Package ‘mable’

March 21, 2020

Title Maximum Approximate Bernstein/Beta Likelihood Estimation

Version 2.1.1

Date 2020-03-20

Author Zhong Guan [aut, cre]

Maintainer Zhong Guan <zguan@iusb.edu>

Depends R (>= 3.5.0)

Description Fit data from a continuous population with a smooth density on finite interval by an approximate Bernstein polynomial model which is a mixture of certain beta distributions and find maximum approximate Bernstein likelihood estimator of the unknown coefficients. Consequently, maximum likelihood estimates of the unknown density, distribution functions, and more can be obtained. If the support of the density is not the unit interval then transformation can be applied. This is an implementation of the methods proposed by the author of this package published in the Journal of Nonparametric Statistics: Guan (2016) <doi:10.1080/10485252.2016.1163349> and Guan (2017) <doi:10.1080/10485252.2017.1374384>. For data with covariates, under some semiparametric regression models such as Cox proportional hazards model and the accelerated failure time model, the baseline survival function can be estimated smoothly based on general interval censored data.

License LGPL (>= 2.0, < 3)

LazyData true

Encoding UTF-8

Imports survival, graphics, stats, icenReg, aftgee

Suggests mixtools, ICsurv, interval, knitr, markdown

BuildVignettes true

VignetteBuilder knitr

RoxygenNote 6.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-03-21 17:00:08 UTC
R topics documented:

- chicken.embryo .. 2
- dmixbeta ... 3
- dmixmvbeta .. 4
- mable ... 5
- mable.aft ... 8
- mable.ctrl .. 11
- mable.decon .. 11
- mable.group ... 13
- mable.ic .. 16
- mable.mvar .. 18
- mable.ph .. 19
- mable.reg .. 22
- maple.aft .. 23
- maple.ph ... 25
- optim.gcp .. 28
- plot.mable .. 29
- plot.mable_reg .. 29
- summary.mable .. 30
- Vaal.Flow ... 31

Index

<table>
<thead>
<tr>
<th>chicken.embryo</th>
<th>Chicken Embryo Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Description

The chicken embryo dataset which contains day, number of days, and nT, the corresponding frequencies.

Usage

```r
data(chicken.embryo)
```

Format

The format is: List of 2: day: int [1:21] 1 2 3 4 5 6 7 8 9 10 ...; nT : int [1:21] 6 5 11 2 2 3 0 0 0 0 ...

Source

References

Examples

```r
data(chicken.embryo)
```

dmixbeta

Mixture Beta Distribution

Description

Density, distribution function, quantile function and pseudorandom number generation for the Bernstein polynomial model, mixture of beta distributions, with shapes $(i + 1, m - i + 1), i = 0, \ldots, m,$ given mixture proportions $p = (p_0, \ldots, p_m)$ and support interval.

Usage

```r
dmixbeta(x, p, interval = c(0, 1))
pmixbeta(x, p, interval = c(0, 1))
qmixbeta(u, p, interval = c(0, 1))
rmixbeta(n, p, interval = c(0, 1))
```

Arguments

- `x`: a vector of quantiles
- `p`: a vector of $m+1$ values. The $m+1$ components of `p` must be nonnegative and sum to one for mixture beta distribution. See 'Details'.
- `interval`: support/truncation interval $[a,b]$.
- `u`: a vector of probabilities
- `n`: sample size

Details

The density of the mixture beta distribution on an interval $[a, b]$ can be written as a Bernstein polynomial $f_m(x;p) = \sum_{i=0}^{m} p_i \beta_{mi}[(x - a)/(b - a)]/(b - a)$, where $p = (p_0, \ldots, p_m)$, $p_i \geq 0$, $\sum_{i=0}^{m} p_i = 1$ and $\beta_{mi}(u) = \binom{m + 1}{i} u^i (1 - x)^{m-i}, i = 0, 1, \ldots, m$, is the beta density with shapes $(i + 1, m - i + 1)$. The cumulative distribution function is $F_m(x;p) = \sum_{i=0}^{m} p_i B_{mi}[(x - a)/(b - a)]$, where $B_{mi}(u), i = 0, 1, \ldots, m$, is the beta cumulative distribution function with shapes
\[(i + 1, m - i + 1) \] If \(\pi = \sum_{i=0}^{m} p_i < 1 \), then \(f_m/\pi \) is a truncated density on \([a, b]\) with cumulative distribution function \(F_m/\pi \). The argument \(p \) may be any numeric vector of \(m+1 \) values when \(\text{pmixbeta}() \) and \(\text{qmixbeta}() \) return the integral function \(F_m(x; p) \) and its inverse, respectively, and \(\text{dmixbeta}() \) returns a Bernstein polynomial \(f_m(x; p) \).

Value

A vector of \(f_m(x; p) \) or \(F_m(x; p) \) values at \(x \). \(\text{dmixbeta} \) returns the density, \(\text{pmixbeta} \) returns the cumulative distribution function, \(\text{qmixbeta} \) returns the quantile function, and \(\text{rmixbeta} \) generates pseudo random numbers.

Author(s)

Zhong Guan <zguan@iusb.edu>

References

See Also

`mable`

Examples

```r
# classical Bernstein polynomial approximation
a<-4; b<-4; m<-200
x<-seq(a,b,len=512)
u<-(0:m)/m
p<-dnorm(a+(b-a)*u)
plot(x, dnorm(x), type="l")
lines(x, (b-a)*dmixbeta(x, p, c(a, b))/(m+1), lty=2, col=2)
legend(a, dnorm(0), lty=1:2, col=1:2, c(expression(f(x)==phi(x)), expression(B^{f}*(x))))
```

`dmixmvbeta`
Multivariate Mixture Beta Distribution

Description

Density, distribution function, and pseudorandom number generation for the multivariate Bernstein polynomial model, mixture of multivariate beta distributions, with given mixture proportions \(p = (p_0, \ldots, p_K - 1) \), given degrees \(m = (m_1, \ldots, m_d) \), and support interval.
Usage

dmixmvbeta(x, p, m, interval = NULL)

pmixmvbeta(x, p, m, interval = NULL)

rmixmvbeta(n, p, m, interval = NULL)

Arguments

x
a matrix with d columns or a vector of length d within support hyperrectangle $[a, b] = [a_1, b_1] \times \cdots \times [a_d, b_d]$

p
a vector of K values. All components of p must be nonnegative and sum to one for the mixture multivariate beta distribution. See 'Details'.

m
a vector of degrees, (m_1, \ldots, m_d)

interval
a vector of two endpoints or a d x 2 matrix, each row containing the endpoints of support/truncation interval for each marginal density. If missing, the i-th row is assigned as $(\min(x[,i]),\max(x[,i]))$.

n
sample size

Details

dmixmvbeta() returns a linear combination f_m of d-variate beta densities on $[a, b]$, $\beta_{m,j}(x) = \prod_{i=1}^d \beta_{m_i,j_i}((x_i - a_i)/(b_i - a_i))/(b_i - a_i)$, with coefficients $p(j_1, \ldots, j_d)$, $0 \leq j_i \leq m_i$, $i = 1, \ldots, d$, where $[a, b] = [a_1, b_1] \times \cdots \times [a_d, b_d]$ is a hyperrectangle, and the coefficients are arranged in the column-major order of $j = (j_1, \ldots, j_d)$, p_0, \ldots, p_{K-1}, where $K = \prod_{i=1}^d (m_i + 1)$.

pmixmvbeta() returns a linear combination F_m of the distribution functions of d-variate beta distribution.

If all p_i's are nonnegative and sum to one, then p are the mixture proportions of the mixture multivariate beta distribution.

mable
Mable fit of one-sample raw data with an optimal or given degree.

Description

Maximum approximate Bernstein/Beta likelihood estimation based on one-sample raw data with an optimal selected by the change-point method among $m_0 : m_1$ or a preselected model degree m.

Usage

mable(x, M, interval = c(0, 1), IC = c("none", "aic", "hqic", "all"), controls = mable.ctrl(), progress = TRUE)
Arguments

- `x` a (non-empty) numeric vector of data values.
- `M` a positive integer or a vector `(m0, m1)`. If `M = m` or `m0 = m1 = m`, then `m` is a preselected degree. If `m0 < m1` it specifies the set of consecutive candidate model degrees `m0:m1` for searching an optimal degree, where `m1 - m0 > 3`.
- `interval` a vector containing the endpoints of supporting/truncation interval
- `IC` information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Hannan–Quinn information criterion).
- `controls` Object of class `mable.ctrl()` specifying iteration limit and the convergence criterion `eps`. Default is `mable.ctrl`. See Details.
- `progress` if TRUE a text progressbar is displayed

Details

Any continuous density function `f` on a known closed supporting interval `[a, b]` can be estimated by Bernstein polynomial `f_m(x; p) = \sum_{i=0}^{m} p_i \beta_{mi}[(x-a)/(b-a)]/[(b-a)]`, where `p = (p_0, \ldots, p_m)`, `p_i \geq 0`, \(\sum_{i=0}^{m} p_i = 1 \) and `\beta_{mi}(u) = (m+1)(m)_i u^i (1-u)^{m-i}`, `i = 0, 1, \ldots, m`, is the beta density with shapes `(i+1, m-i+1)`. For each `m`, the MABLE of the coefficients `p`, the mixture proportions, are obtained using EM algorithm. The EM iteration for each candidate `m` stops if either the total absolute change of the log likelihood and the coefficients of Bernstein polynomial is smaller than `eps` or the maximum number of iterations `maxit` is reached.

If `m0 < m1`, an optimal model degree is selected as the change-point of the increments of log-likelihood, log likelihood ratios, for `m \in \{m_0, m_0 + 1, \ldots, m_1\}`. Alternatively, one can choose an optimal degree based on the BIC (Schwarz, 1978) which are evaluated at `m \in \{m_0, m_0 + 1, \ldots, m_1\}`. The search for optimal degree `m` is stopped if either `m1` is reached with a warning or the test for change-point results in a p-value `pval` smaller than `sig.level`. The BIC for a given degree `m` is calculated as in Schwarz (1978) where the dimension of the model is `d = \#\{i : \hat{p}_i \geq \epsilon, i = 0, \ldots, m\} - 1` and a default `\epsilon` is chosen as `Machine$double.eps`.

Value

A list with components

- `m` the selected/given optimal degree by methods of change-point
- `p` the estimated vector of mixture proportions `p = (p_0, \ldots, p_m)` with the selected/given optimal degree `m`
- `mloglik` the maximum log-likelihood at degree `m`
- `interval` support/truncation interval `(a, b)`
- `convergence` An integer code. 0 indicates successful completion (all the EM iterations are convergent and an optimal degree is successfully selected in `M`). Possible error codes are
 - 1, indicates that the iteration limit `maxit` had been reached in at least one EM iteration;
 - 2, the search did not finish before `m1`.
- `delta` the convergence criterion `delta` value
and, if \(m_0 < m_1 \),

- \(M \) the vector \((m_0, m_1)\), where \(m_1 \), if greater than \(m_0 \), is the largest candidate when the search stoped
 - \(1k \) log-likelihoods evaluated at \(m \in \{m_0, \ldots, m_1\} \)
 - \(1r \) likelihood ratios for change-points evaluated at \(m \in \{m_0 + 1, \ldots, m_1\} \)
 - \(1c \) a list containing the selected information criterion(s)
 - \(pval \) the p-values of the change-point tests for choosing optimal model degree
 - \(chpts \) the change-points chosen with the given candidate model degrees

Note

Since the Bernstein polynomial model of degree \(m \) is nested in the model of degree \(m + 1 \), the maximum likelihood is increasing in \(m \). The change-point method is used to choose an optimal degree \(m \).

Author(s)

Zhong Guan <zguan@iusb.edu>

References

Examples

```r
# Vaal Rive Flow Data
data(Vaal.Flow)
x<-Vaal.Flow$Flow
res<-mable(x, M = c(2,100), interval = c(0, 3000), controls =
mable.ctrl(sig.level = 1e-8, maxit = 2000, eps = 1.0e-9))

op<-par(mfrow = c(1,2),lwd = 2)
layout(rbind(c(1, 2), c(3, 3)))
plot(res, which = "likelihood", cex = .5)
plot(res, which = c("change-point"), lgd.x = "topright")
hist(x, prob = TRUE, xlim = c(0,3000), ylim = c(0,.0022), breaks = 100*(0:30),
main = "Histogram and Densities of the Annual Flow of Vaal River",
border = "dark grey",lwd = 1,xlab = "x", ylab = "f(x)", col = "light grey")
lines(density(x, bw = "nrd0", adjust = 1), lty = 4, col = 4)
lines(y<-seq(0, 3000, length = 100), dlnorm(y, mean(log(x)),
sqrt(var(log(x)))), lty = 2, col = 2)
plot(res, which = "density", add = TRUE)
legend("top", lty = c(1, 2, 4), col = c(1, 2, 4), bty = "n",
c(expression(paste("MABLE: ",hat(f)[B]")),
expression(paste("Log-Normal: ",hat(f)[P]")),
expression(paste("KDE: ",hat(f)[K]))))
par(op)
```
Old Faithful Data
library(mixtools)
x<-faithful$eruptions
a<-0; b<-7
v<-seq(a, b, len = 512)
mix<-normalmixEM(x,.5, mu, sig)
lam<-mix$lambda; mu<-mix$mu; sig<-mix$sigma
y1<-lam[1]*dnorm(v,mu[1], sig[1])+lam[2]*dnorm(v, mu[2], sig[2])
res<-mable(x, M = c(2,300), interval = c(a,b), controls =
 mable.ctrl(sig.level = 1e-8, maxit = 2000, eps = 1.0e-7))
layout(rbind(c(1, 2), c(3, 3)))
plot(res, which = "likelihood")
plot(res, which = "change-point")
hist(x, breaks = seq(0,7.5,len = 20), xlim = c(0,7), ylim = c(0,.7),
 prob = TRUE,xlab = "t", ylab = "f(t)", col = "light grey",
 main = "Histogram and Density of Duration of Eruptions of Old Faithful")
lines(density(x, bw = "nrd0", adjust = 1), lty = 4, col = 4, lwd = 2)
plot(res, which = "density", add = TRUE)
lines(v, y1, lty = 2, col = 2, lwd = 2)
legend("topright", lty = c(1,2,4), col = c(1,2,4), lwd = 2, bty = "n",
 c(expression(paste("MABLE: \(\hat{f}\)[B](x)\)),
 expression(paste("Mixture: \(\hat{f}\)[P](t)\)),
 expression(paste("KDE: \(\hat{f}\)[K](t)\))))
par(op)

mable.aft
Mable fit of Accelerated Failure Time Model

Description

Maximum approximate Bernstein/Beta likelihood estimation for accelerated failure time model based on interval censored data.

Usage

mable.aft(formula, data, M, g = NULL, tau = 1, x0 = NULL,
 controls = mable.ctrl(), progress = TRUE)

Arguments

formula regression formula. Response must be cbind. See 'Details'.
data a dataset
mable.aft

M a positive integer or a vector \((m_0, m_1)\). If \(M = m\) or \(m_0 = m_1 = m\), then \(m\) is a pre-selected degree. If \(m_0 < m_1\) it specifies the set of consecutive candidate model degrees \(m_0 : m_1\) for searching an optimal degree, where \(m_1 - m_0 > 3\).

g initial guess of \(d\)-vector of regression coefficients. See 'Details'.

tau a finite truncation time greater than the maximum observed time \(\tau\). See 'Details'.

x0 a working baseline covariate \(x_0\). See 'Details'.

controls Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.

progress if TRUE a text progressbar is displayed

Details

Consider the accelerated failure time model with covariate for interval-censored failure time data:

\[
S(t|x) = S(t \exp(-\gamma'(x - x_0))|x_0), \quad \text{where } x_0 \text{ is a baseline covariate.}
\]

Let \(f(t|x)\) and \(F(t|x) = 1 - S(t|x)\) be the density and cumulative distribution functions of the event time given \(X = x\), respectively. Then \(f(t|x_0)\) on a truncation interval \([0, \tau]\) can be approximated by

\[
f_m(t|x_0) = \tau^{-1} \sum_{i=0}^{m} p_i \beta_{mi}(t/\tau),
\]

where \(p_i \geq 0\), \(i = 0, \ldots, m\), \(\sum_{i=0}^{m} p_i = 1\), \(\beta_{mi}(u)\) is the beta density with shapes \(i + 1\) and \(m - i + 1\), and \(\tau\) is larger than the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate \(S(t|x_0)\) on \([0, \tau]\) by

\[
S_m(t|x_0; p) = \sum_{i=0}^{m} p_i \tilde{B}_{mi}(t/\tau),
\]

where \(\tilde{B}_{mi}(u)\) is the beta survival function with shapes \(i + 1\) and \(m - i + 1\).

Response variable should be of the form \(cbind(l,u)\), where \((l,u)\) is the interval containing the event time. Data is uncensored if \(l = u\), right censored if \(u = \inf\) or \(u = \text{NA}\), and left censored data if \(1 = 0\). The truncation time \(\tau\) and the baseline \(x_0\) should chosen so that \(S(t|x) = S(t \exp(-\gamma'(x - x_0))|x_0)\) on \([\tau, \infty)\) is negligible for all the observed \(x\).

The missing \(g\) is imputed by the rank estimate \(\text{aftsrr()}\) of package \text{aftgee} for right-censored data. For general interval censored observations, we keep the right-censored but replace the finite interval with its midpoint and fit the data by \(\text{aftsrr()}\) as a right-censored data.

The search for optimal degree \(m\) is stopped if either \(m_1\) is reached or the test for change-point results in a \(p\)-value \(pval\) smaller than \(\text{sig.level}\).

Value

A list with components

- \(m\) the given or selected optimal degree \(m\)
- \(p\) the estimate of \(p = (p_0, \ldots, p_m)\), the coefficients of Bernstein polynomial of degree \(m\)
- coefficients the estimated regression coefficients of the AFT model
- SE the standard errors of the estimated regression coefficients
- \(z\) the \(z\)-scores of the estimated regression coefficients
- \(m\loglik\) the maximum log-likelihood at an optimal degree \(m\)
- \(\tau.n\) maximum observed time \(\tau_n\)
- \(\tau\) right endpoint of truncation interval \([0, \tau)\)
The function `mable.aft` is used for maximum approximate likelihood estimation in an accelerated failure time model with interval-censored data. The output includes various statistics and parameters:

- **x0**: the working baseline covariates
- **egx0**: the value of $e^{\gamma' x_0}$
- **convergence**: an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one m or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occurred, and 0 indicates a successful completion.
- **delta**: the final delta if $m_0 = m_1$ or the final pval of the change-point for searching the optimal degree m;

and, if $m_0 < m_1$,

- **M**: the vector (m_0, m_1), where m_1 is the last candidate when the search stopped
- **lk**: log-likelihoods evaluated at $m \in \{m_0, \ldots, m_1\}$
- **lr**: likelihood ratios for change-points evaluated at $m \in \{m_0 + 1, \ldots, m_1\}$
- **pval**: the p-values of the change-point tests for choosing optimal model degree
- **chpts**: the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan <zguan@iusb.edu>

References

See Also

maple.aft

Examples

```r
## Breast Cosmesis Data
require(interval)
data(bcos)
bcos2<-data.frame(bcos[,1:2], x=1*(bcos$treatment=='RadChem'))
g<-0.41 # Hanson and Johnson 2004, JCGS
aft.res<-mable.aft(cbind(left, right)~x, data=bcos2, M=c(1, 30), g, tau=100, x0=1)
op<-par(mfrow=c(1,2), lwd=1.5)
plot(x=aft.res, which="likelihood")
plot(x=aft.res, y=data.frame(x=0), which="survival", model='aft', type="1", col=1, add=FALSE, main="Survival Function")
plot(x=aft.res, y=data.frame(x=1), which="survival", model='aft', lty=2, col=1)
legend("bottomleft", bty="n", lty=1:2, col=1, c("Radiation Only", "Radiation and Chemotherapy"))
par(op)
```
mable.ctrl

Control parameters for mable fit

Description

Control parameters for mable fit

Usage

mable.ctrl(sig.level = 1e-04, eps = 1e-07, maxit = 5000,
eps.em = 1e-07, maxit.em = 5000, eps.nt = 1e-07, maxit.nt = 1000,
tini = 1e-04)

Arguments

sig.level the significance level for change-point method of choosing optimal model degree
eps convergence criterion for iteration involves EM like and Newton-Raphson iterations
maxit maximum number of iterations involve EM like and Newton-Raphson iterations
eps.em convergence criterion for EM like iteration
maxit.em maximum number of EM like iterations
eps.nt convergence criterion for Newton-Raphson iteration
maxit.nt maximum number of Newton-Raphson iterations
tini a small positive number used to make sure p is in the interior of the simplex

Value

a list of the arguments’ values

Author(s)

Zhong Guan <zguan@iusb.edu>

mable.decon

Mable deconvolution with a known error density

Description

Maximum approximate Bernstein/Beta likelihood estimation in additive density deconvolution model with a known error density.
Usage

mable.decon(y, gn, ..., M, interval = c(0, 1), IC = c("none", "aic", "hqic", "all"), controls = mable.ctrl(maxit = 50000, eps = 1e-07), progress = TRUE)

Arguments

y vector of observed data values
gn error density function
... additional arguments to be passed to gn
M a vector \((m_0, m_1)\) specifies the set of consecutive candidate model degrees, \(M = m_0 : m_1\).
interval a finite vector containing the endpoints of supporting/truncation interval
IC information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "hqic" (Hannan–Quinn information criterion).
controls Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress if TRUE a text progressbar is displayed

Details

Consider the additive measurement error model \(Y = X + \epsilon\), where \(X\) has an unknown distribution \(F\), \(\epsilon\) has a known distribution \(G\), and \(X\) and \(\epsilon\) are independent. We want to estimate density \(f = F'\) based on independent observations, \(y_i = x_i + \epsilon_i, i = 1, \ldots, n\), of \(Y\).

Value

A mable class object with components

- \(M\) the vector \((m_0, m_1)\), where \(m_1\) is the last candidate degree when the search stops
- \(m\) the selected optimal degree \(m\)
- \(p\) the estimate of \(p = (p_0, \ldots, p_m)\), the coefficients of Bernstein polynomial of degree \(m\)
- \(\mathbf{1}\) log-likelihoods evaluated at \(m \in \{m_0, \ldots, m_1\}\)
- \(\mathbf{lr}\) likelihood ratios for change-points evaluated at \(m \in \{m_0 + 1, \ldots, m_1\}\)
- \(\text{convergence}\) An integer code. 0 indicates an optimal degree is successfully selected in \(M\). 1 indicates that the search stopped at \(m_1\).
- \(\text{ic}\) a list containing the selected information criterion(s)
- \(\text{pval}\) the p-values of the change-point tests for choosing optimal model degree
- \(\text{chpts}\) the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan <zguan@iusb.edu>
A simulated normal dataset
set.seed(123)
mus<1; sig<2; a<-mu-sig*5; b<-mu+sig*5;
gn<function(x) dnorm(x, 0, 1)
n<50;
x<rnorm(n, mu, sig); e<rnorm(n); y<x+e;
res<mable.decon(y, gn, interval = c(a, b), M = c(5, 50))
op<par(mfrow = c(2, 2), lwd = 2)
plot(res, which="likelihood")
plot(res, which="change-point", lgd.x="topright")
plot(xx<seq(a, b, length=100), yy<dnorm(xx, mu, sig), type="l", xlab="x",
 ylab="Density", ylim=c(0, max(yy)*1.1))
plot(res, which="density", types=c(2,3), colors=c(2,3))
kernel density based on pure data
lines(density(x), lty=4, col=4)
legend("topright", bty="n", lty=1:4, col=1:4,
c(expression(f), expression(hat(f)[cp]), expression(hat(f)[bic]), expression(tilde(f)[K])))
plot(xx, yy<pnorm(xx, mu, sig), type="l", xlab="x", ylab="Distribution Function")
plot(res, which="cumulative", types=c(2,3), colors=c(2,3))
legend("bottomright", bty="n", lty=1:3, col=1:3,
c(expression(F), expression(hat(F)[cp]), expression(hat(F)[bic])))
par(op)

mable.group

Mable fit of one-sample grouped data by an optimal or a preselected model degree

Description

Maximum approximate Bernstein/Beta likelihood estimation based on one-sample grouped data with an optimal selected by the change-point method among m0:m1 or a preselected model degree m.

Usage

mable.group(x, breaks, M, interval = c(0, 1), IC = c("none", "aic", "hqic", "all"), controls = mable.ctrl(), progress = TRUE)
Arguments

x vector of frequencies
breaks class interval end points
M a positive integer or a vector \((m_0, m_1)\). If \(M = m\) or \(m_0 = m_1 = m\), then \(m\) is a preselected degree. If \(m_0 < m_1\) it specifies the set of consecutive candidate model degrees \(m_0: m_1\) for searching an optimal degree, where \(m > m_0 > 3\).

interval a vector containing the endpoints of support/truncation interval
IC information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Hannan–Quinn information criterion).
controls Object of class mable.ctrl() specifying iteration limit and the convergence criterion \(\varepsilon\). Default is mable.ctrl. See Details.
progress if TRUE a text progressbar is displayed

Details

Any continuous density function \(f\) on a known closed supporting interval \([a, b]\) can be estimated by Bernstein polynomial \(f_m(x; p) = \sum_{i=0}^{m} p_i \beta_{mi}(\frac{x-a}{b-a})/(b-a), \) where \(p = (p_0, \ldots, p_m)\), \(p_i \geq 0, \sum_{i=0}^{m} p_i = 1\) and \(\beta_{mi}(u) = (m+1)\binom{m}{i} u^i (1-u)^{m-i}, i = 0, 1, \ldots, m\), is the beta density with shapes \((i+1, m-i+1)\). For each \(m\), the MABLE of the coefficients \(p\), the mixture proportions, are obtained using EM algorithm. The EM iteration for each candidate \(m\) stops if either the total absolute change of the log likelihood and the coefficients of Bernstein polynomial is smaller than \(\varepsilon\) or the maximum number of iterations \(\text{maxit}\) is reached.

If \(m_0 < m_1\), an optimal model degree is selected as the change-point of the increments of log-likelihood, log likelihood ratios, for \(m \in \{m_0, m_0 + 1, \ldots, m_1\}\). Alternatively, one can choose an optimal degree based on the BIC (Schwarz, 1978) which are evaluated at \(m \in \{m_0, m_0 + 1, \ldots, m_1\}\). The search for optimal degree \(m\) is stopped if either \(m_1\) is reached with a warning or the test for change-point results in a \(p\)-value \(pval\) smaller than \(\text{sig.level}\). The BIC for a given degree \(m\) is calculated as in Schwarz (1978) where the dimension of the model is \(d = \#\{i : \hat{p}_i \geq \varepsilon, i = 0, \ldots, m\} - 1\) and a default \(\varepsilon\) is chosen as .Machine$double.eps.

Value

A list with components

- \(m\) the given/selected optimal degree by the method of change-point
- \(p\) the estimated \(p\) with degree \(m\)
- \(\text{mloglik}\) the maximum log-likelihood at degree \(m\)
- \(\text{interval}\) supporting interval \((a, b)\)
- \(\text{convergence}\) An integer code. 0 indicates successful completion (all the EM iterations are convergent and an optimal degree is successfully selected in \(m\)). Possible error codes are
 - 1, indicates that the iteration limit \(\text{maxit}\) had been reached in at least one EM iteration;
 - 2, the search did not finish before \(m_1\).
- \(\text{delta}\) the convergence criterion \(\delta\) value
and, if \(m_0 < m_1 \),

- \(M \) the vector \((m_0, m_1)\), where \(m_1 \), if greater than \(m_0 \), is the largest candidate when the search stoped
- \(1k \) log-likelihoods evaluated at \(m \in \{m_0, \ldots, m_1\} \)
- \(1r \) likelihood ratios for change-points evaluated at \(m \in \{m_0 + 1, \ldots, m_1\} \)
- \(ic \) a list containing the selected information criterion(s)
- \(pval \) the p-values of the change-point tests for choosing optimal model degree
- \(chpts \) the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan <zguan@iusb.edu>

References

See Also

mable.ic

Examples

```r
## Chicken Embryo Data
data(chicken.embryo)
a<-0; b<-21
day<-chicken.embryo$day
nT<-chicken.embryo$nT
Day<-rep(day,nT)
res<-mable.group(x=nT, breaks=a:b, M=c(2,100), interval=c(a, b), IC="aic",
          controls=mable.ctrl(sig.level=1e-6, maxit=2000, eps=1.0e-7))
op<-par(mfrow=c(1,2), lwd=2)
layout(rbind(c(1, 2), c(3, 3)))
plot(res, which="likelihood")
plot(res, which="change-point")
fk<-density(x=rep((0:20)+.5, nT), bw="sj", n=101, from=a, to=b)
hist(Day, breaks=seq(a,b, length=12), freq=FALSE, col="grey",
     border="white", main="Histogram and Density Estimates")
plot(res, which="density",types=1:2, colors=1:2)
lines(fk, lty=2, col=2)
legend("topright", lty=c(1:2), c("MABLE", "Kernel"), bty="n", col=c(1:2))
par(op)
```
Mable fit based on one-sample interval censored data

Description

Maximum approximate Bernstein/Beta likelihood estimation of density and cumulative/survival distributions functions based on internal censored event time data.

Usage

mable.ic(data, M, pi0 = NULL, tau = Inf, IC = c("none", "aic", "hqic", "all"), controls = mable.ctrl(), progress = TRUE)

Arguments

data a dataset either data.frame or an n x 2 matrix.
M an positive integer or a vector (m0,m1). If M = m or m0 = m1 = m, then m is a preselected degree. If m0 < m1 it specifies the set of consecutive candidate model degrees m0:m1 for searching an optimal degree, where m1-m0>3.
pi0 Initial guess of π = F(τn). Without right censored data, pi0 = 1. See 'Details'.
tau right endpoint of support [0,τ) must be greater than or equal to the maximum observed time
IC information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Hannan–Quinn information criterion).
controls Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress if TRUE a text progressbar is displayed

Details

Let f(t) and F(t) = 1 − S(t) be the density and cumulative distribution functions of the event time, respectively. Then f(t) on [0,τn] can be approximated by f_m(t; p) = τ^{-1} \sum_{i=0}^{m} p_i \beta_{mi}(t/\tau_n), where p_i ≥ 0, i = 0,...,m, \sum_{i=0}^{m} p_i = 1 − p_{m+1}, \beta_{mi}(u) is the beta density with shapes i + 1 and m − i + 1, and τ_n is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate S(t) on [0,τ] by S_m(t; p) = \sum_{i=0}^{m+1} p_i \bar{B}_{mi}(t/\tau), where \bar{B}_{mi}(u), i = 0,...,m, is the beta survival function with shapes i + 1 and m − i + 1, \bar{B}_{m,m+1}(t) = 1, p_{m+1} = 1 − π, and π = F(τ_n). For data without right-censored time, p_{m+1} = 1 − π = 0. The search for optimal degree m is stopped if either m1 is reached or the test for change-point results in a p-value pval smaller than sig.level.

Each row of data, (l,u), is the interval containing the event time. Data is uncensored if l = u, right censored if u = Inf or u = NA, and left censored data if l = 0.
Value

a class 'mable' object with components

• p the estimated p with degree m selected by the change-point method
• mloglik the maximum log-likelihood at an optimal degree m
• interval support/truncation interval (0, b)
• M the vector (m0, m1), where m1 is the last candidate when the search stoped
• m the selected optimal degree by the method of change-point
• lk log-likelihoods evaluated at \(m \in \{m_0, \ldots, m_1\} \)
• lr likelihood ratios for change-points evaluated at \(m \in \{m_0 + 1, \ldots, m_1\} \)
• tau.n maximum observed time \(\tau_n \)
• tau right endpoint of support \([0, \tau]\)
• ic a list containing the selected information criterion(s)
• pval the p-values of the change-point tests for choosing optimal model degree
• chpts the change-points chosen with the given candidate model degrees
• convergence an integer code. 0 indicates successful completion (the iteration is convergent). 1 indicates that the maximum candidate degree had been reached in the calculation;
• delta the final pval of the change-point for selecting the optimal degree m;

Author(s)

Zhong Guan <zguan@iusb.edu>

References

See Also

mable.group

Examples

library(interval)
data(bcos)
bc.res0<-mable.ic(bcos[bcos$treatment=="Rad",1:2], M=c(1,50), IC="none")
bcres1<-mable.ic(bcos[bcos$treatment=="RadChem",1:2], M=c(1,50), IC="none")
op<-par(mfrow=c(2,2),lwd=2)
plot(bc.res0, which="change-point", lgd.x="right")
plot(bc.res1, which="change-point", lgd.x="right")
plot(bc.res0, which="survival", add=FALSE, xlab="Months", ylim=c(0,1), main="Radiation Only")
legend("topright", bty="n", lty=1:2, col=1:2, c(expression(hat(S)[CP]),
expression(hat(S)[BIC])))
plot(bc.res1, which="survival", add=FALSE, xlab="Months", main="Radiation and Chemotherapy")
mable.mvar

Maximum Approximate Bernstein Likelihood Estimate of Multivariate Density Function

Description

Maximum Approximate Bernstein Likelihood Estimate of Multivariate Density Function

Usage

mable.mvar(x, M, search = TRUE, interval = NULL, controls = mable.ctrl(), progress = TRUE)

Arguments

x
an n x d matrix or data.frame of multivariate sample of size n

M
a positive integer or a vector of d positive integers specify the maximum candidate or the given model degrees for the joint density.

search
logical, whether to search optimal degrees using M as maximum candidate degrees or not but use M as the given model degrees for the joint density.

interval
a vector of two endpoints or a d x 2 matrix, each row containing the endpoints of support/truncation interval for each marginal density. If missing, the i-th row is assigned as \(c(\min(x[,i]),\max(x[,i]))\).

controls
Object of class mable.ctrl() specifying iteration limit and the convergence criterion eps. Default is mable.ctrl. See Details.

progress
if TRUE a text progressbar is displayed

Details

A d-variate density \(f\) on a hyperrectangle \([a, b] = [a_1, b_1] \times \cdots \times [a_d, b_d]\) can be approximated by a mixture of d-variate beta densities on \([a, b]\), \(\beta_{m,j}(x) = \prod_{i=1}^{d} \beta_{m_{i,j_i}}((x_i - a_i)/(b_i - a_i))/(b_i - a_i)\), with proportion \(p(j_1, \ldots, j_d)\), \(0 \leq j_i \leq m_i, i = 1, \ldots, d\). If search=TRUE, we start with \(M_0=\text{rep}(2, d)\) and select \(M_1\) which maximizes the likelihood with degrees \(M_1 = M_0 + e_i\), where \(e_i, i = 1, \ldots, d\), form the basis of \(R^n\). The above procedure are repeated at least four times to \(M_k\) and loglikelihood \(\ell_s, s = 0, 1, \ldots, k\), and stop whenever the p-value of the change point of \(\ell_{s+1} - \ell_s\) is small or a component of \(M_k\) reached its maximum value specified by M. For each \(M_s + e_i\) the data are fitted using EM algorithm and the multivariate Bernstein polynomial model with a vector of the mixture proportions \(p(j_1, \ldots, j_d)\), arranged in the column-major order of \(j = (j_1, \ldots, j_d)\), \(p_0, \ldots, p_{K-1}\), where \(K = \prod_{i=1}^{d}(m_i + 1)\), to obtain likelihood.
Value

A list with components

- **dim** the dimension \(d \) of the data
- **m** a vector of the selected optimal degrees by the method of change-point
- **p** a vector of the mixture proportions \(p(j_1, \ldots, j_d) \), arranged in the column-major order of \(j = (j_1, \ldots, j_d) \), \(0 \leq j_i \leq m_i \), \(i = 1, \ldots, d \).
- **mloglik** the maximum log-likelihood at an optimal degree \(m \)
- **pval** the p-values of change-points for choosing the optimal degrees for the marginal densities
- **M** the vector \((m_1, m_2, \ldots, m_d)\), where \(m_i \) is the largest candidate degree when the search stoped for the \(i \)-th marginal density
- **interval** support hyperrectangle \([a, b] = [a_1, b_1] \times \cdots \times [a_d, b_d]\)
- **convergence** An integer code. 0 indicates successful completion (the EM iteration is convergent). 1 indicates that the iteration limit \(\text{maxit} \) had been reached in the EM iteration;

Author(s)

Zhong Guan <zguan@iusb.edu>

References

Examples

```r
## Old Faithful Data

a <- c(0, 40); b <- c(7, 110)
#ans<-mable.mvar(faithful, M = c(100, 100), interval = cbind(a, b))
ans<- mable.mvar(faithful, M = c(46,19), search =FALSE, interval = cbind(a,b))
plot(ans, which="density")
plot(ans, which="cumulative")
```

mable.ph

Mable fit of Cox’s proportional hazards regression model

Description

Maximum approximate Bernstein/Beta likelihood estimation in Cox’s proportional hazards regression model based on interval censored event time data.

Usage

```r
mable.ph(formula, data, M, g = NULL, pi0 = NULL, tau = Inf,
         x0 = NULL, controls = mable.ctrl(), progress = TRUE)
```
Arguments

- **formula**: regression formula. Response must be `cbind`. See 'Details'.
- **data**: a dataset
- **M**: a positive integer or a vector \((m_0, m_1)\). If \(M = m\) or \(m_0 = m_1 = m\), then \(m\) is a preselected degree. If \(m_0 < m_1\) it specifies the set of consecutive candidate model degrees \([m_0, m_1]\) for searching an optimal degree, where \(m_1 - m_0 > 3\).
- **g**: initial guess of \(d\)-vector of regression coefficients. See 'Details'.
- **pi0**: Initial guess of \(\pi(x_0) = F(\tau_n|x_0)\). Without right censored data, \(\pi_0 = 1\). See 'Details'.
- **tau**: right endpoint of support \([0, \tau]\) must be greater than or equal to the maximum observed time
- **x0**: a working baseline covariate. See 'Details'.
- **controls**: Object of class `mable.ctrl()` specifying iteration limit and other control options. Default is `mable.ctrl`.
- **progress**: if TRUE a text progressbar is displayed

Details

Consider Cox’s PH model with covariate for interval-censored failure time data:
\[S(t|x) = S(t|x_0) \exp(\gamma'(x-x_0)) \]
where \(x_0\) satisfies \(\gamma'(x-x_0) \geq 0\). Let \(f(t|x)\) and \(F(t|x) = 1-S(t|x)\) be the density and cumulative distribution functions of the event time given \(X = x\), respectively. Then \(f(t|x_0)\) on \([0, \tau_n]\) can be approximated by
\[f_m(t|x_0, p) = \tau_n^{-1} \sum_{i=0}^{m_1} p_i \beta_{mi}(t/\tau_n) \]
where \(p_i \geq 0, i = 0, \ldots, m\), \(\sum_{i=0}^{m_1} p_i = 1 - p_{m+1}\), \(\beta_{mi}(u)\) is the beta density with shapes \(i + 1\) and \(m - i + 1\), and \(\tau_n\) is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate \(S(t|x_0)\) on \([0, \tau_n]\) by
\[S_m(t|x_0; p) = \sum_{i=0}^{m+1} p_i B_{mi}(t/\tau_n) \]
where \(B_{mi}(u), i = 0, \ldots, m\), is the beta survival function with shapes \(i + 1\) and \(m - i + 1\), \(B_{m, m+1}(t) = 1, p_{m+1} = 1 - \pi(x_0)\), and \(\pi(x_0) = F(\tau_n|x_0)\). For data without right-censored time, \(p_{m+1} = 1 - \pi(x_0) = 0\).

Response variable should be of the form `cbind(l, u)`, where \((l, u)\) is the interval containing the event time. Data is uncensored if \(l = u\), right censored if \(u = \text{Inf}\) or \(l = \text{NA}\), and left censored data if \(l = 0\). The associated covariate contains \(d\) columns. The baseline \(x0\) should chosen so that \(\gamma'(x-x_0)\) is nonnegative for all the observed \(x\) and all \(\gamma\) in a neighborhood of its true value.

A missing initial value of \(g\) is imputed by `ic_sp()` of package `icenReg`.

The search for optimal degree \(m\) is stopped if either \(m\) is reached or the test for change-point results in a p-value \(p\) smaller than \(\text{sig.level}\). This process takes longer than `maple.ph` to select an optimal degree.

Value

A list with components

- \(m\) the selected/preselected optimal degree \(m\)
- \(p\) the estimate of \(p = (p_0, \ldots, p_m, p_{m+1})\), the coefficients of Bernstein polynomial of degree \(m\)
- coefficients the estimated regression coefficients of the PH model
• SE the standard errors of the estimated regression coefficients
• z the z-scores of the estimated regression coefficients
• mloglik the maximum log-likelihood at an optimal degree m
• tau.n maximum observed time \(\tau_n \)
• tau right endpoint of support \([0, \tau)\)
• x0 the working baseline covariates
• egx0 the value of \(e^{\gamma'x_0} \)

• convergence an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one m or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occurred, and 0 indicates a successful completion.

• delta the final delta if \(m_0 = m_1 \) or the final pval of the change-point for searching the optimal degree m;

and, if \(m_0 < m_1 \),

• M the vector \((m_0, m_1)\), where \(m_1 \) is the last candidate degree when the search stoped
• lk log-likelihoods evaluated at \(m \in \{m_0, \ldots, m_1\} \)
• lr likelihood ratios for change-points evaluated at \(m \in \{m_0 + 1, \ldots, m_1\} \)
• pval the p-values of the change-point tests for choosing optimal model degree
• chpts the change-points chosen with the given candidate model degrees

Author(s)
Zhong Guan <zguan@iusb.edu>

References

See Also
maple.ph

Examples

Ovarian Cancer Survival Data
require(survival)
futime2<-ovarian$futime
futime2[ovarian$fustat==0]<-Inf
ovarian2<-data.frame(age=ovarian$age, futime1=ovarian$futime, futime2=futime2)
ova<-mable.ph(cbind(futime1, futime2) ~ age, data = ovarian2, M=c(2,35), g=.16)
op<-par(mfrow=c(2,2))
plot(oova, which = "likelihood")
plot(oova, which = "change-point")
mable.reg

Mable fit of semiparametric regression model based on interval censored data

Description

Wrapping all codetable fit of regression models in one function. Using maximum approximate Bernstein/Beta likelihood estimation to fit semiparametric regression models: Cox ph model, proportional odds(po) model, accelerated failure time model, and so on.

Usage

mable.reg(formula, data, model = c("ph", "aft"), M, g = NULL, pi0 = NULL, tau = Inf, x0 = NULL, controls = mable.ctrl(), progress = TRUE)

Arguments

formula regression formula. Response must be of the form `cbind(l,u)`. See 'Details'.
data a dataset
model the model to fit. Current options are "ph" (Cox PH) or "aft" (accelerated failure time model)
M a vector (m0,m1) specifies the set of consective integers as candidate degrees
g an initial guess of the regression coefficients
pi0 Initial guess of \(\pi(x_0) = F(\tau_n|x_0) \). Without right censored data, pi0 = 1. See 'Details'.
tau right endpoint of support \([0,\tau]\) must be greater than or equal to the maximum observed time
x0 a working baseline covariate. See 'Details'.
controls Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress if TRUE a text progressbar is displayed

Details

For "ph" model a missing initial guess of the regression coefficients g is obtained by ic_sp() of package icenReg. For "aft" model a missing g is imputed by the rank estimate aftsrr() of package aftgee for right-censored data. For general interval censored observations, we keep the right-censored but replace the finite interval with its midpoint and fit the data by aftsrr() as a right-censored data.
Value
A `mable_reg` class object

Author(s)
Zhong Guan <zguan@iusb.edu>

See Also
mable.aft, mable.ph

maple.aft

Mable fit of AFT model with given regression coefficients for AFT model

Description

Maximum approximate profile likelihood estimation of Bernstein polynomial model in accelerated failure time based on internal censored event time data with a given regression coefficients which are efficient estimates provided by other semiparametric methods. Select optimal degree with a given regression coefficients for AFT model.

Usage

```r
maple.aft(formula, data, M, g, tau = 1, x0 = NULL, 
  controls = mable.ctrl(), progress = TRUE)
```

Arguments

- `formula` regression formula. Response must be `cbind`. See 'Details'.
- `data` a dataset
- `M` a positive integer or a vector \((m_0, m_1)\). If \(M = m\) or \(m_0 = m_1 = m\), then \(m\) is a pre-selected degree. If \(m_0 < m_1\) it specifies the set of consecutive candidate model degrees \(m_0:m_1\) for searching an optimal degree, where \(m_1-m_0 > 3\).
- `g` the given \(d\)-vector of regression coefficients
- `tau` a truncation time greater than or equal to the maximum observed time \(\tau\). See 'Details'.
- `x0` a working baseline covariate \(x_0\). See 'Details'.
- `controls` Object of class `mable.ctrl()` specifying iteration limit and other control options. Default is `mable.ctrl`.
- `progress` if `TRUE` a text progressbar is displayed
Details

Consider the accelerated failure time model with covariate for interval-censored failure time data:
\[S(t|x) = S(t \exp(-\gamma(x - x_0))|x_0), \] where \(x_0 \) is a baseline covariate. Let \(f(t|x) \) and \(F(t|x) = 1 - S(t|x) \) be the density and cumulative distribution functions of the event time given \(X = x \), respectively. Then \(f(t|x_0) \) on a truncation interval \([0, \tau]\) can be approximated by
\[f_m(t|x_0;p) = \tau^{-1} \sum_{i=0}^{m} p_i \beta_{mi}(t/\tau), \]
where \(p_i \geq 0 \), \(i = 0, \ldots, m \), \(\sum_{i=0}^{m} p_i = 1 \), and \(\beta_{mi}(u) \) is the beta density with shapes \(i + 1 \) and \(m - i + 1 \), and \(\tau \) is larger than the largest observed time, either uncensored time, or right endpoint of interval/ left censored, or left endpoint of right censored time. So we can approximate \(S(t|x_0) \) on \([0, \tau]\) by
\[S_m(t|x_0;p) = \sum_{i=0}^{m} p_i \beta_{mi}(t/\tau), \]
where \(\beta_{mi}(u) \) is the beta survival function with shapes \(i + 1 \) and \(m - i + 1 \).

Response variable should be of the form \(cbind(l, u) \), where \((l, u) \) is the interval containing the event time. Data is uncensored if \(l = u \), right censored if \(u = \Inf \) or \(u = NA \), and left censored data if \(l = \Inf \). The truncation time \(\tau \) and the baseline \(x_0 \) should chosen so that \(S(t|x) = S(t \exp(-\gamma(x - x_0))|x_0) \) on \([\tau, \Inf]\) is negligible for all the observed \(x \).

The search for optimal degree \(m \) is stopped if either \(m_1 \) is reached or the test for change-point results in a p-value \(pval \) smaller than \(\text{sig.level} \).

Value

A list with components

- \(m \) the selected optimal degree \(m \)
- \(p \) the estimate of \(p = (p_0, \ldots, p_m) \), the coefficients of Bernstein polynomial of degree \(m \)
- \(\text{coefficients} \) the given regression coefficients of the AFT model
- \(\text{SE} \) the standard errors of the estimated regression coefficients
- \(\text{z} \) the z-scores of the estimated regression coefficients
- \(\text{mloglik} \) the maximum log-likelihood at an optimal degree \(m \)
- \(\text{tau.n} \) maximum observed time \(\tau_n \)
- \(\text{tau} \) right endpoint of truncation interval \([0, \tau]\)
- \(x_0 \) the working baseline covariates
- \(\text{egx0} \) the value of \(e^{\gamma x_0} \)
- \(\text{convergence} \) an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one \(m \) or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occurred, and 0 indicates a successful completion.
- \(\text{delta} \) the final \(\text{delta} \) if \(m_0 = m_1 \) or the final \(pval \) of the change-point for searching the optimal degree \(m \);

and, if \(m_0 < m_1 \),

- \(M \) the vector \((m_0, m_1)\), where \(m_1 \) is the last candidate when the search stoped
- \(\text{1k log-likelihoods} \) evaluated at \(m \in \{m_0, \ldots, m_1\} \)
- \(\text{1r likelihood ratios} \) for change-points evaluated at \(m \in \{m_0 + 1, \ldots, m_1\} \)
- \(\text{pval} \) the p-values of the change-point tests for choosing optimal model degree
- \(\text{chpts} \) the change-points chosen with the given candidate model degrees
maple.ph

Author(s)
Zhong Guan <zguan@iusb.edu>

References

See Also
mable.aft

Examples
Breast Cosmesis Data
require(interval)
data(bcos)
bcos2<-data.frame(bcos[,1:2], x=1*(bcos$treatment=="RadChem"))
g<-0.41 # Hanson and Johnson 2004, JCGS,
res1<-maple.aft(cbind(left, right)-x, data=bcos2, M=c(1,30), g, tau=100, x0=1)
op<-par(mfrow=c(1,2), lwd=1.5)
plot(x=res1, which="likelihood")
plot(x=res1, y=data.frame(x=0), which="survival", model="aft", type="l", col=1,
 add=FALSE, main="Survival Function")
plot(x=res1, y=data.frame(x=1), which="survival", model='aft', lty=2, col=1)
legend("bottomleft", bty="n", lty=1:2, col=1, c("Radiation Only", "Radiation and Chemotherapy"))
par(op)

maple.ph

Mable fit of the PH model with given regression coefficients

Description
Maximum approximate profile likelihood estimation of Bernstein polynomial model in Cox’s proportional hazards regression based on interal censored event time data with a given regression coefficients which are efficient estimates provided by other semiparametric methods. Select optimal degree with a given regression coefficients.

Usage
maple.ph(formula, data, M, g, pi0 = NULL, tau = Inf, x0 = NULL,
 controls = mable.ctrl(), progress = TRUE)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>regression formula. Response must be (\text{cbind}). See 'Details'.</td>
</tr>
<tr>
<td>data</td>
<td>a dataset</td>
</tr>
<tr>
<td>M</td>
<td>a positive integer or a vector ((m_0, m_1)). If (M = m) or (m_0 = m_1 = m), then (m) is a pre-selected degree. If (m_0 < m_1) it specifies the set of consecutive candidate model degrees (m_0 : m_1) for searching an optimal degree, where (m_1 - m_0 > 3).</td>
</tr>
<tr>
<td>g</td>
<td>the given (d)-vector of regression coefficients</td>
</tr>
<tr>
<td>pi0</td>
<td>Initial guess of (\pi(x_0) = F(\tau_n</td>
</tr>
<tr>
<td>tau</td>
<td>right endpoint of support ([0, \tau]) must be greater than or equal to the maximum observed time</td>
</tr>
<tr>
<td>x0</td>
<td>a working baseline covariate. See 'Details'.</td>
</tr>
<tr>
<td>controls</td>
<td>Object of class (\text{mable.ctrl()}) specifying iteration limit and other control options. Default is (\text{mable.ctrl()}).</td>
</tr>
<tr>
<td>progress</td>
<td>if TRUE a text progress bar is displayed</td>
</tr>
</tbody>
</table>

Details

Consider Cox’s PH model with covariate for interval-censored failure time data: \(S(t|X) = S(t|x_0)^\text{exp}(\gamma'(x-x_0)) \), where \(x_0 \) satisfies \(\gamma'(x-x_0) \geq 0 \). Let \(f(t|x) \) and \(F(t|x) = 1 - S(t|x) \) be the density and cumulative distribution functions of the event time given \(X = x \), respectively. Then \(f(t|x_0) \) on \([0, \tau_n]\) can be approximated by \(f_m(t|x_0; p) = \tau_n^{-1} \sum_{i=0}^{m} p_i \beta_{m,i}(t/\tau_n) \), where \(p_i \geq 0, i = 0, \ldots, m \), \(\sum_{i=0}^{m} p_i = 1 - p_{m+1} \), \(\beta_{mi}(u) \) is the beta density with shapes \(i + 1 \) and \(m - i + 1 \), and \(\tau_n \) is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate \(S(t|x_0) \) on \([0, \tau_n]\) by \(S_m(t|x_0; p) = \sum_{i=0}^{m+1} p_i \bar{B}_{mi}(t/\tau_n) \), where \(\bar{B}_{mi}(u), i = 0, \ldots, m \), is the beta survival function with shapes \(i + 1 \) and \(m - i + 1 \), \(\bar{B}_{m,m+1}(t) = 1, p_{m+1} = 1 - \pi(x_0) \), and \(\pi(x_0) = F(\tau_n|x_0) \). For data without right-censored time, \(p_{m+1} = 1 - \pi(x_0) = 0 \).

Response variable should be of the form \(\text{cbind}(1, u) \), where \((1, u)\) is the interval containing the event time. Data is uncensored if \(l = u \), right censored if \(u = \text{Inf} \) or \(u = \text{NA} \), and left censored data if \(l = 0 \). The associated covariate contains \(d \) columns. The baseline \(x0 \) should chosen so that \(\gamma'(x-x_0) \) is nonnegative for all the observed \(x \).

The search for optimal degree \(m \) is stopped if either \(m_1 \) is reached or the test for change-point results in a \(p \)-value \(\text{pval} \) smaller than \(\text{sig.level} \).

Value

a class ‘mable_reg’ object, a list with components

- \(m \) the vector \((m_0, m_1)\), where \(m_1 \) is the last candidate degree when the search stoped
- \(m \) the selected optimal degree \(m \)
- \(p \) the estimate of \(p = (p_0, \ldots, p_m, p_{m+1}) \), the coefficients of Bernstein polynomial of degree \(m \)
- \(\text{coefficients} \) the given regression coefficients of the PH model
- \(\text{mloglik} \) the maximum log-likelihood at an optimal degree \(m \)
maple.ph

- 1k log-likelihoods evaluated at \(m \in \{m_0, \ldots, m_1\} \)
- 1k likelihood ratios for change-points evaluated at \(m \in \{m_0 + 1, \ldots, m_1\} \)
- \(\tau \) maximum observed time \(\tau_n \)
- \(\tau \) right endpoint of support \([0, \tau]\)
- \(x_0 \) the working baseline covariates
- \(e^{\gamma'x_0} \) the value of \(e^{\gamma'x} \)
- convergence an integer code. 0 indicates successful completion (the iteration is convergent).
 1 indicates that the maximum candidate degree had been reached in the calculation;
- \(\delta \) the final pval of the change-point for selecting the optimal degree \(m \);

Author(s)
Zhong Guan <zguan@iusb.edu>

References

See Also
mable.ph

Examples

```r
## Simulated Weibull data
require(iceReg)
set.seed(123)
simdata<-simIC_weib(70, inspections = 5, inspectLength = 1)
sp<-ic_sp(cbind(l, u) ~ x1 + x2, data = simdata)
res0<maple.ph(cbind(l, u) ~ x1 + x2, data = simdata, M=c(2,20),
g=sp$coefficients, tau=7)

op<-par(mfrow=c(1,2))
plot(res0, which=c("likelihood","change-point"))
par(op)
res1<mable.ph(cbind(l, u) ~ x1 + x2, data = simdata, M=res0$m, g=c(.5,-.5), tau=7)

op<-par(mfrow=c(1,2))
plot(res1, y=data.frame(c(0,0)), which="density", add=FALSE, type="1",
  xlab="Time", main="Density Function")
lines(xx<-seq(0, 7, len=512), dweibull(xx, 2,2), lty=2, col=2)
legend("topleft", bty="n", lty=1:2, col=1:2, c("Estimated", "True"))

plot(res1, y=data.frame(c(0,0)), which="survival", add=FALSE, type="1",
  xlab="Time", main="Survival Function")
lines(xx, 1-pweibull(xx, 2, 2), lty=2, col=2)
legend("topleft", bty="n", lty=1:2, col=1:2, c("Estimated", "True"))
par(op)
```
optim.gcp

Choosing optimal model degree by gamma change-point method

Description

Choose an optimal degree using gamma change-point model with two changing shape and scale parameters.

Usage

optim.gcp(obj)

Arguments

tobj a class "mable" or 'mable_reg' object containing a vector \(M = (m_0, m_1) \), lk, log-likelihoods evaluated evaluated at \(m \in \{m_0, \ldots, m_1\} \)

Value

a list with components

- \(m \) the selected optimal degree \(m \)
- \(M \) the vector \((m_0, m_1) \), where \(m_1 \) is the last candidate when the search stopped
- \(m\loglik \) the maximum log-likelihood at degree \(m \)
- interval support/truncation interval \((a, b) \)
- \(lk \) log-likelihoods evaluated at \(m \in \{m_0, \ldots, m_1\} \)
- \(lr \) likelihood ratios for change-points evaluated at \(m \in \{m_0 + 1, \ldots, m_1\} \)
- \(pval \) the p-values of the change-point tests for choosing optimal model degree
- \(chpts \) the change-points chosen with the given candidate model degrees

Examples

simulated data
p<-c(1:5,5:1)
p<-p/sum(p)
x<-rmixbeta(100, p)
res1<-mable(x, M=c(2, 50), IC="none")
m1<-res1$m[1]
res2<-optim.gcp(res1)
m2<-res2$m
op<-par(mfrow=c(1,2))
plot(res1, which="likelihood", add=FALSE)
plot(res2, which="likelihood")
#segments(m2, min(res1$lk), m2, res2$mloglik, col=4)
plot(res1, which="change-point", add=FALSE)
plot(res2, which="change-point")
par(op)

plot.mable

Description

Plot method for class 'mable'

Usage

```r
## S3 method for class 'mable'
plot(x, which = c("density", "cumulative", "survival", "likelihood", "change-point", "all"), add = FALSE, lgd.x = NULL, lgd.y = NULL, nx = 512, ...)
```

Arguments

- **x**
 - Class "mable" object return by `mablem`, `mable`, `mablem.group` or `mable.group` functions which contains `p`, `mloglik`, and `M = m0:m1, lk, lr`,

- **which**
 - indicates which graphs to plot, options are "density", "cumulative", "likelihood", "change-point", "all". If not "all", which can contain more than one options.

- **add**
 - logical add to an existing plot or not

- **lgd.x, lgd.y**
 - coordinates of position where the legend is displayed

- **nx**
 - number of evaluations of density, or cumulative distribution curve to be plotted.

- **...**
 - additional arguments to be passed to the base plot function

plot.mable_reg

Description

Plot method for class 'mable_reg'

Usage

```r
## S3 method for class 'mable_reg'
plot(x, y, newdata = NULL, ntime = 512, xlab = "Time", which = c("survival", "likelihood", "change-point", "density", "all"), add = FALSE, ...)
```
Arguments

- **x**: a class 'mable_reg' object return by functions such as `mable.ph` which contains M, coefficients, p, m, x0, tau.n, tau lk, lr.
- **y**: a new data.frame
- **newdata**: a new data.frame (ignored if y is included)
- **ntime**: number of evaluations of density, survival or cumulative distribution curve to be plotted.
- **xlab**: x-axis label
- **which**: indicates which graphs to plot, options are "survival", "likelihood", "changepoint", "density", or "all". If not "all", which can contain more than one options.
- **add**: logical add to an existing plot or not
- **...**: additional arguments to be passed to the base plot function

Author(s)

Zhong Guan <zguan@iusb.edu>

summary.mable
Summary methods for classes 'mable' and 'mable_reg'

Description

Produces a summary of a mable fit.

Usage

```r
## S3 method for class 'mable'
summary(object, ...)  
## S3 method for class 'mable_reg'
summary(object, ...)
```

Arguments

- **object**: Class "mable" or 'mable_reg' object return by `mable` or `mable.xxx` functions for future methods
- **...**: for future methods

Value

Invisibly returns its argument, object.
Examples

```r
# Vaal Rive Flow Data
data(Vaal.Flow)
res <- mable(Vaal.Flow$Flow, M = c(2, 100), interval = c(0, 3000),
             controls = mable.ctrl(sig.level = 1e-8, maxit = 2000, eps = 1.0e-9))
summary(res)

## Breast Cosmesis Data
require(interval)
data(bcos)
bcos2 <- data.frame(bcos[, 1:2], x = 1 * (bcos$treatment == "RadChem"))
aft.res <- mable.aft(cbind(left, right) ~ x, data = bcos2, M = c(1, 30), tau = 100, x0 = 1)
summary(aft.res)
```

Vaal.Flow Vaal River Annual Flow Data

Description

The annual flow data of Vaal River at Standerton as given by Table 1.1 of Linhart and Zucchini (1986) give the flow in millions of cubic metres.

Usage

```r
data(Vaal.Flow)
```

Format

The format is: int [1:65] 222 1094 452 1298 882 988 276 216 103 490 ...

References

Examples

```r
data(Vaal.Flow)
```
Index

*Topic **datasets**
 chicken.embryo, 2
 Vaal.Flow, 31

*Topic **distribution**
 dmixbeta, 3
 mable, 5
 mable.aft, 8
 mable.group, 13
 mable.mvar, 18
 mable.ph, 19
 mable.reg, 22
 maple.aft, 23
 maple.ph, 25

*Topic **models**
 dmixbeta, 3
 mable, 5
 mable.aft, 8
 mable.group, 13
 mable.mvar, 18
 mable.ph, 19
 mable.reg, 22
 maple.aft, 23
 maple.ph, 25

*Topic **multivariate**
 mable.mvar, 18

*Topic **nonparametric**
 dmixbeta, 3
 mable, 5
 mable.aft, 8
 mable.group, 13
 mable.mvar, 18
 mable.ph, 19
 mable.reg, 22
 maple.aft, 23
 maple.ph, 25

*Topic **regression**
 mable.aft, 8
 mable.ph, 19
 mable.reg, 22
 maple.aft, 23
 maple.ph, 25

*Topic **smooth**
 dmixbeta, 3
 mable, 5
 mable.aft, 8
 mable.group, 13
 mable.ph, 19
 mable.reg, 22
 maple.aft, 23
 maple.ph, 25

*Topic **survival**
 mable.aft, 8
 mable.ph, 19
 mable.reg, 22
 maple.aft, 23
 maple.ph, 25

*Topic **univar**
 mable, 5
 mable.group, 13

chicken.embryo, 2

dmixbeta, 3
dmixmvbeta, 4

mable, 4, 5
mable.aft, 8, 23, 25
mable.ctrl, 6, 9, 11, 12, 14, 16, 18, 20, 22, 23, 26
mable.decon, 11
mable.group, 13, 17
mable.ic, 15, 16
mable.mvar, 18
mable.ph, 19, 23, 27
mable.reg, 22
maple.aft, 10, 23
maple.ph, 20, 21, 25

optim.gcp, 28
plot.mable, 29
plot.mable_reg, 29
pmixbeta (dmixbeta), 3
pmixmvbeta (dmixmvbeta), 4
qmixbeta (dmixbeta), 3
rmixbeta (dmixbeta), 3
rmixmvbeta (dmixmvbeta), 4
summary.mable, 30
summary.mable_reg (summary.mable), 30
Vaal.Flow, 31