilities over the iterations of the hybrid Metropolis within Gibbs sampler. The iterations of the sampler are contained in the rows, and the columns contain the group level regression coefficients.

- gamma_int_subj A list containing one matrix per subject denoting the subject level intercepts of the Multinomial logistic regression modeling the transition probabilities over the iterations of the hybrid Metropolis within Gibbs sampler. The iterations of the sampler are contained in the rows, and the columns contain the subject level intercepts.

- gamma_naccept A matrix containing the number of accepted draws at the subject level RW Metropolis step for each set of parameters of the transition probabilities. The subjects are contained in the rows, and the columns contain the sets of parameters.

- emiss_prob_bar A list containing one matrix per dependent variable, denoting the group level emission probabilities of each dependent variable over the iterations of the hybrid Metropolis within Gibbs sampler. The iterations of the sampler are contained in the rows of the matrix, and the columns contain the group level emission probabilities. If covariates were included in the analysis, the group level probabilities represent the predicted probability given that the
covariate is at the average value for continuous covariates, or given that the covariate equals zero for dichotomous covariates.

\textbf{emiss\_int\_bar}\ A list containing one matrix per dependent variable, denoting the group level intercepts of each dependent variable of the Multinomial logistic regression modeling the probabilities of the emission distribution over the iterations of the hybrid Metropolis within Gibbs sampler. The iterations of the sampler are contained in the rows of the matrix, and the columns contain the group level intercepts.

\textbf{emiss\_cov\_bar}\ A list containing one matrix per dependent variable, denoting the group level regression coefficients of the Multinomial logistic regression predicting the emission probabilities within each of the dependent variables over the iterations of the hybrid Metropolis within Gibbs sampler. The iterations of the sampler are contained in the rows of the matrix, and the columns contain the group level regression coefficients.

\textbf{emiss\_int\_subj}\ A list containing one list per subject denoting the subject level intercepts of each dependent variable of the Multinomial logistic regression modeling the probabilities of the emission distribution over the iterations of the hybrid Metropolis within Gibbs sampler. Each lower level list contains one matrix per dependent variable, in which iterations of the sampler are contained in the rows, and the columns contain the subject level intercepts.

\textbf{emiss\_naccept}\ A list containing one matrix per dependent variable with the number of accepted draws at the subject level RW Metropolis step for each set of parameters of the emission distribution. The subjects are contained in the rows, and the columns of the matrix contain the sets of parameters.

\textbf{input}\ Overview of used input specifications: the number of states \(m\), the number of used dependent variables \(n\_dep\), the number of output categories for each of the dependent variables \(q\_emiss\), the number of iterations \(J\) and the specified burn in period \(burn\_in\) of the hybrid Metropolis within Gibbs sampler, the number of subjects \(n\_subj\), the observation length for each subject \(n\_vary\), and the column names of the dependent variables \(dep\_labels\).

\textbf{sample\_path}\ A list containing one matrix per subject with the sampled hidden state sequence over the hybrid Metropolis within Gibbs sampler. The time points of the dataset are contained in the rows, and the sampled paths over the iterations are contained in the columns. Only returned if \text{return\_path} = \text{TRUE}.

\textbf{References}


See Also

`sim_mHMM` for simulating multilevel hidden Markov data, `vit_mHMM` for obtaining the most likely hidden state sequence for each subject using the Viterbi algorithm, `obtain_gamma` and `obtain_emiss` for obtaining the transition or emission distribution probabilities of a fitted model at the group or subject level, and `plot.mHMM` for plotting the posterior densities of a fitted model.

Examples

##### Example on package example data, see `?nonverbal`

```r
# specifying general model properties:
m <- 2
n_dep <- 4
q_emiss <- c(3, 2, 3, 2)

# specifying starting values
start_TM <- diag(.8, m)
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .2
start_EM <- list(
  matrix(c(0.05, 0.90, 0.05, 0.90, 0.05, 0.05), byrow = TRUE, nrow = m, ncol = q_emiss[1]),  # vocalizing patient
  matrix(c(0.1, 0.9, 0.1, 0.9), byrow = TRUE, nrow = m, ncol = q_emiss[2]),  # looking patient
  matrix(c(0.90, 0.05, 0.05, 0.05, 0.90, 0.05), byrow = TRUE, nrow = m, ncol = q_emiss[3]),  # vocalizing therapist
  matrix(c(0.1, 0.9, 0.1, 0.9), byrow = TRUE, nrow = m, ncol = q_emiss[4]))  # looking therapist

# Run a model without covariate(s):
# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
# and a burn_in of 200.
out_2st <- mHMM(s_data = nonverbal,
gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
start_val = c(list(start_TM), start_EM),
mcmc = list(J = 11, burn_in = 5))

out_2st
summary(out_2st)

# plot the posterior densities for the transition and emission probabilities
plot(out_2st, component = "gamma", col = c("darkslategray3", "goldenrod"))

# Run a model including a covariate (see `?nonverbal_cov`) to predict the
# emission distribution for each of the 4 dependent variables:

n_subj <- 10
xx_emiss <- rep(list(matrix(c(rep(1, n_subj), nonverbal_cov$std_CDI_change),
                          ncol = 2, nrow = n_subj)), n_dep)
```
mHMMbayes

mHMMbayes: multilevel hidden Markov models using Bayesian estimation.

Description

With the R package mHMMbayes you can fit multilevel hidden Markov models. The multilevel hidden Markov model (HMM) is a generalization of the well-known hidden Markov model, tailored to accommodate (intense) longitudinal data of multiple individuals simultaneously. Using a multilevel framework, we allow for heterogeneity in the model parameters (transition probability matrix and conditional distribution), while estimating one overall HMM. The model has a great potential of application in many fields, such as the social sciences and medicine. The model can be fitted on multivariate data with a categorical distribution, and include individual level covariates (allowing for e.g., group comparisons on model parameters). Parameters are estimated using Bayesian estimation utilizing the forward-backward recursion within a hybrid Metropolis within Gibbs sampler.
Details

The mHMMbayes package provides three main functions: mHMM, sim_mHMM and vit_mHMM, described below. For a more elaborate guide to the package mHMMbayes, see the tutorial-mhmm vignette: vignette("tutorial-mhmm", package = "mHMMbayes"). For extensive information on the estimation of the parameters in the package, see the estimation-mhmm vignette: vignette("estimation-mhmm", package = "mHMMbayes").

mHMM

The function mHMM fits a multilevel hidden Markov model to (intense longitudinal) data from multiple subjects using Bayesian estimation. By using a multilevel framework, one general 'population' HMM is estimated, while heterogeneity between subjects is accommodated. The function can handle covariates at the subject level varying observation lengths over subjects. Estimation is performed using a hybrid Metropolis within Gibbs sampler, and completes the forward backward algorithm for all subjects in a sequential manner.

sim_mHMM

The function sim_mHMM simulates data for multiple subjects, for which the data have categorical observations that follow a hidden Markov model (HMM) with an multilevel structure. The multilevel structure implies that each subject is allowed to have its own set of parameters, and that the parameters at the subject level (level 1) are tied together by a population distribution at level 2 for each of the corresponding parameters. The shape of the population distribution for each of the parameters is a normal (i.e., Gaussian) distribution. In addition to (natural and/or unexplained) heterogeneity between subjects, the subjects parameters can also depend on a (set of) covariate(s).

vit_mHMM

The function vit_mHMM obtains the most likely hidden state sequence for each subject, given the data and the subject specific parameter estimates. The function does this by utilizing the Viterbi algorithm.

nonverbal

Nonverbal communication of patients and therapist

Description

A dataset containing the nonverbal communication of 10 patient-therapist couples, recorded for 15 minutes at a frequency of 1 observation per second (= 900 observations per couple).

Usage

nonverbal
**nonverbal_cov**

**Format**

A matrix with 10 * 900 rows and 5 variables:

- **id**  id variable of patient - therapist couple to distinguish which observation belongs to which couple
- **p_verbalizing** verbalizing behavior of the patient, consisting of 1 = not verbalizing, 2 = verbalizing, 3 = back channeling
- **p_looking** looking behavior of the patient, consisting of 1 = not looking at therapist, 2 = looking at therapist
- **t_verbalizing** verbalizing behavior of the therapist, consisting of 1 = not verbalizing, 2 = verbalizing, 3 = back channeling
- **t_looking** looking behavior of the therapist, consisting of 1 = not looking at patient, 2 = looking at patient

---

**Description**

A dataset containing predictors of nonverbal communication of 10 patient-therapist couples.

**Usage**

`nonverbal_cov`

---

**Format**

A matrix with 10 rows and 3 variables:

- **diagnosis** Diagnosis of the patient, consisting of 0 = depression, 1 = anxiety
- **std_CDI_change** Change in measure for depression (CDI) before and after therapy, standardized scale
- **std_SCA_change** Change in measure for anxiety (SCARED) before and after therapy, standardized scale
**obtain_emiss**

*Obtain the emission distribution probabilities for a fitted multilevel HMM*

**Description**

`obtain_emiss` obtains the emission distribution for a fitted multilevel hidden Markov model, for either the group level, i.e., representing the average emission distribution over all subjects, or at the subject level, returning the emission distribution for each subject.

**Usage**

```r
obtain_emiss(object, level = "group", burn_in = NULL)
```

**Arguments**

- `object`: An object of class `mHMM`, generated by the function `mHMM`.
- `level`: String specifying if the returned transition probability matrix `gamma` should be at the group level (`level = "group"`), i.e., representing the average transition probability matrix over all subjects, or at the subject level (`level = "subject"`).
- `burn_in`: An integer which specifies the number of iterations to discard when obtaining the model parameter summary statistics. When left unspecified (`burn_in = NULL`), the burn in period specified when creating the `mHMM` object will be used.

**Value**

`obtain_emiss` returns the object `est_emiss`. Depending on the specification at the input variable `level`, `est_emiss` is either a list of matrices with the emission distribution at the group level (if `level = "group"`) for each dependent variable, or a list of lists, where for each dependent variable a list is returned with the number of elements equal to the number of subjects analyzed, if `level = 'subject'`). In the latter scenario, each matrix in the lower level list represents the subject specific emission distribution for a specific dependent variable.

**See Also**

`mHMM` for fitting the multilevel hidden Markov model.

**Examples**

```r
### Example on package data, see ?nonverbal

# specifying general model properties:
m <- 2
n_dep <- 4
q_emiss <- c(3, 2, 3, 2)

# specifying starting values
start_TM <- diag(.8, m)
```
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .2
start_EM <- list(matrix(c(0.05, 0.90, 0.05,
             0.90, 0.05, 0.05), byrow = TRUE,
             nrow = m, ncol = q_emiss[1]), # vocalizing patient
     matrix(c(0.1, 0.9,
             0.1, 0.9), byrow = TRUE, nrow = m,
             ncol = q_emiss[2]), # looking patient
     matrix(c(0.90, 0.05, 0.05,
             0.05, 0.90, 0.05), byrow = TRUE,
             nrow = m, ncol = q_emiss[3]), # vocalizing therapist
     matrix(c(0.1, 0.9,
             0.1, 0.9), byrow = TRUE, nrow = m,
             ncol = q_emiss[4])) # looking therapist

# Run a model without covariate(s):
out_2st <- mHMM(s_data = nonverbal,
    gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
    start_val = c(list(start_TM), start_EM),
    mcmc = list(J = 11, burn_in = 5))

out_2st
summary(out_2st)

# obtaining the emission probabilities at the group and subject level
obtain_emiss(out_2st, level = "group")
obtain_emiss(out_2st, level = "subject")

---

**obtain_gamma**

Obtain the transition probabilities gamma for a fitted multilevel HMM

**Description**

obtain_gamma obtains the transition probability matrix for a fitted multilevel hidden Markov model, for either the group level, i.e., representing the average transition probability matrix over all subjects, or at the subject level, returning the transition probability matrices for each subject.

**Usage**

obtain_gamma(object, level = "group", burn_in = NULL)

**Arguments**

- **object**
  An object of class mHMM, generated by the function mHMM.
- **level**
  String specifying if the returned transition probability matrix gamma should be at the group level (level = "group"), i.e., representing the average transition probability matrix over all subjects, or at the subject level (level = "subject").
obtain_gamma

burn_in

An integer which specifies the number of iterations to discard when obtaining the model parameter summary statistics. When left unspecified (burn_in = NULL), the burn in period specified when creating the mHMM object will be used.

Value

obtain_gamma returns the object est_gamma of the class mHMM_gamma. This object can be directly plotted using the function plot.mHMM_gamma(), or simply plot(). Depending on the specification at the input variable level, est_gamma is either a matrix with the transition probabilities at the group level (if level = "group"), or a list of matrices (with the number of elements equal to the number of subjects analyzed, if level = 'subject'), where each matrix in the list represents a subject specific transition probability matrix.

See Also

mHMM for fitting the multilevel hidden Markov model, and plot.mHMM_gamma for plotting the obtained transition probabilities.

Examples

# Example on package data, see ?nonverbal
#
# specifying general model properties:
m <- 2
n_dep <- 4
q_emiss <- c(3, 2, 3, 2)

# specifying starting values
start_TM <- diag(.8, m)
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .2
start_EM <- list(matrix(c(0.05, 0.90, 0.05,
                          0.90, 0.05, 0.05), byrow = TRUE,
                          nrow = m, ncol = q_emiss[1]), # vocalizing patient
                 matrix(c(0.1, 0.9,
                          0.1, 0.9), byrow = TRUE, nrow = m,
                          ncol = q_emiss[2]), # looking patient
                 matrix(c(0.90, 0.05, 0.05,
                          0.05, 0.90, 0.05), byrow = TRUE,
                          nrow = m, ncol = q_emiss[3]), # vocalizing therapist
                 matrix(c(0.1, 0.9,
                          0.1, 0.9), byrow = TRUE, nrow = m,
                          ncol = q_emiss[4])) # looking therapist

# Run a model without covariate(s):
out_2st <- mHMM(s_data = nonverbal,
                gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
                start_val = c(list(start_TM), start_EM),
                mcmc = list(J = 11, burn_in = 5))

out_2st
summary(out_2st)
# obtaining the transition probabilities at the group and subject level
obtain.gamma(out_2st, level = "group")
obtain.gamma(out_2st, level = "subject")

---

### pd_RW_emiss_cat

**Proposal distribution settings** **RW Metropolis sampler for mHMM categorical emission distribution(s)**

#### Description

pd_RW_emiss_cat provides a framework to manually specify the settings of the proposal distribution of the random walk (RW) Metropolis sampler of the emission distribution(s) of the multilevel hidden Markov model, and creates an object of the class mHMM_pdRW_emiss. The RW metropolis sampler is used for sampling the subject level parameter estimates relating to the emission distributions of the dependent variables $k$, that is, the Multinomial logistic regression intercepts.

#### Usage

```r
pd_RW_emiss_cat(gen, emiss_int_mle0, emiss_scalar, emiss_w)
```

#### Arguments

- **gen** List containing the following elements denoting the general model properties:
  - $m$: numeric vector with length 1 denoting the number of hidden states
  - $n_{dep}$: numeric vector with length 1 denoting the number of dependent variables
  - $q_{emiss}$: numeric vector with length $n_{dep}$ denoting the number of observed categories for the categorical emission distribution for each of the dependent variables.

- **emiss_int_mle0** A list containing $n_{dep}$ elements corresponding to each of the dependent variables $k$, where each element is a matrix with $m$ rows and $q_{emiss}[k] - 1$ columns denoting the starting values for the maximum likelihood (ML) estimates of the Multinomial logit regression intercepts of the emission distribution(s). ML parameters to be estimated are based on the pooled data (data over all subjects).

- **emiss_scalar** A list containing $n_{dep}$ elements corresponding to each of the dependent variables, where each element is a numeric vector with length 1 denoting the scale factor $s$. That is, the scale of the proposal distribution is composed of a covariance matrix $\Sigma$, which is then tuned by multiplying it by a scaling factor $s^2$.

- **emiss_w** A list containing $n_{dep}$ elements corresponding to each of the dependent variables, where each element is a numeric vector with length 1 denoting the weight for the overall log likelihood (i.e., log likelihood based on the pooled data over all subjects) in the fractional likelihood.
Details

When no manual values for the settings of the proposal distribution of the random walk (RW) Metropolis sampler are specified at all (that is, the function `pd_RW_emiss_cat` is not used), all elements in `emiss_int_mle0` set to 0, `emiss_scalar` set to 2.93 / sqrt(`q_emiss[k]` - 1), and `emiss_w` set to 0.1. See the section *Scaling the proposal distribution of the RW Metropolis sampler* in vignette("estimation-mhmm") for details.

Within the function `mHMM`, the acceptance rate of the RW metropolis sampler relating to the emission distribution(s) can be tracked using the output parameter `emiss_naccept`. An acceptance rate of about 23% is considered optimal when many parameters are being updated at once (Gelman, Carlin, Stern & Rubin, 2014).

Value

`pd_RW_emiss_cat` returns an object of class `mHMM_pdRW_emiss`, containing settings of the proposal distribution of the random walk (RW) Metropolis sampler on the categorical emission distribution(s) of the multilevel hidden Markov model. The object is specifically created and formatted for use by the function `mHMM`, and checked for correct input dimensions. The object contains the following components:

- `gen` A list containing the elements `m`, `n_dep`, and `q_emiss`, used for checking equivalent general model properties specified under `pd_RW_emiss_cat` and `mHMM`.
- `emiss_int_mle0` A list containing `n_dep` elements, where each element is a matrix containing the starting values for the maximum likelihood (ML) estimates of the Multinomial logit regression intercepts of the emission distribution(s).
- `emiss_scalar` A list containing `n_dep` elements denoting the scale factor `s` of the proposal distribution.
- `emiss_w` A list containing `n_dep` elements denoting the weight for the overall log likelihood in the fractional likelihood.

References


Examples

```r
### Example using package example data, see ?nonverbal
# specifying general model properties:
m <- 3
n_dep <- 4
q_emiss <- c(3, 2, 3, 2)

# specifying manual values for RW metropolis sampler on emission distributions
emiss_int_mle0 <- list(matrix(c( 2, 0,
                               -2, -2,
                               0, -1), byrow = TRUE, nrow = m, ncol = q_emiss[1] - 1),
```
matrix(c( 2,
2,
2), byrow = TRUE, nrow = m, ncol = q_emiss[2] - 1),
matrix(c(-2, -2,
2, 0,
0, -1), byrow = TRUE, nrow = m, ncol = q_emiss[3] - 1),
matrix(c( 2,
2,
2), byrow = TRUE, nrow = m, ncol = q_emiss[4] - 1))
emiss_scalar <- list(c(2), c(3), c(2), c(3))
emiss_w <- rep(list(c(0.2)), n_dep)
manual_emiss_sampler <- pd_RW_emiss_cat(gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
emiss_int_mle0 = emiss_int_mle0,
emiss_scalar = emiss_scalar,
emiss_w = emiss_w)

# specifying starting values
start_TM <- diag(.7, m)
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .1
start_EM <- list(matrix(c(0.05, 0.90, 0.05,
0.90, 0.05, 0.05,
0.55, 0.45, 0.05), byrow = TRUE,
nrow = m, ncol = q_emiss[1]), # vocalizing patient
matrix(c(0.1, 0.9,
0.1, 0.9), byrow = TRUE, nrow = m,
ncol = q_emiss[2]), # looking patient
matrix(c(0.90, 0.05, 0.05,
0.05, 0.90, 0.05,
0.55, 0.45, 0.05), byrow = TRUE,
nrow = m, ncol = q_emiss[3]), # vocalizing therapist
matrix(c(0.1, 0.9,
0.1, 0.9), byrow = TRUE, nrow = m,
ncol = q_emiss[4])) # looking therapist

# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
# and a burn_in of 200.
out_3st_RWemiss <- mHMM(s_data = nonverbal,
gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
start_val = c(list(start_TM), start_EM),
emiss_sampler = manual_emiss_sampler,
mcmc = list(J = 11, burn_in = 5))

out_3st_RWemiss
summary(out_3st_RWemiss)

# checking acceptance rate (for illustrative purposes, in the example,
# J is too low for getting a fair indication)
div_J <- function(x, J) x / J
J_it <- 11 - 1 # accept/reject starts at iteration 2 of MCMC algorithm
RW_emiss_accept <- sapply(out_3st_RWemiss$emiss_naccept, div_J, J_it, simplify = FALSE)

# average acceptance rate over all subjects per parameter
# rows represent each of the n_dep dependent variables, columns represent the m states
$t(sapply(RW_emiss_accept, apply, MARGIN = 2, mean, simplify = FALSE))$

---

**pd_RW_gamma**  
Proposal distribution settings RW Metropolis sampler for mHMM  
transition probability matrix gamma

**Description**

`pd_RW_gamma` provides a framework to manually specify the settings of the proposal distribution of the random walk (RW) Metropolis sampler of the transition probability matrix gamma of the multilevel hidden Markov model, and creates an object of the class `mHMM_pdRW_gamma`. The RW metropolis sampler is used for sampling the subject level parameter estimates relating to the transition probability matrix gamma, that is, the Multinomial logistic regression intercepts.

**Usage**

```r
pd_RW_gamma(m, gamma_int_mle0, gamma_scalar, gamma_w)
```

**Arguments**

- **m**  
  Numeric vector with length 1 denoting the number of hidden states.

- **gamma_int_mle0**  
  A matrix with \( m \) rows and \( m - 1 \) columns denoting the starting values for the maximum likelihood (ML) estimates of the Multinomial logit regression intercepts of the transition probability matrix gamma. ML parameters to be estimated are based on the pooled data (data over all subjects).

- **gamma_scalar**  
  A numeric vector with length 1 denoting the scale factor \( s \). That is, the scale of the proposal distribution is composed of a covariance matrix \( \Sigma \), which is then tuned by multiplying it by a scaling factor \( s^2 \).

- **gamma_w**  
  A numeric vector with length 1 denoting the weight for the overall log likelihood (i.e., log likelihood based on the pooled data over all subjects) in the fractional likelihood.

**Details**

When no manual values for the settings of the proposal distribution of the random walk (RW) Metropolis sampler are specified at all (that is, the function `pd_RW_gamma` is not used), all elements in `gamma_int_mle0` set to 0, `gamma_scalar` set to \( 2.93 / \sqrt{m} \), and `gamma_w` set to 0.1. See the section *Scaling the proposal distribution of the RW Metropolis sampler* in `vignette("estimation-mhmm")` for details.
Within the function `mHMM`, the acceptance rate of the RW metropolis sampler relating to the transition probability matrix `gamma` can be tracked using the output parameter `gamma_naccept`. An acceptance rate of about 23% is considered optimal when many parameters are being updated at once (Gelman, Carlin, Stern & Rubin, 2014).

**Value**

`pd_RW_gamma` returns an object of class `mHMM_pdRW_gamma`, containing settings of the proposal distribution of the random walk (RW) Metropolis sampler on the transition probability matrix `gamma` of the multilevel hidden Markov model. The object is specifically created and formatted for use by the function `mHMM`, and checked for correct input dimensions. The object contains the following components:

- `m` Numeric vector denoting the number of hidden states, used for checking equivalent general model properties specified under `pd_RW_gamma` and `mHMM`.
- `gamma_int_mle0` A matrix containing the starting values for the maximum likelihood (ML) estimates of the Multinomial logit regression intercepts of the transition probability matrix `gamma`.
- `gamma_scalar` A numeric vector with length 1 denoting the scale factor `s` of the proposal distribution.
- `gamma_w` A numeric vector with length 1 denoting the weight for the overall log likelihood in the fractional likelihood.

**References**


**Examples**

```r
### Example using package example data, see ?nonverbal
# specifying general model properties:
m <- 3

# specifying manual values for RW metropolis sampler on gamma
gamma_int_mle0 <- matrix(c(-2, -2, 2, 0, 0, 3), byrow = TRUE, nrow = m, ncol = m - 1)
gamma_scalar <- c(2)
gamma_w <- c(0.2)
manual_gamma_sampler <- pd_RW_gamma(m = m, gamma_int_mle0 = gamma_int_mle0,
                                     gamma_scalar = gamma_scalar,
                                     gamma_w = gamma_w)

# specifying starting values
n_dep <- 4
q_emiss <- c(3, 2, 3, 2)
```
```

# start of the code snippet

start_TM <- diag(.7, m)
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .1
start_EM <- list(matrix(c(0.05, 0.90, 0.05,
                          0.90, 0.05, 0.05,
                          0.55, 0.45, 0.05), byrow = TRUE,
                          nrow = m, ncol = q_emiss[1]), # vocalizing patient
               matrix(c(0.1, 0.9,
                        0.1, 0.9,
                        0.1, 0.9), byrow = TRUE, nrow = m,
                        ncol = q_emiss[2]), # looking patient
               matrix(c(0.90, 0.05, 0.05,
                        0.05, 0.90, 0.05,
                        0.55, 0.45, 0.05), byrow = TRUE,
                        nrow = m, ncol = q_emiss[3]), # vocalizing therapist
               matrix(c(0.1, 0.9,
                        0.1, 0.9,
                        0.1, 0.9), byrow = TRUE, nrow = m,
                        ncol = q_emiss[4])) # looking therapist

# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
# and a burn_in of 200.

out_3st_RWgamma <- mHMM(s_data = nonverbal,
                        gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
                        start_val = c(list(start_TM), start_EM),
                        gamma_sampler = manual_gamma_sampler,
                        mcmc = list(J = 11, burn_in = 5))

out_3st_RWgamma
summary(out_3st_RWgamma)

# checking acceptance rate (for illustrative purposes, in the example,
# J is too low for getting a fair indication)
J_it <- 11 - 1 # accept/reject starts at iteration 2 of MCMC algorithm
out_3st_RWgamma$gamma_naccept / J_it
# average acceptance rate over all subjects per parameter
apply(out_3st_RWgamma$gamma_naccept / J_it, 2, mean)
```

### plot.mHMM

**Plotting the posterior densities for a fitted multilevel HMM**

**Description**

plot.mHMM plots the posterior densities for a fitted multilevel hidden Markov model for the group and subject level parameters simultaneously. The plotted posterior densities are either for the transition probability matrix gamma, or for the emission distribution probabilities.
plot.mHMM

Usage

## S3 method for class 'mHMM'
plot(
  x,
  component = "gamma",
  dep = 1,
  col,
  cat_lab,
  dep_lab,
  lwd1 = 2,
  lwd2 = 1,
  lty1 = 1,
  lty2 = 3,
  legend_cex,
  burn_in,
  ...
)

Arguments

x  Object of class mHMM, generated by the function mHMM.
component  String specifying if the displayed posterior densities should be for the transition probability matrix gamma (component = "gamma"), or for the emission distribution probabilities (component = "emiss"). In case of the latter and the model is based on multiple dependent variables, the user has to indicate for which dependent variable the posterior densities have to be plotted, see dep.

dep  Integer specifying for which dependent variable the posterior densities should be plotted. Only required if one wishes to plot the emission distribution probabilities and the model is based on multiple dependent variables.

col  Vector of colors for the posterior density lines. If one is plotting the posterior densities for gamma, the vector has length m (i.e., number of hidden states). If one is plotting the posterior densities for the emission probabilities, the vector has length q_emiss[k] (i.e., the number of outcome categories for the dependent variable k).

cat_lab  Optional vector of strings when plotting the posterior densities of the emission probabilities, denoting the labels of the categorical outcome values. Automatically generated when not provided.

dep_lab  Optional string when plotting the posterior densities of the emission probabilities with length 1, denoting the label for the dependent variable plotted. Automatically obtained from the input object x when not specified.

lwd1  Positive number indicating the line width of the posterior density at the group level.

lwd2  Positive number indicating the line width of the posterior density at the subject level.

lty1  Positive number indicating the line type of the posterior density at the group level.
plot.mHMM returns a plot of the posterior densities. Depending on whether (component = "gamma") or (component = "emiss"), the plotted posterior densities are either for the transition probability matrix gamma or for the emission distribution probabilities, respectively.

See Also

mHMM for fitting the multilevel hidden Markov model, creating the object mHMM.

Examples

```
## Example on package example data, see ?nonverbal
# First run the function mHMM on example data

# specifying general model properties:
m <- 2
n_dep <- 4
q_emiss <- c(3, 2, 3, 2)

# specifying starting values
start_TM <- diag(.8, m)
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .2
start_EM <- list(matrix(c(0.05, 0.90, 0.05, 0.90, 0.05, 0.05), byrow = TRUE, nrow = m, ncol = q_emiss[1]), # vocalizing patient
                  matrix(c(0.1, 0.9, 0.1, 0.9), byrow = TRUE, nrow = m, ncol = q_emiss[2]), # looking patient
                  matrix(c(0.90, 0.05, 0.05, 0.05, 0.90, 0.05), byrow = TRUE, nrow = m, ncol = q_emiss[3]), # vocalizing therapist
                  matrix(c(0.1, 0.9, 0.1, 0.9), byrow = TRUE, nrow = m, ncol = q_emiss[4])) # looking therapist

# Run a model without covariate(s):
out_2st <- mHMM(s_data = nonverbal, gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss), start_val = c(list(start_TM), start_EM), mcmc = list(J = 11, burn_in = 5))

## plot the posterior densities for gamma
plot(out_2st, component = "gamma")
```
**Description**

`plot.mHMM_gamma` plots the transition probability matrix for a fitted multilevel hidden Markov model, by means of an alluvial plot (also known as Sankey diagram or riverplot) using the R package alluvial. The plotted transition probability matrix either represents the probabilities at the group level, i.e., representing the average transition probability matrix over all subjects, or at the subject level. In case of the latter, the user has to specify for which subject the transition probability matrix should be plotted.

**Usage**

```r
## S3 method for class 'mHMM_gamma'
plot(x, subj_nr = NULL, cex = 0.8, col, hide, ...)
```

**Arguments**

- `x` An object of class `mHMM_gamma`, generated by the function `obtain_gamma`
- `subj_nr` An integer specifying for which specific subject the transition probability matrix should be plotted. Only required if the input object represents the subject specific transition probability matrices.
- `cex` An integer specifying scaling of fonts of category labels. When not specified, defaults to `cex = 0.8`.
- `col` An optional vector with length `m * m` (i.e., where `m` denotes the number of hidden states) specifying the used colors in the alluvial plot.
- `hide` An optional logical vector with length `m * m` (i.e., where `m` denotes the number of hidden states) specifying whether particular stripes should be plotted. When not specified, omits the lines representing a value of exactly zero.
- `...` Arguments to be passed to alluvial (see `alluvial`)

**Value**

`plot.mHMM_gamma` returns a plot of the transition probability matrix. Depending on whether the input object represents the transition probabilities at the group level or the subject specific transition probability matrices, the returned plot represents either the group transition probability matrix, or the transition probability matrix for a given subject, specified by `subject_nr`.

**See Also**

`mHMM` for fitting the multilevel hidden Markov model, creating the object `mHMM`, and `obtain_gamma` to obtain the transition probabilities gamma for a fitted multilevel HMM, creating the object `mHMM_gamma`. 
Examples

#' ###### Example on package data, see ?nonverbal
#' # specifying general model properties:
m <- 2
n_dep <- 4
q_emiss <- c(3, 2, 3, 2)

# specifying starting values
start_TM <- diag(.8, m)
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .2
start_EM <- list(matrix(c(0.05, 0.90, 0.05,
                          0.90, 0.05, 0.05), byrow = TRUE, nrow = m, ncol = q_emiss[1]), # vocalizing patient
                  matrix(c(0.1, 0.9,
                          0.1, 0.9), byrow = TRUE, nrow = m, ncol = q_emiss[2]), # looking patient
                  matrix(c(0.90, 0.05, 0.05,
                          0.05, 0.90, 0.05), byrow = TRUE, nrow = m, ncol = q_emiss[3]), # vocalizing therapist
                  matrix(c(0.1, 0.9,
                          0.1, 0.9), byrow = TRUE, nrow = m, ncol = q_emiss[4])) # looking therapist

# Run a model without covariate(s):
out_2st <- mHMM(s_data = nonverbal,
gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
start_val = c(list(start_TM), start_EM),
mcmc = list(J = 11, burn_in = 5))

out_2st
summary(out_2st)

# obtaining the transition probabilities at the group and subject level
est_gamma_group <- obtain_gamma(out_2st, level = "group")

# plot the obtained transition probabilities
plot(est_gamma_group, col = rep(c("green", "blue"), each = m))

---

prior_emiss_cat

Specifying informative hyper-prior on the categorical emission distribution(s) of the multilevel hidden Markov model

Description

prior_emiss_cat provides a framework to manually specify an informative hyper-prior on the categorical emission distribution(s), and creates an object of class mHMM_prior_emiss used by the
prior_emiss_cat

function mHMM. Note that the hyper-prior distribution on the categorical emission probabilities are on the intercepts (and, if subject level covariates are used, regression coefficients) of the Multinomial logit model used to accommodate the multilevel framework of the data, instead of on the probabilities directly. The set of hyper-prior distributions consists of a multivariate Normal hyper-prior distribution on the vector of means (i.e., intercepts and regression coefficients), and an Inverse Wishart hyper-prior distribution on the covariance matrix.

Usage

prior_emiss_cat(
  gen,
  emiss_mu0,
  emiss_K0 = NULL,
  emiss_nu = NULL,
  emiss_V = NULL,
  n_xx_emiss = NULL
)

Arguments

gen List containing the following elements denoting the general model properties:
  • m: numeric vector with length 1 denoting the number of hidden states
  • n_dep: numeric vector with length 1 denoting the number of dependent variables
  • q_emiss: numeric vector with length n_dep denoting the number of observed categories for the categorical emission distribution for each of the dependent variables.

emiss_mu0 A list of lists: emiss_mu0 contains n_dep lists, i.e., one list for each dependent variable k. Each list k contains m matrices; one matrix for each set of emission probabilities within a state. The matrices contain the hypothesized hyper-prior mean values of the intercepts of the Multinomial logit model on the categorical emission probabilities. Hence, each matrix consists of one row (when not including covariates in the model) and q_emiss[k] - 1 columns. If covariates are used, the number of rows in each matrix in the list is equal to 1 + n_xx (i.e., the first row corresponds to the hyper-prior mean values of the intercepts, the subsequent rows correspond to the hyper-prior mean values of the regression coefficients connected to each of the covariates).

emiss_K0 Optional list containing n_dep elements corresponding to each dependent variable k. Each element k is a numeric vector with length 1 (when no covariates are used) denoting the number of hypothetical prior subjects on which the set of hyper-prior mean intercepts specified in emiss_mu0 are based. When covariates are used: each element is a numeric vector with length 1 + n_xx denoting the number of hypothetical prior subjects on which the set of intercepts (first value) and set of regression coefficients (subsequent values) are based.

emiss_nu Optional list containing n_dep elements corresponding to each dependent variable k. Each element k is a numeric vector with length 1 denoting the degrees of freedom of the hyper-prior Inverse Wishart distribution on the covariance of the Multinomial logit intercepts.
prior_emiss_cat

emiss_V
Optional list containing n_dep elements corresponding to each dependent variable k, where each element k is a matrix of q_emiss[k] - 1 by q_emiss[k] - 1 containing the variance-covariance of the hyper-prior Inverse Wishart distribution on the covariance of the Multinomial logit intercepts.

n_xx_emiss
Optional numeric vector with length n_dep denoting the number of (level 2) covariates used to predict the emission distribution of each of the dependent variables k. When omitted, the model assumes no covariates are used to predict the emission distribution(s).

Details

Estimation of the mHMM proceeds within a Bayesian context, hence a hyper-prior distribution has to be defined for the group level parameters. Default, non-informative priors are used unless specified otherwise by the user. For each dependent variable, each row of the categorical emission probability matrix (i.e., the probability to observe each category (columns) within each of the states (rows)) has its own set of Multinomial logit intercepts, which are assumed to follow a multivariate normal distribution. Hence, the hyper-prior distributions for the intercepts consists of a multivariate Normal hyper-prior distribution on the vector of means, and an Inverse Wishart hyper-prior distribution on the covariance matrix. Note that only the general model properties (number of states m, number of dependent variables n_dep, and number of observed categories for each dependent variable q_emiss) and values of the hypothesized hyper-prior mean values of the Multinomial logit intercepts have to be specified by the user, default values are available for all other hyper-prior distribution parameters.

Given that the hyper-priors are specified on the intercepts of the Multinomial logit model intercepts instead of on the categorical emission probabilities directly, specifying a hyper-prior can seem rather daunting. However, see the function prob_to_int and int_to_prob for translating probabilities to a set of Multinomial logit intercepts and vice versa.

Note that emiss_K0, emiss_nu and emiss_V are assumed equal over the states. When the hyper-prior values for emiss_K0, emiss_nu and emiss_V are not manually specified, the default values are as follows. emiss_K0 set to 1, emiss_nu set to 3 + q_emiss[k] - 1, and the diagonal of gamma_V (i.e., the variance) set to 3 + q_emiss[k] - 1 and the off-diagonal elements (i.e., the covariance) set to 0. In addition, when no manual values for the hyper-prior on the categorical emission distribution are specified at all (that is, the function prior_emiss_cat is not used), all elements of the matrices contained in emiss_mu0 are set to 0 in the function mHMM.

Note that in case covariates are specified, the hyper-prior parameter values of the inverse Wishart distribution on the covariance matrix remain unchanged, as the estimates of the regression coefficients for the covariates are fixed over subjects.

Value

prior_emiss_cat returns an object of class mHMM_prior_emiss, containing informative hyper-prior values for the categorical emission distribution(s) of the multilevel hidden Markov model. The object is specifically created and formatted for use by the function mHMM, and thoroughly checked for correct input dimensions. The object contains the following components:

gen A list containing the elements m, n_dep, and q_emiss, used for checking equivalent general model properties specified under prior_emiss_cat and mHMM.
emiss_mu0 A list of lists containing the hypothesized hyper-prior mean values of the intercepts of the Multinomial logit model on the categorical emission probabilities.

emiss_K0 A list containing n_dep elements denoting the number of hypothetical prior subjects on which the set of hyper-prior mean intercepts specified in emiss_mu0 are based.

emiss_nu A list containing n_dep elements denoting the degrees of freedom of the hyper-prior Inverse Wishart distribution on the covariance of the Multinomial logit intercepts.

emiss_V A list containing n_dep elements containing the variance-covariance of the hyper-prior Inverse Wishart distribution on the covariance of the Multinomial logit intercepts.

n_xx_emiss A numeric vector denoting the number of (level 2) covariates used to predict the emission distribution of each of the dependent variables. When no covariates are used, n_xx_emiss equals NULL.

See Also

prior_gamma for manually specifying an informative hyper-prior on the transition probability matrix gamma, prob_to_int for transforming a set of probabilities to a set of Multinomial logit regression intercepts, and mHMM for fitting a multilevel hidden Markov model.

Examples

```r
### Example using package example data, see ?nonverbal
# specifying general model properties:
m <- 3
n_dep <- 4
q_emiss <- c(3, 2, 3, 2)

# hypothesized mean emission probabilities
prior_prob_emiss_cat <- list(matrix(c(0.10, 0.80, 0.10,
                                     0.80, 0.10, 0.10,
                                     0.40, 0.40, 0.20), byrow = TRUE,
                                     nrow = m, ncol = q_emiss[[1]]), # vocalizing patient,
                                # prior belief: state 1 - much talking, state 2 -
                                # no talking, state 3 - mixed
                                matrix(c(0.30, 0.70,
                                         0.30, 0.70,
                                         0.30, 0.70), byrow = TRUE, nrow = m,
                                         ncol = q_emiss[[2]]), # looking patient
                                # prior belief: all 3 states show frequent looking
                                # behavior
                                matrix(c(0.80, 0.10, 0.10,
                                         0.10, 0.80, 0.10,
                                         0.40, 0.40, 0.20), byrow = TRUE,
                                         nrow = m, ncol = q_emiss[[3]]), # vocalizing therapist
                                # prior belief: state 1 - no talking, state 2 -
                                # frequent talking, state 3 - mixed
                                matrix(c(0.30, 0.70,
                                         0.30, 0.70,
                                         0.30, 0.70), byrow = TRUE, nrow = m,
                                         ncol = q_emiss[[4]])) # looking therapist
                                # prior belief: all 3 states show frequent looking
```
# behavior

# using the function prob_to_int to obtain intercept values for the above specified
# categorical emission distributions
prior_int_emiss <- sapply(prior_prob_emiss_cat, prob_to_int)
emiss_mu0 <- rep(list(vector(mode = "list", length = m)), n_dep)
for(k in 1:n_dep){
  for(i in 1:m){
    emiss_mu0[[k]][[i]] <- matrix(prior_int_emiss[[k]][i,], nrow = 1)
  }
}
emiss_K0 <- rep(list(c(1)), n_dep)
emiss_nu <- list(c(5), c(4), c(5), c(4))
emiss_V <- list(diag(5, q_emiss[1] - 1),
                diag(4, q_emiss[2] - 1),
                diag(5, q_emiss[3] - 1),
                diag(4, q_emiss[4] - 1))

manual_prior_emiss <- prior_emiss_cat(gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
                                     emiss_mu0 = emiss_mu0, emiss_K0 = emiss_K0,
                                     emiss_nu = emiss_nu, emiss_V = emiss_V)

# using the informative hyper-prior in a model

# specifying starting values
start_TM <- diag(.7, m)
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .1
start_EM <- list(matrix(c(0.05, 0.90, 0.05,
                          0.90, 0.05, 0.05,
                          0.55, 0.45, 0.05), byrow = TRUE,
                          nrow = m, ncol = q_emiss[1]), # vocalizing patient
                  matrix(c(0.1, 0.9, 0.05,
                          0.1, 0.9, 0.05), byrow = TRUE, nrow = m,
                          ncol = q_emiss[2]), # looking patient
                  matrix(c(0.90, 0.05, 0.05,
                          0.05, 0.90, 0.05,
                          0.55, 0.45, 0.05), byrow = TRUE,
                          nrow = m, ncol = q_emiss[3]), # vocalizing therapist
                  matrix(c(0.1, 0.9, 0.05,
                          0.1, 0.9, 0.05), byrow = TRUE, nrow = m,
                          ncol = q_emiss[4])) # looking therapist

# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
# and a burn_in of 200.

out_3st_infemiss <- mHMM(s_data = nonverbal,
                          gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
                          start_val = c(list(start_TM), start_EM),
                          ...
prior_gamma

emiss_hyp_prior = manual_prior_emiss,
mcmc = list(J = 11, burn_in = 5))

out_3st_infemiss
summary(out_3st_infemiss)

descriptions

prior_gamma

Specification informative hyper-prior on the transition probability matrix gamma of the multilevel hidden Markov model

Description

prior_gamma provides a framework to manually specify an informative hyper-prior on the transition probability matrix gamma, and creates an object of class mHMM_prior_gamma used by the function mHMM. Note that the hyper-prior distribution on the transition probabilities are on the intercepts (and, if subject level covariates are used, regression coefficients) of the Multinomial logit model used to accommodate the multilevel framework of the data, instead of on the probabilities directly. The set of hyper-prior distributions consists of a multivariate Normal hyper-prior distribution on the vector of means (i.e., intercepts and regression coefficients), and an Inverse Wishart hyper-prior distribution on the covariance matrix.

Usage

prior_gamma(
m,
gamma_mu0,
gamma_K0 = NULL,
gamma_nu = NULL,
gamma_V = NULL,
n_xx_gamma = NULL
)

Arguments

m Numeric vector with length 1 denoting the number of hidden states.
gamma_mu0 A list containing m matrices; one matrix for each row of the transition probability matrix gamma. Each matrix contains the hypothesized hyper-prior mean values of the intercepts of the Multinomial logit model on the transition probabilities gamma. Hence, each matrix consists of one row (when not including covariates in the model) and m - 1 columns. If covariates are used, the number of rows in each matrix in the list is equal to 1 + n_xx_gamma (i.e., the first row corresponds to the hyper-prior mean values of the intercepts, the subsequent rows correspond to the hyper-prior mean values of the regression coefficients connected to each of the covariates).
**gamma_K0**
Optional numeric vector with length 1 (when no covariates are used) denoting the number of hypothetical prior subjects on which the set of hyper-prior mean intercepts specified in `gamma_mu0` are based. When covariates are used: Numeric vector with length 1 + n_xx_gamma denoting the number of hypothetical prior subjects on which the set of intercepts (first value) and set of regression coefficients (subsequent values) are based.

**gamma_nu**
Optional numeric vector with length 1 denoting the degrees of freedom of the hyper-prior Inverse Wishart distribution on the covariance of the Multinomial logit intercepts.

**gamma_V**
Optional matrix of \( m - 1 \) by \( m - 1 \) containing the variance-covariance matrix of the hyper-prior Inverse Wishart distribution on the covariance of the Multinomial logit intercepts.

**n_xx_gamma**
Optional numeric vector with length 1 denoting the number of (level 2) covariates used to predict the transition probability matrix gamma. When omitted, the model assumes no covariates are used to predict gamma.

**Details**
Estimation of the mHMM proceeds within a Bayesian context, hence a hyper-prior distribution has to be defined for the group level parameters. Default, non-informative priors are used unless specified otherwise by the user. Each row of the transition probability matrix has its own set of Multinomial logit intercepts, which are assumed to follow a multivariate normal distribution. Hence, the hyper-prior distributions for the intercepts consists of a multivariate Normal hyper-prior distribution on the vector of means, and an Inverse Wishart hyper-prior distribution on the covariance matrix. Note that only the number of states \( m \) and values of the hypothesized hyper-prior mean values of the Multinomial logit intercepts have to be specified by the user, default values are available for all other hyper-prior distribution parameters.

Given that the hyper-priors are specified on the intercepts of the Multinomial logit model intercepts instead of on the probabilities of the transition probability matrix gamma directly, specifying a hyper-prior can seem rather daunting. However, see the function `prob_to_int` and `int_to_prob` for translating probabilities to a set of Multinomial logit intercepts and vice versa.

Note that `gamma_K0`, `gamma_nu` and `gamma_V` are assumed equal over the states. When the hyper-prior values for `gamma_K0`, `gamma_nu` and `gamma_V` are not manually specified, the default values are as follows. `gamma_K0` set to 1, `gamma_nu` set to \( 3 + m - 1 \), and the diagonal of `gamma_V` (i.e., the variance) set to \( 3 + m - 1 \) and the off-diagonal elements (i.e., the covariance) set to 0. In addition, when no manual values for the hyper-prior on gamma are specified at all (that is, the function `prior_gamma` is not used), all elements of the matrices contained in `gamma_mu0` are set to 0 in the function `mHMM`.

Note that in case covariates are specified, the hyper-prior parameter values of the inverse Wishart distribution on the covariance matrix remain unchanged, as the estimates of the regression coefficients for the covariates are fixed over subjects.

**Value**
`prior_gamma` returns an object of class `mHMM_prior_gamma`, containing informative hyper-prior values for the transition probability matrix gamma of the multilevel hidden Markov model. The object is specifically created and formatted for use by the function `mHMM`, and thoroughly checked for correct input dimensions. The object contains the following components:
prior.gamma

m Numeric vector denoting the number of hidden states, used for checking equivalent general model properties specified under prior.gamma and mHMM.
gamma.mu0 A list containing the hypothesized hyper-prior mean values of the intercepts of the Multinomial logit model on the transition probability matrix gamma.
gamma.K0 A numeric vector denoting the number of hypothetical prior subjects on which the set of hyper-prior mean intercepts specified in gamma.mu0 are based.
gamma.nu A numeric vector denoting the degrees of freedom of the hyper-prior Inverse Wishart distribution on the covariance of the Multinomial logit intercepts.
gamma.V A matrix containing the variance-covariance of the hyper-prior Inverse Wishart distribution on the covariance of the Multinomial logit intercepts.
n_xx.gamma A numeric vector denoting the number of (level 2) covariates used to predict the transition probability matrix gamma. When no covariates are used, n_xx.gamma equals NULL.

See Also
prior.emiss.cat for manually specifying an informative hyper-prior on the categorical emission distribution(s), prob_to_int for transforming a set of probabilities to a set of Multinomial logit regression intercepts, and mHMM for fitting a multilevel hidden Markov model.

Examples

```
# Example using package example data, see ?nonverbal
# specifying general model properties:
m <- 3
# representing a prior belief that switching to state 3 does not occur often and
# state 3 has a relative short duration
prior.prob.gamma <- matrix(c(0.70, 0.25, 0.05,  
0.25, 0.70, 0.05,  
0.30, 0.30, 0.40), nrow = m, ncol = m, byrow = TRUE)

# using the function prob_to_int to obtain intercept values for the above specified
# transition probability matrix gamma
prior.int.gamma <- prob_to_int(prior.prob.gamma)
gamma.mu0 <- list(matrix(prior.int.gamma[1,], nrow = 1, ncol = m-1),
matrix(prior.int.gamma[2,], nrow = 1, ncol = m-1),
matrix(prior.int.gamma[3,], nrow = 1, ncol = m-1))
gamma.K0 <- 1
gamma.nu <- 5
gamma.V <- diag(m - 1)

manual_prior.gamma <- prior.gamma(m = m, gamma.mu0 = gamma.mu0,
 gamma.K0 = gamma.K0, gamma.nu = gamma.nu,
 gamma.V = gamma.V)

# using the informative hyper-prior in a model
n_dep <- 4
q.emiss <- c(3, 2, 3, 2)
```
# specifying starting values
start_TM <- diag(.7, m)
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .1
start_EM <- list(matrix(c(0.05, 0.90, 0.05, 
0.90, 0.05, 0.05, 
0.55, 0.45, 0.05), byrow = TRUE, 
nrow = m, ncol = q_emiss[1]), # vocalizing patient
matrix(c(0.1, 0.9, 
0.1, 0.9), byrow = TRUE, nrow = m, 
ncol = q_emiss[2]), # looking patient
matrix(c(0.90, 0.05, 0.05, 
0.05, 0.90, 0.05, 
0.55, 0.45, 0.05), byrow = TRUE, 
nrow = m, ncol = q_emiss[3]), # vocalizing therapist
matrix(c(0.1, 0.9, 
0.1, 0.9), byrow = TRUE, nrow = m, 
ncol = q_emiss[4])) # looking therapist

# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
# and a burn_in of 200.
out_3st_infgamma <- mHMM(s_data = nonverbal,
gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
start_val = c(list(start_TM), start_EM),
gamma_hyp_prior = manual_prior_gamma,
mcmc = list(J = 11, burn_in = 5))

out_3st_infgamma
summary(out_3st_infgamma)

---

### prob_to_int

**Transforming a set of probabilities to Multinomial logit regression intercepts**

**Description**

prob_to_int transforms a set of state transition or categorical emission observation probabilities to the corresponding Multinomial logit regression intercepts. Note that the first category is assumed to be the reference category, hence no intercept is returned for the first state or category.

**Usage**

prob_to_int(prob_matrix)
Arguments

`prob_matrix`  A matrix with number of states OR categories columns and number of rows to be determined by the user, with rows summing to one. For obtaining the set of Multinomial logit regression intercepts of the complete transition probability matrix `gamma` or categorical emission distribution matrix, the number of rows equals the number of states `m`.

Details

Designed to ease the specification of informative hyper-prior values for the mean intercepts of the transition probability matrix `gamma` and categorical emission distribution(s) of the multilevel hidden Markov model through the functions `prior_gamma` and `prior_emiss_cat`. No check is performed on correct specifications of the dimensions.

Value

`prob_to_int` returns a matrix containing Multinomial logit regression intercepts, with the number of columns equal to (number of states or categories - 1) and the number of rows equal to the number of rows specified in the input matrix. The first state / category is assumed to be the reference category, hence no intercept is returned for this first category.

See Also

`int_to_prob` for transforming a set of Multinomial logit regression intercepts to a probabilities, `prior_gamma` and `prior_emiss_cat` for specifying informative hyper-priors for the the multilevel hidden Markov model and `mHMM` to fit a multilevel hidden Markov model.

Examples

```r
# example for transition probability matrix gamma with 3 states
m <- 3
gamma_prob <- matrix(c(0.6, 0.2, 0.2,
                        0.1, 0.8, 0.1,
                        0.1, 0.1, 0.8), ncol = m, nrow = m, byrow = TRUE)
gamma_int <- prob_to_int(gamma_prob)
gamma_int
```

`sim_mHMM` Simulate data using a multilevel hidden Markov model

Description

`sim_mHMM` simulates data for multiple subjects, for which the data have categorical observations that follow a hidden Markov model (HMM) with a multilevel structure. The multilevel structure implies that each subject is allowed to have its own set of parameters, and that the parameters at the subject level (level 1) are tied together by a population distribution at level 2 for each of the
corresponding parameters. The shape of the population distribution for each of the parameters is a normal distribution. In addition to (natural and/or unexplained) heterogeneity between subjects, the subjects’ parameters can also depend on a covariate.

Usage

```r
sim_mHMM(
  n_t,  
  n, 
  gen,  
  gamma,  
  emiss_distr,  
  start_state = NULL,  
  xx_vec = NULL,  
  beta = NULL,  
  var_gamma = 0.1,  
  var_emiss = NULL,  
  return_ind_par = FALSE,  
  m,  
  n_dep,  
  q_emiss
)
```

Arguments

- **n_t** Numeric vector with length 1 denoting the length of the observed sequence to be simulated for each subject. To only simulate subject specific transition probability matrices gamma and emission distributions (and no data), set `t` to 0.
- **n** Numeric vector with length 1 denoting the number of subjects for which data is simulated.
- **gen** List containing the following elements denoting the general model properties:
  - `m`: numeric vector with length 1 denoting the number of hidden states
  - `n_dep`: numeric vector with length 1 denoting the number of dependent variables
  - `q_emiss`: numeric vector with length `n_dep` denoting the number of observed categories for the categorical emission distribution for each of the dependent variables.
- **gamma** A matrix with `m` rows and `m` columns containing the average population transition probability matrix used for simulating the data. That is, the probability to switch from hidden state `i` (row `i`) to hidden state `j` (column `j`).
- **emiss_distr** A list with `n_dep` elements containing the average population emission distribution(s) of the observations given the hidden states for each of the dependent variables. Each element is a matrix with `m` rows and `q_emiss[k]` columns for each of the `k` in `n_dep` emission distribution(s). That is, the probability of observing category `q` (column `q`) in state `i` (row `i`).
- **start_state** Optional numeric vector with length 1 denoting in which state the simulated state sequence should start. If left unspecified, the simulated state for time point
1 is sampled from the initial state distribution (which is derived from the transition probability matrix gamma).

**xx_vec**

List of 1 + n_dep vectors containing the covariate(s) to predict the transition probability matrix gamma and/or (specific) emission distribution(s) using the regression parameters specified in beta (see below). The first element in the list xx_vec is used to predict the transition matrix. Subsequent elements in the list are used to predict the emission distribution of (each of) the dependent variable(s). This means that the covariate used to predict gamma and emiss_distr can either be the same covariate, different covariates, or a covariate for certain elements and none for the other. At this point, it is only possible to use one covariate for both gamma and emiss_distr. For all elements in the list, the number of observations in the vectors should be equal to the number of subjects to be simulated \( n \). If xx_vec is omitted completely, xx_vec defaults to NULL, resembling no covariates at all. Specific elements in the list can also be left empty (i.e., set to NULL) to signify that either the transition probability matrix or (one of) the emission distribution(s) is not predicted by covariates.

**beta**

List of 1 + n_dep matrices containing the regression parameters to predict gamma and/or emiss_distr in combination with xx_vec using (Multinomial logistic) regression. The first matrix is used to predict the transition probability matrix gamma. The subsequent matrices are used to predict the emission distribution(s) emiss_distr of the dependent variable(s). For gamma and categorical emission distributions, one regression parameter is specified for each element in gamma and emiss_distr, with the following exception. The first element in each row of gamma and/or emiss_distr is used as reference category in the Multinomial logistic regression. As such, no regression parameters can be specified for these parameters. Hence, the first element in the list beta to predict gamma consist of a matrix with the number of rows equal to \( m \) and the number of columns equal to \( m \) - 1. For categorical emission distributions, the subsequent elements in the list beta to predict emiss_distr consist of a matrix with the number of rows equal to \( m \) and the number of columns equal to \( q_{emiss[k]} \) - 1 for each of the \( k \) in n_dep emission distribution(s). See details for more information. For continuous emission distributions, the subsequent elements in the list beta consist of a matrix with the number of rows equal to \( m \) and 1 column.

Note that if beta is specified, xx_vec has to be specified as well. If beta is omitted completely, beta defaults to NULL, resembling no prediction of gamma and emiss_distr using covariates. One of the elements in the list can also be left empty (i.e., set to NULL) to signify that either the transition probability matrix or a specific emission distribution is not predicted by covariates.

**var_gamma**

A numeric vector with length 1 denoting the amount of variance between subjects in the transition probability matrix. Note that this value corresponds to the variance of the parameters of the Multinomial distribution (i.e., the intercepts of the regression equation of the Multinomial distribution used to sample the transition probability matrix), see details below. In addition, only one variance value can be specified for the complete transition probability matrix, hence the variance is assumed fixed across all components. The default equals 0.1, which corresponds to little variation between subjects. If one wants to simulate data from exactly the same HMM for all subjects, var_gamma should be set to 0.
Note that if data for only 1 subject is simulated (i.e., \( n = 1 \)), \( \text{var}_{\gamma} \) is set to 0.

**var_emiss**

A numeric vector with length \( n_{\text{dep}} \) denoting the amount of variance between subjects in the emission distribution(s). Note that this value corresponds to the variance of the parameters of the Multinomial distribution (i.e., the intercepts of the regression equation of the Multinomial distribution used to sample the components of the emission distribution), see details below. Only one variance value can be specified each emission distribution, hence the variance is assumed fixed across states and across categories within a state. The default equals 0.1, which corresponds to little variation between subjects given categorical observations. If one wants to simulate data from exactly the same HMM for all subjects, \( \text{var}_{\text{emiss}} \) should be set to a vector of 0’s. Note that if data for only 1 subject is simulated (i.e., \( n = 1 \)), \( \text{var}_{\text{emiss}} \) is set to a vector of 0’s.

**return_ind_par**

A logical scalar. Should the subject specific transition probability matrix \( \gamma \) and emission probability matrix \( \text{emiss}_{\text{distr}} \) be returned by the function \((\text{return\_ind\_par} = \text{TRUE})\) or not \((\text{return\_ind\_par} = \text{FALSE})\). The default equals \( \text{return\_ind\_par} = \text{FALSE} \).

**m**

The argument \( m \) is deprecated; please specify using the input parameter \( \text{gen} \).

**n_dep**

The argument \( n_{\text{dep}} \) is deprecated; please specify using the input parameter \( n_{\text{dep}} \).

**q_emiss**

The argument \( q_{\text{emiss}} \) is deprecated; please specify using the input parameter \( q_{\text{emiss}} \).

### Details

In simulating the data, having a multilevel structure means that the parameters for each subject are sampled from the population level distribution of the corresponding parameter. The user specifies the population distribution for each parameter: the average population transition probability matrix and its variance, and the average population emission distribution and its variance. For now, the variance of the mean population parameters is assumed fixed for all components of the transition probability matrix and for all components of the emission distribution.

One can simulate multivariate data. That is, the hidden states depend on more than 1 observed variable simultaneously. The distributions of multiple dependent variables for multivariate data are assumed to be independent.

Note: the subject specific (initial) state distributions (i.e., the probability of each of the states at the first time point) needed to simulate the data are obtained from the stationary distributions of the subject specific transition probability matrices \( \gamma \).

**beta**

As the first element in each row of \( \gamma \) is used as reference category in the Multinomial logistic regression, the first matrix in the list \( \beta \) used to predict transition probability matrix \( \gamma \) has a number of rows equal to \( m \) and the number of columns equal to \( m - 1 \). The first element in the first row corresponds to the probability of switching from state one to state two. The second element in the first row corresponds to the probability of switching from state one to state three, and so on. The last element in the first row corresponds to the probability of switching from state one to the last state. The same principle holds for the second matrix in the list \( \beta \) used to predict categorical emission distribution(s) \( \text{emiss}_{\text{distr}} \): the first element in the first row corresponds to the probability of observing category two in state one. The second element in the first row
corresponds to the probability of observing category three is state one, and so on. The last element in the first row corresponds to the probability of observing the last category in state one.

Value

The following components are returned by the function `sim_mHMM`:

- **states**: A matrix containing the simulated hidden state sequences, with one row per hidden state per subject. The first column indicates subject id number. The second column contains the simulated hidden state sequence, consecutively for all subjects. Hence, the id number is repeated over the rows (with the number of repeats equal to the length of the simulated hidden state sequence `T` for each subject).

- **obs**: A matrix containing the simulated observed outputs, with one row per simulated observation per subject. The first column indicates subject id number. The second column contains the simulated observation sequence, consecutively for all subjects. Hence, the id number is repeated over rows (with the number of repeats equal to the length of the simulated observation sequence `T` for each subject).

- **gamma**: A list containing `n` elements with the simulated subject specific transition probability matrices `gamma`. Only returned if `return_ind_par` is set to `TRUE`.

- **emiss_distr**: A list containing `n` elements with the simulated subject specific emission probability matrices `emiss_distr`. Only returned if `return_ind_par` is set to `TRUE`.

See Also

`mHMM` for analyzing multilevel hidden Markov data.

Examples

```r
# simulating data for 10 subjects with each 100 observations
n_t <- 100
n <- 10
m <- 3
n_dep <- 1
q_emiss <- 4
gamma <- matrix(c(0.8, 0.1, 0.1, 0.2, 0.7, 0.1, 0.2, 0.2, 0.6), ncol = m, byrow = TRUE)
emiss_distr <- list(matrix(c(0.5, 0.5, 0.0, 0.0, 0.1, 0.1, 0.8, 0.0, 0.0, 0.0, 0.1, 0.9), nrow = m, ncol = q_emiss, byrow = TRUE))
data1 <- sim_mHMM(n_t = n_t, n = n, gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss), gamma = gamma, emiss_distr = emiss_distr, var_gamma = 1, var_emiss = 1)
head(data1$obs)
head(data1$states)

# including a covariate to predict (only) the transition probability matrix `gamma`
beta <- rep(list(NULL), 2)
beta[1] <- matrix(c(0.5, 1.0, -0.5, 0.5, 0.0, 1.0), byrow = TRUE, ncol = 2)
```
Obtain hidden state sequence for each subject using the Viterbi algorithm

Description

vit_mHMM obtains the most likely state sequence (for each subject) from an object of class mHMM (generated by the function mHMM()), using (an extended version of) the Viterbi algorithm. This is also known as global decoding.

Usage

vit_mHMM(object, s_data, burn_in = NULL)

Arguments

object

An object of class mHMM, generated by the function mHMM.

s_data

A matrix containing the observations to be modeled, where the rows represent the observations over time. In s_data, the first column indicates subject id number. Hence, the id number is repeated over rows equal to the number of observations for that subject. The subsequent columns contain the dependent variable(s). Note that the dependent variables have to be numeric, i.e., they
cannot be a (set of) factor variable(s). The total number of rows are equal to the sum over the number of observations of each subject, and the number of columns are equal to the number of dependent variables \( n_{\text{dep}} + 1 \). The number of observations can vary over subjects.

**burn_in**

The number of iterations to be discarded from the MCMC algorithm when inferring the transition probability matrix \( \Gamma \) and the emission distribution of (each of) the dependent variable(s) for each subject from \( s_{\text{data}} \). If omitted, defaults to \( \text{NULL} \) and \( \text{burn\_in} \) specified at the function \( \text{mHMM}() \) will be used.

### Details

Note that local decoding is also possible, by inferring the most frequent state at each point in time for each subject from the sampled state path at each iteration of the MCMC algorithm. This information is contained in the output object \( \text{return\_path} \) of the function \( \text{mHMM}() \).

### Value

The function \( \text{vit\_mHMM} \) returns a matrix containing the most likely state at each point in time. Each column represents a subject, and each row represents a point in time. If sequence lengths differ over subjects, states for none existing time points for subjects are filled with \( \text{NA} \).

### References


### See Also

\( \text{mHMM} \) for analyzing multilevel hidden Markov data and obtaining the input needed for \( \text{vit\_mHMM} \), and \( \text{sim\_mHMM} \) for simulating multilevel hidden Markov data.

### Examples

```r
# Example on package example data, see ?nonverbal
# First fit the multilevel HMM on the example data

# specifying general model properties:
m <- 2
n_dep <- 4
q_emiss <- c(3, 2, 3, 2)

# specifying starting values
start_TM <- diag(.8, m)
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .2
start_EM <- list(matrix(c(0.05, 0.90, 0.05, 0.90, 0.05, 0.05), byrow = TRUE, nrow = m, ncol = q_emiss[1]),
                  matrix(c(0.1, 0.9, 0.1, 0.9), byrow = TRUE, nrow = m, ncol = q_emiss[2]))
```
### Example on simulated data

Simulate data for 10 subjects with each 100 observations:

```r
n_t <- 100
n <- 10
m <- 2
n_dep <- 1
q_emiss <- 3
gamma <- matrix(c(0.8, 0.2,
                   0.3, 0.7), ncol = m, byrow = TRUE)
emiss_distr <- list(matrix(c(0.5, 0.5, 0.0,
                             0.1, 0.1, 0.8), nrow = m, ncol = q_emiss, byrow = TRUE))
data1 <- sim_mHMM(n_t = n_t, n = n, gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
gamma = gamma, emiss_distr = emiss_distr, var_gamma = .5, var_emiss = .5)
```

Fit the model on the simulated data:

```r
# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
# and a burn_in of 200.
out_2st_sim <- mHMM(s_data = data1$obs,
gen = list(m = m, n_dep = n_dep, q_emiss = q_emiss),
start_val = c(list(gamma), emiss_distr),
mcmc = list(J = 11, burn_in = 5))
```

##### obtain the most likely state sequence with the Viterbi algorithm

```r
states <- vit_mHMM(s_data = data1$obs, object = out_2st_sim)
```
Index

* datasets
  nonverbal, 10
  nonverbal_cov, 11

alluvial, 23

int_to_prob, 2, 26, 30, 33

mHMM, 3, 3, 10, 12–14, 21–23, 27, 31, 33, 37–39
mHMMbayes, 4, 9

nonverbal, 10
nonverbal_cov, 11

obtain_emiss, 8, 12
obtain_gamma, 8, 13, 23

par, 22
pd_RW_emiss_cat, 5, 15
pd_RW_gamma, 5, 18
plot.mHMM, 8, 20
plot.mHMM_gamma, 14, 23
prior_emiss_cat, 3, 5, 24, 31, 33
prior_gamma, 3, 5, 27, 29, 33
prob_to_int, 3, 26, 27, 30, 31, 32

sim_mHMM, 8, 10, 33, 39

vit_mHMM, 8, 10, 38