Package ‘mMPA’

October 13, 2022

Type Package
Title Implementation of Marker-Assisted Mini-Pooling with Algorithm
Version 1.2.0
Author Tao Liu, PhD <tliu@stat.brown.edu> [aut, cre] "Yizhen Xu, ScM <yizhen_xu@brown.edu> [aut]
Maintainer Tao Liu, PhD <tliu@stat.brown.edu>
Description To determine the number of quantitative assays needed for a sample of data using pooled testing methods, which include mini-pooling (MP), MP with algorithm (MPA), and marker-assisted MPA (mMPA). To estimate the number of assays needed, the package also provides a tool to conduct Monte Carlo (MC) to simulate different orders in which the sample would be collected to form pools. Using MC avoids the dependence of the estimated number of assays on any specific ordering of the samples to form pools.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0.9000
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2018-10-12 10:50:02 UTC

R topics documented:

 minipool .. 2
 mmpa .. 3
 mpa ... 4
 pooling_mc ... 5

Index
minipool

Number of Assays Needed using Mini-Pooling

Description

Function minipool(...) calculates the number of assays required, when using mini-pooling, for pools that are formed following the order that individual samples appear in the data.

Usage

```r
minipool(v, K = 5, vf_cut = 1000, lod = 0, msg = T)
```

Arguments

- **v**: A vector of non-negative numerical assay results.
- **K**: Pool size; default is **K = 5**.
- **vf_cut**: Cutoff value for defining positive cases; default is **vf_cut = 1000**.
- **lod**: A vector of lower limits of detection or a scalar if the limits are the same; default is **lod = 0**.
- **msg**: Message generated during calculation; default is **TRUE**.

Details

Suppose that **N** samples are collected for pooled testing. The first **K** samples are combined to form a pool, the next **K** samples are combined to form the second pool, and so on. If the number of samples for the last pool is less than **K**, these remaining samples are not used to form a pool (i.e. not included in the calculation). Therefore, a total of **N/%K** pools are formed. The function calculates the number of assays needed for each of these pools. For mini-pooling, if a pool is negative, no further tests are needed and all samples in the pool are concluded as being negative; so the total number of assays required is one. Otherwise if the pool is tested positive, all individual samples in the pool are tested and the total number of assays required is **(K + 1)**.

Value

A vector of length **N/%K** for the numbers of assays needed for all pools that are formed.

References

See Also

mpa, mmpa, pooling_mc
Examples

```r
K = 5; n = 50;
n.pool = n/K; n.pool
# [1] 10
set.seed(100)
pvl = rgamma(n, shape = 2.8, scale = 150)
minipool(pvl)
# A total of 10 pools are formed.
# The numbers of assays required by these pools are:
# [1] 6 6 6 6 6 6 6 6 6 6
```

mmpa *Number of Assays Required using Marker-Assisted Mini-Pooling with Algorithm (mMPA)*

Description

Function `mmpa(...)` calculates the number of assays required, when using mMPA, for pools that are formed following the order of individual samples in the data.

Usage

```r
mmpa(v, s, K = 5, vf_cut = 1000, lod = 0, msg = T)
```

Arguments

- `v` A vector of non-negative numerical assay results.
- `s` A vector of risk scores; `s` must have the same length as `v`. The risk score `s` needs to be positively associated with `v`; otherwise an error message will be generated.
- `K` Pool size; default is `K = 5`.
- `vf_cut` Cutoff value for defining positive cases; default is `vf.cut = 1000`.
- `lod` A vector of lower limits of detection or a scalar if the limits are the same; default is `lod = 0`.
- `msg` Message generated during calculation; default is `TRUE`.

Details

For a given sample `(v_i, s_i), i = 1, ..., N`, the first `K` samples are combined to form a pool, the next `K` samples are combined to form the second pool, and so on. If the number of samples for the last pool is less than `K`, these remaining samples are not used to form a pool (i.e. not included in the calculation). Therefore, a total of `N/%K` pools are formed. The function calculates the number of assays needed for each of these pools.

Value

A vector of length `N/%K` for the numbers of assays needed for all pools that are formed.
References

See Also

minipool, mpa, pooling_mc

Examples

K=5; n = 50;
n.pool = n/K; n.pool
[1] 10
set.seed(100)
pvl = rgamma(n, shape = 2.8, scale = 150)
riskscore = (rank(pvl)/n) * 0.5 + runif(n) * 0.5
mpa(v = pvl, s = riskscore)
A total of 10 pools are formed.
The numbers of assays required by these pools are:
[1] 3 3 4 2 3 3 4 3 3

mpa

Number of Assays Needed using Mini-Pooling with Algorithm (MPA)

Description

Function mpa(...) calculates the number of assays required, when using MPA, for pools that are formed following the order of individual samples in the data.

Usage

mpa(v, K = 5, vf_cut = 1000, lod = 0, msg = T)

Arguments

v A vector of non-negative numerical assay results.
K Pool size; default is K = 5.
vf_cut Cutoff value for defining positive cases; default is vf_cut = 1000.
lod A vector of lower limits of detection or a scalar if the limits are the same; default is lod = 0.
msg Message generated during calculation; default is TRUE.
Details
For a given sample \(v_i \), \(i = 1, \ldots, N \), the first \(K \) samples \(v_1, \ldots, v_5 \) are combined to form a pool, the next \(K \) samples \(v_6, \ldots, v_10 \) are combined to form the second pool, and so on. If the number of samples for the last pool is less than \(K \), these remaining samples are not used to form a pool (i.e. not included in the calculation). Therefore, a total of \(\frac{N}{\%K} \) pools are formed. The function calculates the number of assays needed for each of these pools. See May et al (2010).

Value
A vector of length \(\frac{N}{\%K} \) for the numbers of assays needed for all pools that are formed.

References

See Also
minipool, mmpa, pooling_mc

Examples
\[
K=5; \ n = 50; \\
\text{n.pool} = n/K; \n.pool \\
\ [1] 10 \\
\text{set.seed(100)} \\
\text{pvl} = \text{rgamma}(n, \text{shape} = 2.8, \text{scale} = 150) \\
\text{mpa}(v = \text{pvl}) \\
\ A \text{total of 10 pools are formed.} \\
\text{The numbers of assays required by these pools are:} \\
\ [1] 3 3 4 4 2 5 4 4 4 4
\]
Usage

```r
pooling.mc(v, s = NULL, K = 5, vf_cut = 1000, lod = 0,
method = "mmpa", perm_num = 100, msg = F)
```

Arguments

- **v**: A vector of non-negative numerical assay results.
- **s**: A vector of risk scores; s must be provided if `method = "mmpa"` and have the same length as v. The risk score s needs to be positively associated with v; otherwise an error message will be generated.
- **K**: Pool size; default is `K = 5`.
- **vf_cut**: Cutoff value for defining positive cases; default is `vf_cut = 1000`.
- **lod**: A vector of lower limits of detection or a scalar if the limits are the same; default is `lod = 0`.
- **method**: Method that is used for pooled testing; must be one of `minipool`, `mpa`, and `mmpa`. By default, `method = "mmpa"`.
- **perm_num**: The number of permutation to be used for the calculation; default is 100.
- **msg**: Message generated during calculation; default is FALSE.

Value

The outcome is a matrix of dimension `num_pool` by `perm_num`. The row number is the number of pools (`num_pool`) from each permutation of the data, which is determined by the sample size N and pool size K; `num_pool = N%K`. The column number is the number of permutations (`num_pool`).

References

See Also

- `minipool`, `mpa`, `mmpa`
Examples

```r
### sample size = 300
n = 300;
set.seed(100)
pvl = rgamma(n, shape = 2.8, scale = 150)
summary(pvl)
#  Min. 1st Qu. Median Mean 3rd Qu. Max. 
#  53   225    392   424   564  1373
riskscore = (rank(pvl)/n) * 0.5 + runif(n) * 0.5
cor(pvl, riskscore, method = "spearman")
# [1] 0.69
### Pool size K is set to 5
K=5;
### so, the number of pools = 60
n.pool = n/K; n.pool
# [1] 60
foo = pooling_mc(pvl, riskscore, perm_num = 100)
### Average number of assays needed per pool for each of the 100
### permutations of the data
apply(foo, 2, mean)
# [71] 3.23 3.33 3.23 3.42 3.32 3.32 3.45 3.35 3.32 3.33 3.33 3.30 3.38
# [99] 3.30 3.30 3.33
### Estimated average number of assays needed per pool
mean(foo)
# 3.35
### Estimated average number of assays needed per individual
mean(foo)/K
# [1] 0.67
```
Index

* Pooling.
 pooling_mc, 5
* mMPA.
 mmpa, 3
 mpa, 4
* mini-pooling.
 minipool, 2
 minipool, 2, 4–6
 mmpa, 2, 3, 5, 6
 mpa, 2, 4, 4, 6
 pooling_mc, 2, 4, 5, 5