Package ‘magclass’

February 25, 2021

Type Package

Title Data Class and Tools for Handling Spatial-Temporal Data

Version 5.24.7

Date 2021-02-24

Description Data class for increased interoperability working with spatial-temporal data together with corresponding functions and methods (conversions, basic calculations and basic data manipulation). The class distinguishes between spatial, temporal and other dimensions to facilitate the development and interoperability of tools build for it. Additional features are name-based addressing of data and internal consistency checks (e.g. checking for the right data order in calculations).

Depends R(>= 2.10.0), methods,

Imports stats, sp, maptools, abind, data.table, forcats

Suggests testthat, knitr, rmarkdown, reshape2, data.tree, raster, units(>= 0.7.0), udunits2, ncdf4, covr

URL https://github.com/pik-piam/magclass,
https://doi.org/10.5281/zenodo.1158580

BugReports https://github.com/pik-piam/magclass/issues

License LGPL-3 | file LICENSE

LazyData true

Encoding UTF-8

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Jan Philipp Dietrich [aut, cre],
Benjamin Leon Bodirsky [aut],
Markus Bonsch [aut],
Florian Humpenoeder [aut],
Stephen Bi [aut],
Kristine Karstens [aut],
Debora Leip [aut],
Lavinia Baumstark [ctb],
Christoph Bertram [ctb],
Anastasis Giannousakis [ctb],
David Klein [ctb],
Ina Neher [ctb],
Michaja Pehl [ctb],
Anselm Schultes [ctb],
Miodrag Stevanovic [ctb],
Xiaoxi Wang [ctb],
Felicitas Beier [ctb]

Maintainer Jan Philipp Dietrich <dietrich@pik-potsdam.de>

Repository CRAN

Date/Publication 2021-02-25 16:50:02 UTC

R topics documented:

magclass-package .. 4
add_columns ... 4
add_dimension ... 5
are_units_convertible ... 6
as.array-methods .. 7
as.data.frame-methods ... 7
as.RasterBrick ... 8
calibrate_it ... 9
clean_magpie ... 10
collapseDim ... 11
collapseNames .. 12
colSums-methods ... 13
complete_magpie .. 14
corvergence ... 15
convert.report ... 16
copy.attributes .. 17
copy.magpie ... 19
dimCode ... 19
dimExists ... 20
dimOrder ... 21
dimReduce ... 22
dimSums ... 23
escapeRegex ... 24
fulldim ... 25
getCells ... 26
getComment ... 27
getCoords .. 28
getCPR ... 29
getDim ... 30
getItems .. 31
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>getMetadata</td>
<td>32</td>
</tr>
<tr>
<td>getNames</td>
<td>33</td>
</tr>
<tr>
<td>getRegionList</td>
<td>35</td>
</tr>
<tr>
<td>getRegions</td>
<td>36</td>
</tr>
<tr>
<td>getSets</td>
<td>37</td>
</tr>
<tr>
<td>getYears</td>
<td>38</td>
</tr>
<tr>
<td>hasCoords</td>
<td>39</td>
</tr>
<tr>
<td>hasSets</td>
<td>40</td>
</tr>
<tr>
<td>head.magpie</td>
<td>40</td>
</tr>
<tr>
<td>install_magpie_units</td>
<td>41</td>
</tr>
<tr>
<td>is.temporal</td>
<td>42</td>
</tr>
<tr>
<td>isYear</td>
<td>43</td>
</tr>
<tr>
<td>is_unit_installed</td>
<td>44</td>
</tr>
<tr>
<td>lin.convergence</td>
<td>44</td>
</tr>
<tr>
<td>lowpass</td>
<td>46</td>
</tr>
<tr>
<td>magclassdata</td>
<td>47</td>
</tr>
<tr>
<td>magpie-class</td>
<td>47</td>
</tr>
<tr>
<td>magpieComp</td>
<td>49</td>
</tr>
<tr>
<td>magpieResolution</td>
<td>50</td>
</tr>
<tr>
<td>magpiesort</td>
<td>51</td>
</tr>
<tr>
<td>magpie_expand</td>
<td>51</td>
</tr>
<tr>
<td>magpie_expand_dim</td>
<td>53</td>
</tr>
<tr>
<td>magpply</td>
<td>54</td>
</tr>
<tr>
<td>maxample</td>
<td>55</td>
</tr>
<tr>
<td>mbind</td>
<td>55</td>
</tr>
<tr>
<td>mcalc</td>
<td>56</td>
</tr>
<tr>
<td>mselect</td>
<td>57</td>
</tr>
<tr>
<td>ncells</td>
<td>58</td>
</tr>
<tr>
<td>new.magpie</td>
<td>60</td>
</tr>
<tr>
<td>old_dim_convention</td>
<td>61</td>
</tr>
<tr>
<td>place_x_in_y</td>
<td>62</td>
</tr>
<tr>
<td>population_magpie</td>
<td>63</td>
</tr>
<tr>
<td>print.magpie</td>
<td>63</td>
</tr>
<tr>
<td>read.lpjml_nc</td>
<td>64</td>
</tr>
<tr>
<td>read.magpie</td>
<td>65</td>
</tr>
<tr>
<td>read.report</td>
<td>67</td>
</tr>
<tr>
<td>remind2magpie</td>
<td>69</td>
</tr>
<tr>
<td>replace_non_finite</td>
<td>70</td>
</tr>
<tr>
<td>round-methods</td>
<td>70</td>
</tr>
<tr>
<td>rowSums-methods</td>
<td>71</td>
</tr>
<tr>
<td>setItems</td>
<td>72</td>
</tr>
<tr>
<td>setNames-methods</td>
<td>73</td>
</tr>
<tr>
<td>set_magpie_units</td>
<td>73</td>
</tr>
<tr>
<td>sizeCheck</td>
<td>74</td>
</tr>
<tr>
<td>time_interpolate</td>
<td>75</td>
</tr>
<tr>
<td>units<-.magpie</td>
<td>76</td>
</tr>
<tr>
<td>unwrap</td>
<td>77</td>
</tr>
<tr>
<td>updateMetadata</td>
<td>77</td>
</tr>
</tbody>
</table>
Description

Data class for increased interoperability working with spatial-temporal data together with corresponding functions and methods (conversions, basic calculations and basic data manipulation). The class distinguishes between spatial, temporal and other dimensions to facilitate the development and interoperability of tools build for it. Additional features are name-based addressing of data and internal consistency checks (e.g. checking for the right data order in calculations).

Author(s)

Maintainer: Jan Philipp Dietrich <dietrich@pik-potsdam.de>

Description

Function adds new columns to the existing magpie object. The new columns are filled with NAs.

Usage

```r
add_columns(x, addnm = c("new"), dim = 3.1)
```

Arguments

- `x`: MAgPIE object which should be extended.
- `addnm`: The new columns within dimension "dim"
- `dim`: The number of the dimension that should be extended

Value

The extended MAgPIE object
add_dimension

Author(s)
Benjamin Bodirsky

See Also
add_dimension, mbind

Examples

```r
pop <- maxample("pop")
a <- add_columns(pop)
str(a)
fulldim(a)
```

Description

Function adds a name dimension as dimension number "dim" with the name "add" with an empty data column with the name "nm".

Usage

```r
add_dimension(x, dim = 3.1, add = "new", nm = "dummy")
```

Arguments

- `x`
 MAgPIE object which should be extended.
- `dim`
 The dimension number of the new dimension. 4 stands for the second name dimension.
- `add`
 The name of the new dimension
- `nm`
 The name of the first entry in dimension "add".

Value

The extended MAgPIE object

Author(s)
Benjamin Bodirsky

See Also
add_columns, mbind
Examples

```r
a <- add_dimension(maxexample("pop"))
str(a)
fulldim(a)
```

Description

This function checks whether two units are inter-convertible. It extends `ud.are.convertible` from the `udunits2` package to MAgPIE objects and newly defined units.

Usage

```r
are_units_convertible(u1, u2)
```

Arguments

- `u1`, `u2` Either argument can be a character of length one, a units object or a MAgPIE object.

Value

Returns a boolean. TRUE if `u1` can be converted to `u2`, FALSE otherwise.

Author(s)

Stephen Bi

See Also

`ud.are.convertible`
as.array-methods

Description

~~ Methods for function as.array ~~

Usage

S4 method for signature 'magpie'
as.array(x)

Arguments

x
object which should be converted to an array

Methods

list("signature(x = "ANY")") standard as.array-method
list("signature(x = "magpie")") Conversion takes place just by removing MAgPIE-object specific elements

as.data.frame-methods ~~ Methods for Function as.data.frame ~~

Description

~~ Methods for function as.data.frame ~~

Usage

S4 method for signature 'magpie'
as.data.frame(x, rev = 1)

Arguments

x
A MAgPIE-object

rev
The revision of the algorithm that should be used for conversion. rev=1 creates columns with the predefined names Cell, Region, Year, Data1, Data2,... and Value, rev=2 uses the set names of the MAgPIE object for naming and adds an attribute "dimtype" to the data.frame which contains information about the types of the different columns (spatial, temporal, data or value).
Methods

list("signature(x = \"magpie\")") Conversion creates columns for Cell, Region, Year, Data1, Data2,... and Value

Examples

 pop <- maxample("pop")
 head(as.data.frame(pop))
 head(as.data.frame(pop,rev=2))

Description

Convert magclass object to a RasterBrick object

Usage

as.RasterBrick(x, res = NULL)

Arguments

x MAgPIE object
res spatial data resolution. If not provided it will be guessed.

Value

A RasterBrick object

Author(s)

Jan Philipp Dietrich

See Also

getCoords
Examples

```r
if (requireNamespace("raster", quietly = TRUE)) {
  r <- raster::brick(ncols=360,nrows=180, nl=4)
  r[85:89,176:179] <- (1:20 %*% t(1:4))
  names(r) <- c("y2000..bla","y2001..bla","y2000..blub","y2001..blub")
  m <- as.magpie(r)
  r2 <- as.RasterBrick(m)
}
```

calibrate_it

Description

Standardized functions to calibrate values to a certain baseyear.

Usage

```r
calibrate_it(
  origin,
  cal_to,
  cal_type = "convergence",
  cal_year = NULL,
  end_year = NULL,
  report_calibration_factors = FALSE
)
```

Arguments

- `origin` Original Values (MAgPIE object)
- `cal_to` Values to calibrate to (MAgPIE object).
- `cal_type` "none" leaves the values as they are, "convergence" starts from the aim values and then linearly converges towards the values of origin, "growth_rate" uses the growth-rates of origin and applies them on aim.
- `cal_year` year on which the dataset should be calibrated.
- `end_year` only for `cal_type="convergence"`. Year in which the calibration shall be faded out.
- `report_calibration_factors` prints out the multipliers which are used for calibration.

Value

Calibrated dataset.
clean_magpie

Author(s)

Benjamin Bodirsky

See Also

`convergence`, `lin.convergence`

Examples

```r
pop <- maxample("pop")
test <- as.magpie(array(1000, dim(pop[, "A2"])), dimnames(pop[, "A2"]))
calibrate_it(origin=pop, cal_to=test[, "y1995"], cal_type="growth_rate")
calibrate_it(origin=pop, cal_to=test[, "y1995"], cal_type="convergence", cal_year="y1995", end_year="y2055")
calibrate_it(origin=pop, cal_to=test[, "y1995"], cal_type="none")
```

clean_magpie

MAgPIE-Clean

Description

Function cleans MAgPIE objects so that they follow some extended magpie object rules (currently it makes sure that the dimnames have names and removes cell numbers if it is purely regional data)

Usage

```r
clean_magpie(x, what = "all")
```

Arguments

- `x` MAgPIE object which should be cleaned.
- `what` term defining what type of cleaning should be performed. Current modes are "cells" (removes cell numbers if the data seems to be regional - this should be used carefully as it might remove cell numbers in some cases in which they should not be removed), "sets" (making sure that all dimensions have names) and "all" (performing all available cleaning methods)

Value

The eventually corrected MAgPIE object

Author(s)

Jan Philipp Dietrich
collapseDim

See Also

"magpie"

Examples

 pop <- maxample("pop")
 a <- clean_magpie(pop)

collapseDim Collapse dataset dimensions

Description

This function will remove names in the data dimension which are the same for each element (meaning that this data dimension contains exactly one element) or, if forced, remove any other subdimension. It is a generalized version of the function collapseNames.

Usage

collapseDim(x, dim = NULL, keepdim = NULL)

Arguments

 x MAgPIE object
 dim Either NULL, dimension code or name of dimension or a vector of these. If set to NULL all single entry subdimensions will be removed as they are irrelevant to uniquely identify a data element. If specified, only the specified subdimensions will be removed (See dimCode for more details how to specify a subdimension). CAUTION: The function also allows to specify subdimensions which are otherwise needed to clearly identify an entry. By removing these subdimensions duplicates in the data will be created potentially causing problems in the further use of the data set. Be careful in removing subdimensions.
 keepdim (only considered if dim is not specified) Can be used to converse single element subdimension which otherwise would get deleted. If dim is specified this setting will not have any effect.

Value

 The provided MAgPIE object with collapsed dimensions

Author(s)

 Jan Philipp Dietrich
See Also

`getItems "magpie"`

Examples

```r
x <- new.magpie(c("GLO.1", "GLO.2"), 2000, c("bla.a", "bla.b"))
collapseDim(x)
collapseDim(x, keepdim=1:2)
collapseDim(x, dim=1.1)
collapseDim(x, dim=3.2)
```

collapseNames Collapsed dataset names

Description

This function has been superseded by `collapseDim` which is a more generalized version of this function. Please use this one instead!

Usage

`collapseNames(x, collapsedim = NULL, preservedim = NULL)`

Arguments

- `x` MAgPIE object
- `collapsedim` If you want to remove the names of particular dimensions provide the dimensions here. Since the function only works in the third dimension, you have to count from there on (e.g. `dim = 3.2` refers to `collapsedim = 2`). Alternatively, you can also specify the name of the dimension. Default: NULL. CAUTION with parameter `collapsedim`! You could also force him to remove dimnames, which are NOT the same for each element and so create duplicates in dimnames.
- `preservedim` If you want to remove the name of particular dimensions except some, you can specify the dimension(s) to preserve here. See `collapsedim` for naming convention. Note that `preservedim` will be ignored in the case, of a specified `collapsedim`

Details

This function will remove names in the data dimension which are the same for each element (meaning that this data dimension contains exactly one element)

Value

The provided MAgPIE object with collapsed names
Author(s)

Jan Philipp Dietrich, David Klein, Xiaoxi Wang

See Also

collapseDim, getItems, "magpie"

Examples

```r
x <- new.magpie("GLO",2000,c("bla.a","bla.b"))
print(x)
# An object of class "magpie"
# , , bla.a
#  y2000
#  GLO.1 NA
# , , bla.b
#  y2000
#  GLO.1 NA

print(collapseNames(x))
# An object of class "magpie"
# , , a
#  y2000
#  GLO.1 NA
# , , b
#  y2000
#  GLO.1 NA

print(collapseNames(x), collapseNames = 2)
# An object of class "magpie"
# , , bla
#  y2000
#  GLO.1 NA
# , , bla
#  y2000
#  GLO.1 NA
```

Description

Methods for Function `colSums` and `colMeans`

Usage

```r
## S4 method for signature 'magpie'
colSums(x, na.rm = FALSE, dims = 1, ...)
```
Arguments

- **x**: object on which calculation should be performed
- **na.rm**: logical. Should missing values (including NaN) be omitted from the calculations?
- **dims**: integer: Which dimensions are regarded as "rows" or "columns" to sum over. For row*, the sum or mean is over dimensions dims+1, ...; for col* it is over dimensions 1:dims.
- **...**: further arguments passed to other colSums/colMeans methods

Methods

- `list("signature(x = \"ANY\")")` normal colSums and colMeans method
- `list("signature(x = \"magpie\")")` classical method prepared to handle MAgPIE objects

Description

MAgPIE objects can be incomplete to reduce memory. This function blows up a magpie object to its real dimensions, so you can apply `unwrap`.

Usage

```r
complete_magpie(x, fill = NA)
```

Arguments

- **x**: MAgPIE object which should be completed.
- **fill**: Value that shall be written into the missing entries

Value

The completed MAgPIE object

Author(s)

Benjamin Bodirsky

See Also

`add_dimension, clean_magpie`
Examples

```r
pop <- maxample("pop")
a <- complete_magpie(pop)
b <- add_dimension(a)
c <- add_dimension(a, nm="dummy2")
incomplete <- mbind(b[, ,1], c)
d <- complete_magpie(incomplete)
```

convergence

Description

Cross-Fades the values of one MAGPIE object into the values of another over a certain time

Usage

```r
convergence(
  origin,
  aim,
  start_year = NULL,
  end_year = NULL,
  direction = NULL,
  type = "smooth",
  par = 1.5
)
```

Arguments

- **origin**: an object with one name-column
- **aim**: Can be twofold: An magpie object or a numeric value.
- **start_year**: year in which the convergence from origin to aim starts. If set to NULL the the first year of aim is used as start_year
- **end_year**: year in which the convergence from origin to aim shall be (nearly) reached. If set to NULL the the last year of aim is used as end_year.
- **direction**: NULL, "up" or "down". NULL means normal convergence in both directions, "up" is only a convergence if origin<aim, "down" means only a convergence if origin>aim
- **type**: "smooth", "s", "linear" or "decay". Describes the type of convergence: linear means a linear conversion, s is an s-curve which starts from origin in start_year and reaches aim precisely in end_year. After 50 percent of the convergence time, it reaches about the middle of the two values. Its based on the function min(1, pos^4/(0.07+pos^4)*1.07) smooth is a conversion based on the function x^3/(0.1+x^3). In the latter case only 90% of convergence will be reached in the
end year, because full convergence is reached in infinity. decay is a conversion based on the function \(x/(1.5 + x)^{2.5} \).

par

parameter value for convergence function; currently only used for type="decay"

Value

returns a time-series with the same timesteps as origin, which linearly fades into the values of the aim object

Author(s)

Benjamin Bodirsky, Jan Philipp Dietrich

See Also

`lin.convergence`

Examples

```r
pop <- maxample("pop")
population <- add_columns(pop,"MIX")
population[,"MIX"]<-convergence(population[,"A2"],population[,"B1"])
```

convert.report

Converts a report from one model to another

Description

This function converts the content of a reporting file from one model to another

Usage

```r
convert.report(
  rep,
  inmodel = NULL,
  outmodel = "MAgPIE",
  full = FALSE,
  as.list = TRUE
)
```
copy.attributes

Arguments

rep
Report. Either the file name of a mif file or a report already read in in R.

inmodel
Model the input comes from. If NULL the script tries to detect the inmodel automatically.

outmodel
Model format the data should be converted to. Currently, "MAgPIE" and "RE-MIND" are available

full
Boolean deciding whether only the converted output should be returned (FALSE) or the new output together with the input (TRUE)

as.list
if TRUE a list is returned (default), if FALSE it is tried to merge all information in one MAgPIE object (still under development and works currently only if the entries for the different models and scenarios have exactly the same regions and years).

Details

The function converts data based on a region mapping and transformation rules which are stored in the variable magclassdata which comes with this library.

Author(s)

Jan Philipp Dietrich

See Also

read.report, write.report, magclassdata

Examples

Not run: convert.report("report.mif")

Copy Attributes

Description

This function copies attributes from one object and assigns them to another.

Usage

```r
copy.attributes(
  from,
  to,
  delete = c("names", "row.names", "class", "dim", "dimnames"),
  delete2 = NULL
)```
copy.attributes

)

copy.attributes(

to,

delete = c("names", "row.names", "class", "dim", "dimnames"),
delete2 = NULL
)

Arguments

from object from which the attributes should be taken
to object to which the attributes should be written
delete attributes which should not be copied. By default this are class specific attributes
which might cause problems if copied to another object. But you can add or
remove attributes from the vector.
delete2 Identical to delete and just added for convenience for the case that you want to
delete additional attributes but do not want to repeat the vector given in delete.
In the function both vectors, delete and delete2, are just merged to one deletion
vector.
value Same as "from" (object from which the attributes should be taken)

Functions

• copy.attributes<-: assign attributes from object "value"

Author(s)

Jan Philipp Dietrich

Examples

from <- array(12)
attr(from,"blablub") <- "I am an attribute!"
attr(from,"blablub2") <- "I am another attribute!"

print(attributes(from))

to <- as.magpie(0)
print(attributes(to))

copy.attributes(to) <- from
print(attributes(to))
copy.magpie  

**Copy MAgPIE-files**

**Description**

This function copies MAgPIE-files from one location to another. During the copying it is also possible to change the file type (e.g. from 'mz' to 'csv')

**Usage**

```r
copy.magpie(input_file, output_file, round = NULL)
```

**Arguments**

- `input_file`: file, that should be copied
- `output_file`: copy destination
- `round`: number of digits the values should be rounded, if (AND ONLY IF) file format is changed. NULL means no rounding

**Author(s)**

Jan Philipp Dietrich

**See Also**

- `read.magpie`
- `write.magpie`

**Examples**

```r
copy.magpie("bla.csv","blub.mz")
```

---

**dimCode**

**Description**

Function converts a dimension name or number to a dimension Code used for MAgPIE objects

**Usage**

```r
dimCode(dim, x, missing = 0, sep = ".")
```
**Arguments**

- **dim**: A vector of dimension numbers or dimension names which should be translated for.
- **x**: MAgPIE object in which the dimensions should be searched for.
- **missing**: Either a value to which a dimension should be set in case that it is not found (default is 0), or "stop" indicating that the function should throw an error in these cases.
- **sep**: A character separating joined dimension names.

**Value**

A dimension code identifying the dimension. Either a integer which represents the main dimensions (1=spatial, 2=temporal, 3=data) or a numeric, representing the subdimensions of a dimension (e.g. 3.2 for the second data dimension).

**Author(s)**

Jan Philipp Dietrich, Kristine Karstens

**See Also**

-mselect, getDim

**Examples**

```r
pop <- maxample("pop")
dimCode(c("t","scenario","blablub"),pop)
```

**Description**

Function checks whether a dimension exist in a MAgPIE objects

**Usage**

```r
dimExists(dim, x, sep = ".")
```

**Arguments**

- **dim**: A vector of dimension numbers or dimension names which should be checked for.
- **x**: MAgPIE object in which the dimensions should be searched for.
- **sep**: A character separating joined dimension names.
Value

Boolean indicating whether dimension exists or not

Author(s)

Jan Philipp Dietrich

See Also

dimCode

Examples

```r
pop <- maxample("pop")
dimExists(c("t","scenario","blablab"),pop)
```

Description

Changes the order of the 3rd dimension in a magpie object similar to unwrapping and applying the `aperm` command, but more efficient.

Usage

dimOrder(x, perm)

Arguments

- `x`: magpie object
- `perm`: vector with the new order of the 3rd dimension

Value

magpie object

Author(s)

Benjamin Leon Bodirsky
Examples

```r
Not run:
pop <- maxample("pop")
x <- setNames(pop,c("kj","kej")) * pop
dimOrder(x=x,perm=c(2,1))

End(Not run)
```

Description

Remove dimensions which contain identical data for all elements in it

Usage

```r
dimReduce(x, dim_exclude = NULL)
```

Arguments

- `x`: MAgPIE object which should be reduced
- `dim_exclude`: Vector with names of dimensions which must not be reduced

Value

The reduced MAgPIE object

Author(s)

Jan Philipp Dietrich

See Also

- `add_dimension`

Examples

```r
create data with 5 identical scenarios
p <- add_dimension(maxample("pop"), nm = paste0("scen",1:5))
p
 dimReduce(p)

set years to same value
p[,,] <- setYears(p[,,], NULL)
p
 dimReduce(p)
```
#set regions to same value
p[,] <- setCells(p[,] [,], "GLO")
p
dimReduce(p)

---

**dimSums**

**Summation over dimensions**

**Description**

This function sums over any dimension of a magpie object or an array

**Usage**

```r
dimSums(x, na.rm = FALSE, dims = NULL, dim = 3, sep = ".", ...)
```

**Arguments**

- `x`  A MAgPIE-object or an array
- `na.rm`  logical. Should missing values (including NaN) be omitted from the calculations?
- `dims`  Deprecated version of argument `dim`. Please use `dim` instead (it is just it there for back compatibility and will be removed soon.)
- `dim`  The dimensions(s) to sum over. A vector of integers or characters (dimension names). If the MAgPIE object has more than 1 actual dimension collected in the third real dimension, each actual dimension can be summed over using the corresponding dim code (see `dimCode` for more information)
- `sep`  A character separating joined dimension names
- `...`  Further arguments passed to rowSums internally

**Value**

- `value`  A MAgPIE object or an array (depending on the format of `x`) with values summed over the specified dimensions

**Author(s)**

Markus Bonsch, Ina Neher, Benjamin Bodirsky, Jan Philipp Dietrich

**See Also**

`rowSums`, `dimSums`, `dimCode`
Examples

test<-as.magpie(array(1:4,dim=c(2,2)))
dimSums(test,dim=c(1,3))
dimSums(test[,,1],na.rm=TRUE,dim=c(1,2))

Description

Escapes all symbols in a string which have a special meaning in regular expressions.

Usage

escapeRegex(x)

Arguments

x String or vector of strings that should be escaped.

Value

The escaped strings.

Author(s)

Jan Philipp Dietrich

See Also

grep
fulldim

Reconstructs full dimensionality of MAgPIE objects

Description

If a MAgPIE object is created from a source with more than one data dimension, these data dimensions are combined to a single dimension. fulldim reconstructs the original dimensionality and reports it.

Usage

fulldim(x, sep = ".")

Arguments

x A MAgPIE-object
sep A character separating joined dimension names

Value

A list containing in the first element the dim output and in the second element the dimnames output of the reconstructed array.

Author(s)

Jan Philipp Dietrich

See Also

as.magpie,unwrap,wrap

Examples

a <- as.magpie(array(1:6,c(3,2),list(c("bla","blub","ble"),c("up","down"))))
fulldim(a)
getCells

Description

Extracts cell names of a MAgPIE-object

Usage

getCells(x)

getCells(x) <- value

setCells(object, nm = "GLO")

Arguments

x, object MAgPIE object
value, nm cell names the data should be set to.

Details

setCells is a shortcut to use a MAgPIE object with manipulated cell names. setCells uses the variable names "object" and "nm" in order to be consistent to the already existing function setNames.

Value

getCells returns cell names of the MAgPIE-object, whereas setCells returns the MAgPIE object with the manipulated cell names.

Functions

- getCells<-: set cell names
- setCells: set cell names

Author(s)

Jan Philipp Dietrich

See Also

getRegions, getNames, setName, getCP, read.magpie, write.magpie, "magpie"
getComment

Examples

```r
a <- as.magpie(1)
getCells(a)
setCells(a,"AFR")
```

Description

Extracts the comment from a MAgPIE-object

Usage

```r
getComment(x)
getComment(x) <- value
setComment(object, nm = NULL)
```

Arguments

- `x`, `object` MAgPIE object
- `value`, `nm` A vector containing the comment.

Value

- `getComment`: returns the comment attached to a MAgPIE-object, NULL if no comment is present.
- `setComment`: returns the magpie object with the modified comment.

Functions

- `getComment<-`: set comment
- `setComment`: set comment

Author(s)

Markus Bonsch

See Also

- `getRegions`, `getNames`, `getYears`, `getCPR`, `read.magpie`, `write.magpie`, "magpie"
Examples

```r
a <- as.magpie(1)
#returns NULL
getComment(a)
#set the comment
getComment(a)<-c("bla","blubb")
getComment(a)
```

---

getCoords  

Get Coordinates

Description

Extracts spatial coordinates of a MAgPIE-object

Usage

```r
getCoords(x, xlab = "x", ylab = "y")
```

```r
getCoords(x, xlab = "x", ylab = "y") <- value
```

Arguments

- `x`: MAgPIE object
- `xlab`: label of x-dimension
- `ylab`: label of y-dimension
- `value`: coordinates as two column data.frame the data should be set to (first column = x, second column = y).

Value

coordinates of the MAgPIE-object

Functions

- `getCoords<-`: set coordinates

Author(s)

Jan Philipp Dietrich

See Also

`as.RasterBrick`, `getItems`, "magpie"
### Examples

```r
a <- maxample("animal")
getCoords(a)
```

---

getCPR

Get cells per region

### Description

Counts how many cells each region has and returns it as vector

### Usage

```r
getcPR(x)
```

### Arguments

- `x` MAgPIE object or a resolution written as numeric (currently only data for 0.5 degree resolution is available).

### Value

- cells per region

### Author(s)

Jan Philipp Dietrich

### See Also

- `getRegions`, `read.magpie`, `write.magpie`

### Examples

```r
a <- read.magpie("example.mz")
getCPR(a)
getCPR(0.5)
```
Description

Function which tries to detect the dimension to which the given elems belong

Usage

getDim(elems, x, fullmatch = FALSE, dimCode = TRUE)

Arguments

elems A vector of characters containing the elements that should be found in the MAgPIE object
x MAgPIE object in which elems should be searched for.
fullmatch If enabled, only dimensions which match exactly the elements provided will be returned. Otherwise, it is sufficient if elems contains a subset of the dimension.
dimCode If enabled, the dimCode will be returned, otherwise the name of the dimension.

Value

The name or dimCode of the dimensions in which elems were found.

Author(s)

Jan Philipp Dietrich

See Also

mcalc, dimCode

Examples

pop <- maxample("pop")
getDim(c("AFR","CPA"),pop)
getDim(c("AFR","CPA"),pop,fullmatch=TRUE)
getDim(c("AFR","CPA"),pop,dimCode=FALSE)
**getItems**

**Get Items**

**Description**

Extract items of a given (sub-)dimension of a MAgPIE-object

**Usage**

getItems(x, dim = NULL, split = FALSE, full = FALSE)

getItems(x, dim, maindim = NULL, raw = FALSE) <- value

**Arguments**

- **x**: MAgPIE object
- **dim**: Dimension for which the items should be returned. Either number or name of dimension or a vector of these. See dimCode for more details.
- **split**: Boolean which determines whether a main dimension should be split in subdimensions. Only applicable to main dimensions (1,2,3) and ignored for all other.
- **full**: if TRUE dimension names are returned as they are (including repetitions), if FALSE only the dimension elements (unique list of entries) are returned.
- **maindim**: main dimension the data should be added to (does not need to be set if dim exists in the data. Should be set if dim might not exist, or if dim might potentially exist in a different main dimension than the one anticipated).
- **raw**: if set to FALSE inputs will be corrected (e.g. dots replaced by the letter "p") if necessary. If TRUE data will be written as pro (default) vided (risking the creation of inconsistent objects)
- **value**: a vector with the length of the main dimension the dimnames should be replaced in / added to. If set to NULL the corresponding dimension will be removed.

**Value**

items of the requested dimension in the MAgPIE-object. If split=TRUE and applied to a main dimension (1,2,3) a list of items for each sub-dimension.

**Functions**

- `getItems<-`: set dimension names

**Author(s)**

Jan Philipp Dietrich

**See Also**

dimCode
getMetadata

Examples

```r
x <- maxample("pop")
gItems(x,"scenario")
gItems(x,3.1)
gItems(x,"i") <- paste0("REG",1:ncells(x))
gItems(x,"i")
y <- x[,1,]
gItems(y,"t") <- NULL
```

getMetadata getMetadata (!experimental!)

Description

This function is currently experimental and non-functional by default! To activate it, set withMetadata(TRUE), otherwise it will not return or modify any metadata!

Usage

```r
getMetadata(x, type = NULL)
getMetadata(x, type = NULL) <- value
```

Arguments

- **x** MAgPIE object
- **type** A vector containing the Metadata field. If NULL, getMetadata() will return all non-NULL fields, and 'getMetadata<- will update all fields specified in value.
- **value** An object containing the Metadata entry.

Details

The function allows users to set and retrieve metadata for magclass objects.

Metadata is an attribute of a magclass object, and it includes the default fields of "unit", "source", "date", "user", "calcHistory", "description" and "note", all contained in a list.

The "source" element is stored as a Bibtex class object (or a list thereof), but the value argument here can be either a Bibtex or bibentry object (or a list of any combination). Include all relevant information regarding where the data was originally reported. Specifically, the type of publication, author(s), article title, journal/publication name, volume, page numbers, URL and DOI.

The "calcHistory" field is stored as a Node class object. The value argument can be either a single node, a character of length 1 (to be converted to a node), or a full data tree. In the first two cases, the provided value will become the root node (read as the most recent function applied to the object). In the case of a full tree input, this will replace any existing calcHistory. Use updateMetadata() to merge the calcHistory of two magpie objects.
getNames

Value

getMetadata returns the metadata attached to a MAgPIE-object, NULL if no metadata attribute is present. getMetadata<- returns the magpie object with the modified metadata.

Functions

• getMetadata<-. set and modify Metadata

Author(s)

Stephen Bi

See Also

getComment, getRegions, getNames, getYears, getCPR, read.magpie, write.magpie, "magpie"

Examples

## Not run:
withMetadata(TRUE)
a <- as.magpie(1)  # returns NULL
getMetadata(a)  # set the unit field
getMetadata(a, "unit") <- "GtCO2eq"
getMetadata(a)

# set all Metadata fields
M <- list(unit="kg", source=list(author="John Doe", date='January 1, 2017',
title='example', publication='BigJournal, Vol. 200, pp. 100-115', institution='IEA'),
date=as.character(Sys.time()), user='my name', calcHistory=list('downloadSource','readSource'),
description='nonsense data')
getMetadata(a) <- M
getMetadata(a)  # withMetadata(FALSE)

## End(Not run)

getNames

Get dataset names

Description

Extracts dataset names of a MAgPIE-object

Usage

getNames(x, fulldim = FALSE, dim = NULL)

getNames(x, dim = NULL) <- value
Arguments

x MAgPIE object
fulldim specifies, how the object is treated. In case of FALSE, it is assumed that x is 3
dimensional and dimnames(x)[[3]] is returned. In case of TRUE, the dimnames
of the real third dimension names are returned

dim Argument to choose a specific data dimension either by name of the dimension
or by number of the data dimension.
value a vector of names current names should be replaced with. If only one data
element exists you can also set the name to NULL.

Details

setNames is a shortcut to use a MAgPIE object with manipulated data names. The setNames method
uses the variable names "object" and "nm" in order to be consistent to the already existing function
setNames.

Value

getNames returns data names of the MAgPIE-object, whereas setNames returns the MAgPIE object
with the manipulated data names.

Functions

• getNames<-: set names

Author(s)

Jan Philipp Dietrich

See Also

setNames-methods, getRegions, getYears, getCPR, read.magpie, write.magpie,ndata,"magpie"

Examples

a <- as.magpie(1)
getNames(a)
setNames(a,"bla")

x <- new.magpie("GLO",2000,c("a.o1","b.o1","a.o2"))
getNames(x,dim=2)

gets(x,fulldim=FALSE)[3] <- "bla.blub"
getNames(x,dim="bla")

gets(x)[4] <- "ble"
getNames(x,dim="ble") <- c("Hi","Bye")
x
getRegionList  

Get a list of cellular region-belongings

Description

Extracts a vector containing the region of each cell of a MAgPIE-object

Usage

getRegionList(x)

getRegionList(x) <- value

Arguments

x MAgPIE object

value A vector with ncell elements containing the regions of each cell.

Value

A vector with ncell elements containing the region of each cell.

Functions

• getRegionList<-. set region names

Author(s)

Jan Philipp Dietrich

See Also

gRegions, getYears, getNames, getCPR, read.magpie, write.magpie, "magpie"

Examples

# a <- read.magpie("example.mz")
# getRegionList(a)
getRegions

Description

Extracts regions of a MAgPIE-object

Usage

getRegions(x)

getRegions(x) <- value

Arguments

x MAgPIE object
value Vector containing the new region names of the MAgPIE objects. If you also want to change the mapping of regions to cell please use getRegionList instead.

Value

Regions of the MAgPIE-object

Functions

• getRegions<-: overwrite region names

Author(s)

Jan Philipp Dietrich

See Also

ggetYears, getNames, getCPR, read.magpie, write.magpie, "magpie"

Examples

# a <- read.magpie("example.mz")
# getRegions(a)
getSets

Description
Extracts sets of a MAgPIE-object if available

Usage
getSets(x, fulldim = TRUE, sep = ".")
getSets(x, fulldim = TRUE, sep = ".") <- value

Arguments
- x: MAgPIE object
- fulldim: bool: Consider dimension 3 as a possible aggregate of more dimensions (TRUE) or stick to it as one dimension (FALSE)
- sep: A character separating joined dimension names
- value: A vector with set names you want to replace the current set names of the object with.

Value
Sets of the MAgPIE-object. If no information about contained sets is available NULL

Functions
- getSets<-: replace set names

Author(s)
Markus Bonsch, Jan Philipp Dietrich

See Also
- getRegions, getNames, getYears, getCPR, read.magpie, write.magpie, "magpie"

Examples
a <- new.magpie("GLO.1",2000,c("a.o1","b.o1","a.o2"))
getSets(a) <- c("reg","cell","t","bla","blub")
getSets(a)

gsets(a)["d3.1"] <- "BLA"
getSets(a,fulldim=FALSE)
getSets(a)
Description

Extracts years of a MAgPIE-object

Usage

```r
getYears(x, as.integer = FALSE)

getYears(x) <- value

setYears(object, nm = NULL)
```

Arguments

- `x, object`: MAgPIE object
- `as.integer`: Switch to decide, if output should be the used year-name (e.g. "y1995") or the year as integer value (e.g. 1995)
- `value, nm`: Years the data should be set to. Either supplied as a vector of integers or a vector of characters in the predefined year format ("y0000"). If only 1 year exist you can also set the name of the year to NULL.

Details

`setYears` is a shortcut to use a MAgPIE object with manipulated year names. `setYears` uses the variable names "object" and "nm" in order to be consistent to the already existing function `setNames`.

Value

`getYears` returns years of the MAgPIE-object, whereas `setYears` returns the MAgPIE object with the manipulated years.

Functions

- `getYears<-`: rename years
- `setYears`: set years

Author(s)

Jan Philipp Dietrich

See Also

`getRegions, getNames, setNames, getCPR, read.magpie, write.magpie, "magpie"`
Examples

a <- as.magpie(1)
ggetYears(a)
setYears(a, 1995)

hasCoords          Has Coordinates

Description
Checks, whether object contains coordinates.

Usage
hasCoords(x, xlab = "x", ylab = "y")

Arguments

x  MAgPIE object
xlab  label of x-dimension
ylab  label of y-dimension

Value
Boolean indicating whether coordinates were found or not

Author(s)
Jan Philipp Dietrich

See Also
getCoords

Examples

hasCoords(maxample("pop"))
hasCoords(maxample("animal"))
### hasSets

**Description**
Checks, whether set names have been set

**Usage**
```r
hasSets(x)
```

**Arguments**
- `x` MAgPIE object

**Value**
Boolean indicating whether coordinates were found or not

**Author(s)**
Jan Philipp Dietrich

**See Also**
- `getCoords`

**Examples**
```r
hasSets(maxample("pop"))
hasSets(maxample("animal"))
```

### head.magpie

**Description**
head and tail methods for MAgPIE objects to extract the head or tail of an object

**Usage**
```r
S3 method for class 'magpie'
head(x, n1 = 3L, n2 = 6L, n3 = 2L, ...)
```
Arguments

\textbf{x} \hspace{5mm} \text{MAgPIE object}

\textbf{n1, n2, n3} \hspace{5mm} \text{number of lines in first, second and third dimension that should be returned. If the given number is higher than the length of the dimension all entries in this dimension will be returned.}

\ldots \hspace{5mm} \text{arguments to be passed to or from other methods.}

Value

head returns the first n1 x n2 x n3 entries, tail returns the last n1 x n2 x n3 entries.

Author(s)

Jan Philipp Dietrich

See Also

head, tail

Examples

\begin{verbatim}
pop <- maxample("pop")
head(pop)
tail(pop, 2, 4, 1)
\end{verbatim}

Description

This function is currently experimental and non-functional by default! To activate it, set withMetadata(TRUE).

Usage

\texttt{install\_magpie\_units(x = NULL)}

Arguments

\texttt{x} \hspace{5mm} \text{Can be a character of length one, a magpie object, or NULL (default). If a character is given, it will be temporarily installed (for the current R session) to the units database if it isn’t already. If a magpie object, then the same will be done for the metadata units field. If NULL, then a set of frequently used units will be installed to the database (also temporary).}
is.temporal

Details

Please install the development version of the R-units package. The devtools or remotes package is a prerequisite for this - e.g. remotes::install_github("r-quantities/units")

The purpose of this function is to define common units used in MAgPIE and REMIND data for parseability by the udunits2 and units packages which handle unit conversions and compatibility checks.

Value

If x is a character, the newly installed units object. If x is a magpie object, a magpie object with an updated units metadata field. If x is NULL, no output is returned. Note that the udunits2 package does not accept units which start or end with a number. The current general work-around is to add a '_' before or after the unit as necessary. Some specific cases are handled differently, e.g. 'USD_2003' becomes 'y2003_USD'.

Author(s)

Stephen Bi

See Also

units.magpie, install_symbolic_unit, install_conversion_constant

is.temporal is.temporal, is.spatial

Description

Functions to find out whether a vector consists of strings consistent with the definition for auto-detection of temporal or spatial data.

Usage

is.temporal(x)

Arguments

x A vector

Value

Returns TRUE or FALSE

Author(s)

Jan Philipp Dietrich
isYear

Examples

is.temporal(1991:1993)
is.spatial(c("GLO","AFR"))

isYear

isYear

Description

Function to find out whether a vector consists of strings in the format "yXXXX" or "XXXX" with X being a number

Usage

isYear(x, with_y = TRUE)

Arguments

x A vector

with_y indicates which dataformat years have to have (4-digit without y (e.g.1984) or 5-digit including y (y1984))

Value

Returns a vector of the length of x with TRUE and FALSE

Author(s)

Benjamin Bodirsky

Examples

x<-c("1955","y1853","12a4")
isYear(x, with_y=TRUE)
isYear(x, with_y=FALSE)
is_unit_installed

Description
This function quickly checks whether a character is already recognizable as a units object. If FALSE, the unit can be installed via install_magpie_units.

Usage
is_unit_installed(char)

Arguments
char A character string to be checked for units compatibility

Value
Returns a boolean. TRUE if char is recognized by the units package and FALSE otherwise. If FALSE, char can be installed as a compatible unit via install_magpie_units.

Author(s)
Stephen Bi

lin.convergence

Description
Cross-Fades the values of one MAGPIE object into the values of another over a certain time

Usage
lin.convergence(
    origin,
    aim,
    convergence_time_steps = NULL,
    start_year = NULL,
    end_year = NULL,
    before = "stable",
    after = "stable"
)
lin.convergence

Arguments

origin an object with one name-column
aim Can be twofold: An object with one name-column and the same timesteps as origin. Then the model fades over from timestep 1, in which the value of origin is valid, to the last timestep, n which the value of aim is valid. In the second case, the aim object has to have only one timestep, which is also in origin. Then, the data will be faded from the value of origin in the first timestep to the value of aim in the timestep passed on by aim.

convergence_time_steps
In the case of timesteps(origin)==timesteps(aim), convergence_time_steps delivers the number of time_steps in which the convergence process shall be completed (e.g. 6 for y2055).

start_year year in which the convergence from origin to aim starts. Value can also be a year not contained in the dataset.

end_year year in which the convergence from origin to aim shall be reached. Value can also be a year not contained in the dataset. Can be used only alternatively to convergence_time_steps.

before "stable" leaves the value at origin. If a year is entered, convergence begins at aim, reaches origin at start_year, and goes back to aim until end_year.

after "stable" leaves the value at aim. All other values let the convergence continue in the same speed even beyond the end_year, such that the values of aim are left.

Value
returns a time-series with the same timesteps as origin, which lineary fades into the values of the aim object

Author(s)
Benjamin Bodirsky

See Also
lin.convergence

Examples

pop <- maxample("pop")
population <- add_columns(pop,"MIX")
population[,,"MIX"] <- lin.convergence(population[,,"A2"],population[,,"B1"],
convergence_time_steps=10)
Description

Filters high frequencies out of a time series. The filter has the structure \( x'(n) = \frac{(x(n-1)+2*x(n)+x(n+1))}{4} \)

Usage

\[
\text{lowpass}(x, \text{i} = 1, \text{fix} = \text{NULL}, \text{altFilter} = \text{NULL}, \text{warn} = \text{TRUE})
\]

Arguments

- \( x \): Vector of data points, that should be filtered or MAgPIE object
- \( i \): number of iterations the filter should be applied to the data
- \( \text{fix} \): Fixes the starting and/or ending data point. Default value is \text{NULL} which doesn’t fix any point. Available options are: ”start” for fixing the starting point, ”end” for fixing the ending point and ”both” for fixing both ends of the data.
- \( \text{altFilter} \): set special filter rule to indexes defined in this parameter. The special filter has the structure \( x'(n) = \frac{(2*x(n)+x(n+1))}{3} \)
- \( \text{warn} \): boolean deciding whether lowpass issues a warning for critical parameter choices or not

Value

The filtered data vector or MAgPIE object

Author(s)

Jan Philipp Dietrich, Misko Stevanovic

Examples

\[
\text{lowpass}(c(1,2,11,3,4))
\]

# to fix the starting point
\[
\text{lowpass}(c(0,9,1,5,14,20,6,11,0), \text{i}=2, \text{fix}="\text{start}")
\]
Description

General magclass-dataset

Details

Please do not directly access that data. It should be only used by library functions.

Author(s)

Jan Philipp Dietrich

Description

The MAgPIE class is a data format for cellular MAgPIE data with a close relationship to the array data format. \\texttt{is.magpie} tests if \texttt{x} is an MAgPIE-object, \texttt{as.magpie} transforms \texttt{x} to an MAgPIE-object (if possible).

Arguments

\begin{itemize}
  \item \texttt{x} \hspace{1cm} An object that should be either tested or transformed as/to an MAgPIE-object.
  \item \ldots \hspace{1cm} additional arguments supplied for the conversion to a MAgPIE object. Allowed arguments for arrays and dataframes are \texttt{spatial} and \texttt{temporal} both expecting a vector of dimension or column numbers which contain the spatial or temporal information. By default both arguments are set to \texttt{NULL} which means that the \texttt{as.magpie} will try to detect automatically the temporal and spatial dimensions. The arguments will just overwrite the automatic detection. If you want to specify that the data does not contain a spatial or temporal dimension you can set the corresponding argument to 0. In addition \texttt{as.magpie} for dataframes is also expecting an argument called \texttt{datacol} which expects a number stating which is the first column containing data. This argument should be used if the dimensions are not detected correctly, e.g. if the last dimension column contains years which are then detected as values and therefore interpreted as first data column. In addition an argument \texttt{ tidy=TRUE} can be used to indicate that the dataframe structure is following the rules of tidy data (last column is the data column all other columns contain dimension information). This information will help the conversion. \texttt{sep} defines the dimension separator (default is ".") and \texttt{replacement} defines how the separator as a reserved character should be converted in order to not mess up with the object (default "\_\_"). Another available argument for conversions of
data.frames and quitte objects to magpie is filter if set to TRUE (default) "." (separator) will be replaced with the replacement character and empty entries will be replaced with a single space. If set to FALSE no filter will be applied to the data.

Objects from the Class

Objects can be created by calls of the form new("magpie", data, dim, dimnames,...). MAgPIE objects have three dimensions (cells,years,datatype) and the dimensionnames of the first dimension have the structure "REGION.cellnumber". MAgPIE-objects behave the same like array-objects with 2 exceptions:
1.Dimensions of the object will not collapse (e.g. x[1,1,1] will remain 3D instead of becoming 1D)
2.It is possible to extract full regions just by typing x["REGIONNAME",,].

Please mind following standards:
Header must not contain any purely numeric entries, but combinations of characters and numbers are allowed (e.g. "bla","12" is forbidden, whereas "bla","b12" is allowed)
Years always have the structure "y" + 4-digit number, e.g. "y1995"
Regions always have the structure 3 capital letters, e.g. "AFR" or "GLO"

This standards are necessary to allow the scripts to detect headers, years and regions properly and to have a distinction to other data.

Author(s)

Jan Philipp Dietrich

See Also

read.magpie, write.magpie, getRegions, getYears, getNames, getCPR, ncells, nyears, ndata

Examples

showClass("magpie")

pop <- maxample("pop")

# returning PAO and PAS for 2025
pop["PA",2025,,pmatch="left"]

# returning CPA for 2025
pop["PA",2025,,pmatch="right"]

# returning CPA PAO and PAS for 2025
pop["PA",2025,,pmatch=TRUE]

# returning PAS and 2025
pop["PAS",2025,]
   # returning everything but values for PAS or values for 2025
pop["PAS",2025,,invert=TRUE]

   # accessing subdimension via set name
a <- maxample("animal")
a[list(country="NLD",y="53p25"),,list(species=c("rabbit","dog"))]

   # please note that the list elements act as filter. For instance, the
   # following example will not contain any dogs as the data set does
   # not contain any dogs which are black.
a[list(country="NLD",y="53p25"),,list(species=c("rabbit","dog"), color="black")]

   # it is also possible to extract given combinations of subdimensions
   # via a data-frame
df <- data.frame(getItems(a,3,split=TRUE,full=TRUE))[c(1,3,4),][3:2]
getItems(a[df],3)

   # Unknown dimensions to be added in output!
df$blub <- paste0("bl",1:dim(df)[1])
getItems(a[df],3)

---

**magpieComp**

**Description**

Function that compares two magpie objects.

**Usage**

```
magpieComp(bench, comp, reg = NA)
```

**Arguments**

- **bench**: A MAgPIE object.
- **comp**: A MAgPIE object.
- **reg**: The region(s) you want to focus on

**Details**

Function that compares two magpie objects.
Value

a list containing a) the names found only in bench, a2) the names found only in comp, b) a sorted
data frame with the largest relative difference between bench and comp in percentage values, and
c) a magclass object with the same values

Author(s)

Anastasis Giannousakis

Description

Returns the Resolution of a MAgPIE object

Usage

magpieResolution(object)

Arguments

object An MAgPIE object

Value

"glo", "reg" or "cell"

Author(s)

Benjamin Bodirsky

See Also

maxample

Examples

magpieResolution(maxample("pop"))
**magpiesort**  
*MAgPIE-Sort*

**Description**
Brings the spatial and temporal structure of MAgPIE objects in the right order. This function is especially useful when you create new MAgPIE objects as the order typically should be correct for MAgPIE objects.

**Usage**
magpiesort(x)

**Arguments**
- **x**  
  MAgPIE object which might not be in the right order.

**Value**
The eventually corrected MAgPIE object (right order in spatial in temporal dimension)

**Author(s)**
Jan Philipp Dietrich

**See Also**
"magpie"

**Examples**

```r
pop <- maxample("pop")
a <- magpiesort(pop)
```

**magpie_expand**  
*magpie_expand*

**Description**
Expands a MAgPIE object based on a reference

**Usage**
magpie_expand(x, ref)
Arguments

- **x**: MAgPIE object that should be expanded
- **ref**: MAgPIE object that serves as a reference

Details

Expansion means here that the dimensions of `x` are expanded accordingly to `ref`. Please note that this is really only about expansion. In the case that one dimension of `ref` is smaller than of `x` nothing happens with this dimension. At the moment `magpie_expand` is only internally available in the magclass library.

You can influence the verbosity of this function by setting the option "magclass.verbosity". By default verbosity is set to 2 which means that warnings as well as notes are returned. Setting verbosity to 1 means that only warnings are returned but no notes. This is done by `options(verbosity.level=1)`.

With version 5 of the package `magpie_expand` has been updated to a newer version (currently 2.1). To switch to the old setup you have to set `options(magclass_expand_version=1)`.

By default expansion is based on the elements in a dimension ignoring the set name of the dimension. To expand based on set names instead of contents (recommended) you can switch `options(magclass_setMatching=TRUE)`. Please be careful with this setting as it alters the behavior of magclass objects quite significantly!

For more information have a look at `vignette("magclass-expansion")`.

Value

An expanded version of `x`.

Author(s)

Jan Philipp Dietrich

See Also

`as.magpie`, `options`

Examples

```r
a <- new.magpie(c("AFR","CPA"),"y1995",c("m","n"))
b <- new.magpie("GLO","y1995",c("bla","blub"))
magpie_expand(b,a)
options(magclass.verbosity=1)
magpie_expand(b,a)
```
Description

Expands a single MAgPIE object dimension

Usage

magpie_expand_dim(x, ref, dim = 1)

Arguments

x
MAgPIE object that should be expanded
ref
MAgPIE object that serves as a reference
dim
dimension that should be expanded

Details

Expansion means here that the dimensions of x are expanded accordingly to ref. Please note that this is really only about expansion. In the case that one dimension of ref is smaller than of x nothing happens with this dimension. At the moment magpie_expand is only internally available in the magclass library.

In contrast to magpie_expand this function is expanding only a single dimension. It is meant as a support function for magpie_expand itself.

Value

An expanded version of x.

Author(s)

Jan Philipp Dietrich

See Also

as.magpie, options

Examples

d <- new.magpie(c("AFR.BLUB.1","AFR.BLUB.2","EUR.BLUB.1",
                 "AFR.BLA.1","AFR.BLA.2","EUR.BLA.1"),fill = 1)
getSets(d)[1:3] <- c("reg","b","i")
e <- new.magpie(c("BLA.AFR.A","BLA.EUR.A","BLUB.AFR.A","BLUB.EUR.A",
                 "BLA.AFR.B","BLA.EUR.B","BLUB.AFR.B","BLUB.EUR.B"),fill = 2)
getSets(e)[1:3] <- c("b","reg","a")
magclass:::magpie_expand_dim(d,e,dim=1)
magapply

Description

apply command for magpieobjects. Very efficient for replacing loops.

Usage

magapply(X, FUN, MARGIN, ..., integrate = FALSE)

Arguments

X  magpie object
FUN  function that shall be applied X
MARGIN  dimension over which FUN shall be applied (like a loop over that dimension). This dimension will be preserved in the output object
...  further parameters passed on to FUN
integrate  if TRUE, the output will be filled into an magpie object of the same dimensionality as X

Value

magpie object

Author(s)

Benjamin Leon Bodirsky

Examples

pop <- maxample("pop")
magapply(pop,FUN=sum,MARGIN=2)
fourdim <- pop * setNames(pop, c("jkk","lk"))
magapply(fourdim, FUN=sum, MARGIN=c(1,3,1))
maxample

Description
A collection of magclass example data sets

Usage
maxample(data)

Arguments
data  name of the example data set. Currently available are "pop" (regional population data, previously named "population_magpie") and "animal" (fictional, high-dimensional animal sighting data set).

Value
the chosen example data set

Author(s)
Jan Philipp Dietrich

Examples

p <- maxample("pop")
str(p)

a <- maxample("animal")
str(a)
full(dim(a)

mbind

Description
Merges MAgPIE-objects with identical structure in two dimensions. If data differs in the temporal or spatial dimension each year or region/cell must appear only once!

Usage
mbind(...)
Arguments

... MAgPIE objects or a list of MAgPIE objects that should be merged.

Details

mbind2 is a reimplementation from mbind which had the aim to increase its overall memory efficiency. However, it is not clear which function is better and there are also some changes in behaviour of both functions. Therefore, the new version was just added as mbind2 instead of using it as a full replacement for mbind.

Value

The merged MAgPIE object

Author(s)

Jan Philipp Dietrich, Misko Stevanovic

See Also

"magpie"

Examples

```r
m <- new.magpie(c("AFR","CPA","EUR"), c(1995,2005),"Data1",fill=c(1,2,3,4,5,6))
ms <- dimSums(m, dims=1)
mbind(m, ms)
my <- new.magpie(getRegions(m), 2010, getNames(m), fill=c(6,6,4))
mbind(m, my)
md <- new.magpie(getRegions(m), getYears(m), "Data2", fill=c(7,6,5,7,8,9))
mbind(m, md)

pop <- maxample("pop")
a <- mbind(pop,pop)
dim(pop)
dim(a)
```
Arguments

- **x**: MAgPIE object
- **f**: A formula describing the calculation that should be performed
- **dim**: The dimension in which the manipulation should take place. If set to NULL function tries to detect the dimension automatically.
- **append**: If set to TRUE the result will be appended to x, otherwise the result will be returned.

Details

This function only works for MAgPIE objects with named dimensions as the dimension name (set_name) has to be used to indicate in which dimension the entries should be searched for!

Value

The calculated MAgPIE object in the case that append is set to FALSE. Otherwise nothing is returned (as x is appended in place)

Author(s)

Jan Philipp Dietrich

See Also

- mselect

Examples

```r
pop <- maxample("pop")
pop
mcalc(pop, X12 ~ A2*B1, append=TRUE)
pop
mcalc(pop, "Nearly B1` ~ 0.5*A2 + 99.5*B1")
```
Arguments

- **x**: MAgPIE object
- **...**: entry selections of the form `set_name=c(set_elem1,set_elem2)`. Alternatively a single list element containing these selections can be provided.
- **collapseNames**: Boolean which decides whether names should be collapsed or not.
- **value**: values on which the selected magpie entries should be set.

Details

This functions only work for MAgPIE objects with named dimensions as the dimension name (set_name) has to be used to indicate in which dimension the entries should be searched for!

Value

The reduced MAgPIE object containing only the selected entries or the full MAgPIE object in which a selection of entries was manipulated.

Functions

- **mselect<-**: replace values in magpie object

Author(s)

Jan Philipp Dietrich

See Also

- `collapseNames`
- "magpie"

Examples

```r
pop <- maxample("pop")
mselect(pop,i=c("AFR","EUR"),scenario="A2",t="y2035")
```

---

### ncells

**Count elements**

Description

Functions to count the number of cells/years/datasets/regions of an MAgPIE-object
Usage

ncells(x)
ndata(x, fulldim = FALSE)
nregions(x)
nyears(x)

Arguments

x A MAgPIE-object
fulldim specifies, how the object is treated. In case of FALSE, it is assumed that x is 3
dimensional and dimnames(x)[[3]] is returned. In case of TRUE, the dimnames
of the real third dimension names are returned

Value

value The number of cells/years/datasets/regions of x

Functions

• ndata: count datasets
• nregions: count regions
• nyears: count years

Author(s)

Jan Philipp Dietrich

Examples

a <- is.magpie(NULL)
cells(a)
nyears(a)
data(a)
ndata(a)
nregions(a)
new.magpie

Description

Creates a new MAgPIE object

Usage

new.magpie(
  cells_and_regions = "GLO",
  years = NULL,
  names = NULL,
  fill = NA,
  sort = FALSE,
  sets = NULL,
  unit = "unknown"
)

Arguments

- **cells_and_regions**
  - Either the region names (e.g. "AFR"), or the cells (e.g. 1:10), or both in combination (e.g. "AFR.1"). NULL means no spatial element.

- **years**
  - Dimnames for years in the format "yXXXX" or as integers. NULL means one year which is not further specified.

- **names**
  - Dimnames for names. NULL means one data element which is not further specified.

- **fill**
  - Default value for the MAgPIE object.

- **sort**
  - Boolean. Decides, whether output should be sorted or not.

- **sets**
  - A vector of dimension names. See `getSets` for more information.

- **unit**
  - A character which sets the MAgPIE object’s unit field in its metadata attribute

Value

An empty magpie object filled with fill, with the given dimnames

Author(s)

Benjamin Bodirsky, Jan Philipp Dietrich

See Also

`as.magpie`
Examples

```r
a <- new.maggio(1:10,1995:2000)
b <- new.maggio(c("AFR","CPA"),"y1995",c("bla","blub"),sets=c("i","t","value"))
c <- new.maggio()
```

Description

Transforms new dim convention (e.g. 3.2) into old dim convention (e.g. 4)

Usage

```r
old_dim_convention(dim)
```

Arguments

- `dim`: The dim number in the new convention

Value

The dim number according to the old convention

Author(s)

Benjamin Bodirsky

See Also

`add_columns`, `add_dimension`

Examples

```r
dim=old_dim_convention(3.2)
dim=old_dim_convention(1.1)
```
place_x_in_y

Description

Function positions magpie object x into magpie object y.

Usage

place_x_in_y(x, y, expand = T)

Arguments

x Object to be placed.
y Object in which x shall be placed
expand T: if x is larger than y, new columns are added.

Value

The combination of x and y. x overwrites y values which are in the same place.

Author(s)

Benjamin Bodirsky

See Also

add_dimension, add_columns, mbind

Examples

pop <- maxample("pop")
x <- pop[, "y1995", ]*0.2
a <- place_x_in_y(x, pop)
Description

Example dataset for a regional MAgPIE object

Value

A2 and B1 population scenario from SRES

Author(s)

Benjamin Bodirsky

print.magpie

Description

print method for MAgPIE objects for convenient display of magpie data.

Usage

```r
S3 method for class 'magpie'
print(x, drop = TRUE, reshape = FALSE, ...)
```

Arguments

- `x` MAgPIE object
- `drop` argument which controls whether empty dimensions should be skipped or not.
- `reshape` argument that controls tabular representation of nested data dimension cross tables, FALSE will reproduce standard print behavior any pair of two dimension numbers will create a table for these two dims, and loop over the other dimensions
- `...` arguments to be passed to or from other methods.

Value

print displays the given MAgPIE object on screen.

Author(s)

Jan Philipp Dietrich, Kristine Karstens, Felicitas Beier
See Also

print

Examples

```r
pop <- maxample("pop")
print(pop)
print(pop[,1,], drop=FALSE)
print(pop[,1,])
```

### read.lpjml_nc

**Read LPJmL from nc-file**

#### Description

Reads a LPJmL nc-file and converts it to a 3D array of the structure (cells,years,datacolumn)

#### Usage

```r
read.lpjml_nc(
 file_name,
 file_folder = "",
 years = NULL,
 split_data = FALSE,
 keep_month = FALSE,
 averaging_range = 1
)
```

#### Arguments

- `file_name` file name including file ending (wildcards are supported). Optionally also the full path can be specified here (instead of splitting it to file\_name and file\_folder)
- `file_folder` folder the file is located in (alternatively you can also specify the full path in file\_name - wildcards are supported)
- `years` a vector containing the years of interest
- `split_data` split reading routine to avoid memory issues
- `keep_month` keep monthly data (month as 3rd magpie data dim)
- `averaging_range` number of years to be averaged (if even: overweight for previous time period)

#### Value

`x` MAgPIE-object
**read.magpie**

**Author(s)**
Kristine Karstens

**See Also**
"magpie", read.magpie

**Examples**

```r
Not run:
a <- read.lpjml_nc("sdate.nc")
End(Not run)
```

---

**Description**

Reads a MAgPIE-file and converts it to a 3D array of the structure (cells,years,datacolumn)

**Usage**

```r
read.magpie(
 file_name,
 file_folder = "",
 file_type = NULL,
 as.array = FALSE,
 old_format = FALSE,
 comment.char = "*",
 check.names = FALSE
)
```

**Arguments**

- `file_name` file name including file ending (wildcards are supported). Optionally also the full path can be specified here (instead of splitting it to file\_name and file\_folder)
- `file_folder` folder the file is located in (alternatively you can also specify the full path in file\_name - wildcards are supported)
- `file_type` format the data is stored in. Currently 13 formats are available: "rds" (recommended compressed format), "cs2" & "cs2b" (cellular standard MAgPIE format), "csv" (regional standard MAgPIE format), "cs3" (multidimensional format compatible to GAMS), "cs4" (alternative multidimensional format compatible to GAMS, in contrast to cs3 it can also handle sparse data), "csvr", "cs2r", "cs3r" and "cs4r" which are the same formats as the previous mentioned ones with the only difference that they have a REMIND compatible format, "m" (binary
MAgPIE format "magpie"), "mz" (compressed binary MAgPIE format "magpie zipped") "put" (format used primarily for the REMIND-MAgPIE coupling) and "asc", (ASCII-Grid format as used by ArcGis) . If file\_type=NULL the file ending of the file\_name is used as format. If format is different to the formats mentioned standard MAgPIE format is assumed.

as.array Should the input be transformed to an array? This can be useful for regional or global inputs, but all advantages of the magpie-class are lost.

old_format used to read files in old MAgPIE-format (unused space was not located at the beginning of the file), will be removed soon.

comment.char character: a character vector of length one containing a single character or an empty string. Use "" to turn off the interpretation of comments altogether. If a comment is found it will be stored in attr("comment"). In text files the comment has to be at the beginning of the file in order to be recognized by read.magpie.

check.names logical. If TRUE then the names of the variables in the data frame are checked to ensure that they are syntactically valid variable names. Same functionality as in read.table.

Details

This function reads from 13 different MAgPIE file\_types. "rds" is a R-default format for storing R objects."cs2" or "cs2b" is the new standard format for cellular data with or without header and the first columns (year,regiospatial) or only (regiospatial), "csv" is the standard format for regional data with or without header and the first columns (year,region,cellnumber) or only (region,cellnumber). "cs3" is a format similar to csv and cs2, but with the difference that it supports multidimensional data in a format which can be read by GAMS, "put" is a newly supported format which is mosty used for the REMIND-MAgPIE coupling. This format is only partly supported at the moment. "asc" is the AsciiGrid format (for example used for Arc Gis data). "nc" is the netCDF format (only "nc" files written by write.magpie can be read). All these variants are read without further specification. "magpie" (.m) and "magpie zipped" (.mz) are new formats developed to allow a less storage intensive management of MAgPIE-data. The only difference between both formats is that .mz is gzipped whereas .m is not compressed. So .mz needs less memory, whereas .m might have a higher compatibility to other languages.

Since library version 1.4 read.magpie can also read regional or global MAgPIE csv-files.

Value

x MAgPIE-object

Note

The binary MAgPIE formats .m and .mz have the following content/structure (you only have to care for that if you want to implement read.magpie/write.magpie functions in other languages):

```r
[FileFormatVersion | Current file format version number (currently 6) | integer | 2 Byte]
[nchar_comment | Number of character bytes of the file comment | integer | 4 Byte]
[nbyte_metadata | Number of bytes of the serialized metadata | integer | 4 Byte]
[nchar_sets | Number of characters bytes of all regionnames + 2 delimiter | integer | 2 Byte]
```
### Description

This function reads the content of a reporting file (a file in the model intercomparison file format *.mif) into a list of MAgPIE objects or a single MAgPIE object.

### Usage

```r
read.report(file, as.list = TRUE)
```

### Examples

```r
Not run:
a <- read.magpie("lpj_yield_ir.csv")
write.magpie(a,"lpj_yield_ir.mz")
End(Not run)
```

### Author(s)

Jan Philipp Dietrich, Stephen Bi, Florian Humpenoeder

### See Also

"magpie", write.magpie
Arguments

file    file name the object should be read from.
as.list if TRUE a list is returned (default), if FALSE it is tried to merge all information in one MAgPIE object (still under development and works currently only if the entries for the different models and scenarios have exactly the same regions and years).

Details

The Model Intercomparison File Format (MIF) is the default file format for data produced by Integrated Assessment Models. It is based on the common format used for Model Intercomparison Projects such as EMF and SSP with some slight changes/clarifications in its definition. For interactions between models this format should be used. For everything else it is at least recommended to use this format, too.

Aim of this standardization is to achieve a more flexible and smooth communication between models and to facilitate the creation of aggregated outputs from integrated assessment scenario runs which then can easily be uploaded to external databases such as the EMF or SSP database. By using this standard most of the required decisions for a working input output interface between models have already been specified which significantly reduces the required work to get a new interaction running.

Definition

The format is characterized by the following features:

- The file ending is ".mif"
- The file is written in ASCII format
- Entries are separated with ";", every line ends with a ";"
- The file always contains a header
- The format of the header is: Model;Scenario;Region;Variable;Unit;<ADDITIONAL_COLUMNS>;<YEARS>;

The first 5 entries always have to exist, <ADDITIONAL_COLUMNS> is additional information which can be added optionally (e.g. "Description") and <YEARS> are the years for which data is delivered. <YEARS> are always written as 4 digit numbers. In the (very unlikely) case that a year before 1000 is used the number has to start with a 0, e.g. 0950. <ADDITIONAL_COLUMNS> can be anything, there are no further rules at the moment what it can contain. However, there are strict rules for naming these columns. Allowed are single names starting with a capital letter without special characters in it except "_" which is allowed. Examples: "Description" allowed, "More Description" not allowed, "More_Description" allowed, "123Description" not allowed, "Description123" allowed. Scripts using this format must be able to ignore additional columns. For years there are no specific limitations/requirements which years should be reported. Scripts dealing with this data must be able to work with different temporal resolutions. For variables basically everything can be reported here. Missing values have to be marked with "N/A".

Author(s)

Jan Philipp Dietrich
remind2magpie

See Also

write.report

Examples

## Not run:
read.report("report.csv")

## End(Not run)

---

remind2magpie  Remind2MAgPIE

Description

Converts a MAgPIE object with Remind regions to a MAgPIE object with MAgPIE regions

Usage

remind2magpie(x)

Arguments

x  MAgPIE object with Remind regions

Value

MAgPIE object with MAgPIE regions

Author(s)

Florian Humpenoeder

See Also

"magpie"

Examples

## Not run: a <- remind2magpie(remind_c_prices)
replace_non_finite  

Replace Non-Finite Data

Description

Replaces all instances of non-finite data (NA, NaN, Inf, and -Inf).

Usage

replace_non_finite(x, replace = 0)

Arguments

x  
A vector or magpie object.

replace  
A value to replace non-finite data with.

Value

A vector or magpie object, same as x.

Author(s)

Michaja Pehl

Examples

part <- new.magpie(letters[1:3], years = 'y1995', names = 'foo')
total <- new.magpie(letters[1:3], years = 'y1995', names = 'foo')

part[, ,] <- c(0, 1, 2)
total[, ,] <- c(0, 10, 10)

part / total

replace_non_finite(part / total)

---

round-methods  

Round-method for MAgPIE objects

Description

Round-method for MAgPIE-objects respectively. Works exactly as for arrays.
rowSums-methods

Usage

## S4 method for signature 'magpie'
round(x, digits = 0)

Arguments

x a magpie object
digits integer indicating the number of decimal places (round) or significant digits (signif) to be used. Negative values are allowed.

Methods

x = "magpie" works as round(x) for arrays.

rowSums-methods ~~ Methods for Function rowSums and rowMeans ~~

Description

~~ Methods for function rowSums and rowMeans~~

Usage

## S4 method for signature 'magpie'
rowSums(x, na.rm = FALSE, dims = 1, ...)

Arguments

x object on which calculation should be performed
na.rm logical. Should missing values (including NaN) be omitted from the calculations?
dims integer: Which dimensions are regarded as "rows" or "columns" to sum over. For row*, the sum or mean is over dimensions dims+1, ...; for col* it is over dimensions 1:dims.
... further arguments passed to other colSums/colMeans methods

Methods

list("signature(x = "ANY")") normal rowSums and rowMeans method
list("signature(x = "magpie")") classical method prepared to handle MAgPIE objects
setItems

Description

Set items of a given (sub-)dimension of a MAgPIE-object

Usage

setItems(x, dim, value, maindim = NULL)

Arguments

x
MAgPIE object

dim
Dimension for which the items should be returned. Either number or name of dimension or a vector of these. See dimCode for more details.

value
a vector with the length of the main dimension the dimnames should be replaced in / added to. If set to NULL the corresponding dimension will be removed.

maindim
main dimension the data should be added to (does not need to be set if dim exists in the data. Should be set if dim might not exist, or if dim might potentially exist in a different main dimension than the one anticipated).

Value

the manipulated MAgPIE object

Author(s)

Jan Philipp Dietrich

See Also

getItems

Examples

x <- maxample("pop")
setItems(x, "i", paste0("REG",1:ncells(x)))
**setNames-methods**

*Get dataset names*

**Description**

Extracts dataset names of a MAgPIE-object

**Usage**

```r
S4 method for signature 'magpie'
setNames(object = nm, nm)
```

**Arguments**

- `object`: MAgPIE object
- `nm`: a vector of names current names should be replaced with. If only one data element exists you can also set the name to NULL.

**Details**

setNames is a shortcut to use a MAgPIE object with manipulated data names. The setNames method uses the variable names "object" and "nm" in order to be consistent to the already existing function setNames.

**Methods**

- `list("signature(object = "ANY")")` normal setNames method
- `list("signature(object = ""magpie"")")` setNames for MAgPIE objects

**See Also**

`getNames`,

**set_magpie_units**

*set_magpie_units (experimental!)*

**Description**

A pipe-friendly version of units<-magpie. Extension of set_units from the units package to MAgPIE objects.

**Usage**

```r
set_magpie_units(x, value, manual_overwrite = FALSE)
```
Arguments

x MAgPIE object
value object of class units, a character of length one coercible to units via as_units, or a MAgPIE object
manual_overwrite boolean indicating whether to coerce the object into the provided unit. If FALSE (default), value must be convertible from x’s original unit (or else an error will be thrown), and the data in x will be converted to the new unit if possible. If TRUE, value will replace the existing unit without altering the data.

Value

MAgPIE object x converted to given unit (if possible)

Author(s)

Stephen Bi

See Also

set_units

Description

Calculates expected magclass object length and checks that it stays below the limit defined with magclass_sizeLimit. This is useful to prevent out of memory errors in case of unwanted object expansions Ignored if getOption("magclass_sizeLimit") is negative.

Usage

sizeCheck(dim, newnames = NULL)

Arguments

dim dimensions of the current object as returned by function dim
newnames a list of new dimensions to be added to the object

Author(s)

Jan Philipp Dietrich
Examples

```r
pop <- maxample("pop")
magclass:::sizeCheck(dim(pop), dimnames(pop))
```

Description

Function to extrapolate missing years in MAgPIE objects.

Usage

```r
time_interpolate(
 dataset, # An MAgPIE object
 interpolated_year, # Vector of years, of which values are required. Can be in the formats 1999 or y1999.
 integrate_interpolated_years = FALSE, # FALSE returns only the dataset of the interpolated year, TRUE returns the whole dataset, including all years of data and the interpolated year
 extrapolation_type = "linear" # Determines what happens if extrapolation is required, i.e. if a requested year lies outside the range of years in dataset. Specify "linear" for a linear extrapolation. "constant" uses the value from dataset closest in time to the requested year.
)
```

Arguments

- `dataset`: An MAgPIE object
- `interpolated_year`: Vector of years, of which values are required. Can be in the formats 1999 or y1999.
- `integrate_interpolated_years`: FALSE returns only the dataset of the interpolated year, TRUE returns the whole dataset, including all years of data and the interpolated year
- `extrapolation_type`: Determines what happens if extrapolation is required, i.e. if a requested year lies outside the range of years in dataset. Specify "linear" for a linear extrapolation. "constant" uses the value from dataset closest in time to the requested year.

Value

Uses linear extrapolation to estimate the values of the interpolated year, using the values of the two surrounding years. If the value is before or after the years in data, the two closest neighbours are used for extrapolation.

Author(s)

Benjamin Bodirsky, Jan Philipp Dietrich
See Also

lin.convergence

Examples

pop <- maxample("pop")
time_interpolate(pop,"y2000",integrate=TRUE)
time_interpolate(pop,c("y1980","y2000"),integrate=TRUE,extrapolation_type="constant")

Description

units method for MAgPIE objects to update the unit of the object

Usage

## S3 replacement method for class 'magpie'
units(x) <- value

Arguments

x MAgPIE object
value object of class units or character of length one coercible to class units via as_units

Value

MAgPIE object converted to given unit (if possible)

Author(s)

Jan Philipp Dietrich, Stephen Bi

See Also

units
unwrap

Description
Reconstruct the full dimensionality of a MAgPIE object

Usage
unwrap(x, sep = ".")

Arguments
- x: A MAgPIE object
- sep: A character separating joined dimension names

Value
An array with the full dimensionality of the original data

Author(s)
Jan Philipp Dietrich

See Also
wrap, fulldim

Examples

```r
da <- as.magpie(array(1:6,c(3,2),list(c("bla","blub","ble"),c("up","down"))))
fulldim(a)
unwrap(a)
```

updateMetadata

Description
This function is currently experimental and non-functional by default! To activate it, set withMetadata(TRUE), otherwise it will not return or modify any metadata!
Usage

updateMetadata(
    x,
    y = NULL,
    unit = ifelse(is.null(y), "keep", "update"),
    source = ifelse(is.null(y), "keep", "merge"),
    calcHistory = ifelse(is.null(y), "keep", "merge"),
    user = "update",
    date = "update",
    description = ifelse(is.null(y), "keep", "merge"),
    note = ifelse(is.null(y), "keep", "merge"),
    version = ifelse(is.null(y), "keep", "merge"),
    n = 1,
    ch_priority = 2
)

Arguments

x       MAgPIE object to be updated
y       MAgPIE object to copy Metadata from (optional)
unit    An object of type units indicating the units of measure of the MAgPIE data. Possible arguments are: - "keep": maintains the unit field in x - "copy": copies the unit field of y to x - "clear": deletes the unit field from x - "update": if units of x do not match units of y, sets units to "mixed". Else, copies units of y to x. - string or vector specifying new units for x The default argument is "keep" if no y argument is provided, or "update" if y is provided.
source  An object of class Bibtex (or a list of Bibtex objects) indicating the source(s) of the input data in BibTeX style. Possible arguments are "keep", "clear", "copy" (which overwrites the source(s) of x with the source(s) of y), "merge" (which combines the sources of x and y in a list), or a new source can be entered here as a Bibtex object. By default, "keep" if no y argument, or "merge" if y is provided.
calcHistory A tree-like object of class Node indicating the functions through which x has passed. Possible arguments are "keep", "copy", "clear", "merge" (which combines the history trees of 2 or more objects), and "update" (which adds the function presently calling updateMetadata (or a function further upstream if specified by n) to calcHistory and also merges if y is provided). A node object can also be provided which will overwrite any existing value. Finally, if a character of length one is provided, the behavior will be like "update" using the string as the new root node. By default, "keep" if no y argument, or "merge" if y is provided.
user    A string indicating the user who last modified the MAgPIE object. Possible arguments are "keep", "copy", "update" (which retrieves the username currently logged into the system), or a character string which specifies a new user. "update" by default.
date    A character indicating the MAgPIE object's last modified date. Possible arguments are "keep", "copy", and "update" (which sets the date of x to the current time). "update" by default.
updateMetadata

description A string or list of strings containing a description of the dataset. Possible arguments are "keep", "copy", "merge", "clear", or a new description can be defined here by a character string. By default, "keep" if no y argument, or "copy" if y is provided.

note A string or list of strings for attaching notes (e.g. instructions, warnings, etc.) to the data. Possible arguments are "keep", "copy", "merge", "clear", or a new note can be entered here as a character string. By default, "keep" if no y argument, or "copy" if y is provided.

version A named vector containing the name(s) and version number(s) of the software used. Possible arguments are "keep" (default), "copy", "merge", "clear", or a character vector (package names and numbers can be provided as a named vector, in concatenated strings with a space separating name & number, or in a single string with a ';' separating each package).

n If calcHistory is to be updated, this integer indicates how many frames ahead in the stack to find the function to append to the the object's calcHistory. n=1 by default.

cH_priority Integer to set the significance of the function call with respect to calcHistory tracking (lower = more significant). To be compared against the "calcHistory_verbosity" global option (user can set this via withMetadata).

Details

This function is to be used by other functions to update metadata for magclass objects

When an operation is performed on a MAgPIE dataset, updateMetadata can be used to copy Metadata entries to the new MAgPIE object or update the Metadata fields appropriately. fields of "unit", "source", "date", "user" and "calcHistory", contained in a list.

The "source" component should include all information about the source(s) where the data was originally reported. Specifically, the authors, publication date, article title, journal

Value

updateMetadata returns the magpie object x with metadata modified as desired.

Author(s)

Stephen Bi

See Also

getComment, getMetadata, getNames, getYears, getCPR, read.magpie, write.magpie, "magpie"
where

Description
Analysis function for magpie objects

Usage
where(x, plot = NULL)

Arguments
x A logical statement with a magpie object
plot depreciated. Use the function whereplot in package luplot.

Value
A list of analysis parameters

Author(s)
Benjamin Leon Bodirsky

See Also
whereplot in package luplot

Examples

test <- maxample("pop")
dimnames(test)[[1]]<-c("AFG", "DEU", "FRA", "EGY", "IND", "IDN", "RUS", "CHN", "USA", "YEM")
where(test>500)

withMetadata

Description
Convenience function to (de-)activate metadata handling in magpie objects and to return current setting

Usage
withMetadata(set = NULL, verbosity = NULL)
Arguments

set boolean to switch metadata on/off or NULL to leave the option as is.

verbosity Integer to set the verbosity level of calcHistory tracking. 0 = no calcHistory tracking, 1 = only the core functions are tracked (e.g. calcOutput, readSource), 2 (default) = most magclass functions and toolAggregate are also tracked, 3 = virtually all functions are tracked.

Value

boolean indicating the current metadata setting (switched on or off)

Author(s)

Jan Philipp Dietrich

See Also

getMetadata

Examples

## Not run:
withMetadata()
withMetadata(TRUE)
a <- as.magpie(1)
getMetadata(a)
withMetadata(FALSE)

## End(Not run)

wrap

Wrap

Description

Reshape an array or a matrix by permuting and/or joining dimensions.

Usage

wrap(x, map = list(NA), sep = ".")
Arguments

x An array

map A list of length equal to the number of dimensions in the reshaped array. Each element should be an integer vector specifying the dimensions to be joined in corresponding new dimension. One element may equal NA to indicate that that dimension should be a join of all non-specified (remaining) dimensions. Default is to wrap everything into a vector.

sep A character separating joined dimension names

Note
This function is extracted from the R.utils library which is licensed under LGPL>=2.1 and written by Henrik Bengtsson.

Author(s)
Henrik Bengtsson, Jan Philipp Dietrich

See Also
unwrap.fulldim

write.magpie Write MAgPIE-object to file

Description
Writes a MAgPIE-3D-array (cells, years, datacolumn) to a file in one of three MAgPIE formats (standard, "magpie", "magpie zipped")

Usage

write.magpie(  
x,  
file_name,  
file_folder = "",  
file_type = NULL,  
append = FALSE,  
comment = NULL,  
comment.char = "*",  
metadata.char = "~",  
mode = NULL,  
nc_compression = 9,  
verbose = TRUE,  
...  
)
Arguments

x MAgPIE-object

file_name file name including file ending (wildcards are supported). Optionally also the full path can be specified here (instead of splitting it to file\_name and file\_folder)

file_folder folder the file should be written to (alternatively you can also specify the full path in file\_name - wildcards are supported)

file_type Format the data should be stored as. Currently 13 formats are available: "rds" (default R-data format), "cs2" (cellular standard MAgPIE format), "cs2b" (cellular standard MAgPIE format with suppressed header ndata=1), "csv" (regional standard MAgPIE format), "cs3" (Format for multidimensional MAgPIE data, compatible to GAMS), "cs4" (alternative multidimensional format compatible to GAMS, in contrast to cs3 it can also handle sparse data), "csvr", "cs2r", "cs3r" and "cs4r" which are the same formats as the previous mentioned ones with the only difference that they have a REMIND compatible format, "m" (binary MAgPIE format "magpie"), "mz" (compressed binary MAgPIE format "magpie zipped"), "asc" (ASCII grid format / only available for 0.5deg data) and "nc" (netCDF format / only available for 0.5deg data). If file\_type=NULL the file ending of the file\_name is used as format. If format is different to the formats mentioned standard MAgPIE format is assumed. Please be aware that the file\_name is independent of the file\_type you choose here, so no additional file ending will be added!

append Decides whether an existing file should be overwritten (FALSE) or the data should be added to it (TRUE). Append = TRUE only works if the existing data can be combined with the new data using the mbind function

comment Vector of strings: Optional comment giving additional information about the data. If different to NULL this will overwrite the content of attr(x,"comment")

comment.char character: a character vector of length one containing a single character or an empty string. Use "" to turn off the interpretation of comments altogether.

metadata.char character: a character vector of length one containing a single character or an empty string.

mode File permissions the file should be written with as 3-digit number (e.g. "777" means full access for user, group and all, "750" means full access for user, read access for group and no access for anybody else). Set to NULL system defaults will be used. Access codes are identical to the codes used in unix function chmod.

nc_compression Only used if file\_type=nc". Sets the compression level for netCDF files (default is 9). If set to an integer between 1 (least compression) and 9 (most compression), the netCDF file is written in netCDF version 4 format. If set to NA, the netCDF file is written in netCDF version 3 format.

verbose Boolean deciding about whether function should be verbose or not

... arguments to be passed to write.magpie.ncdf

Details

This function can write 13 different MAgPIE file\_types. "cs2" is the new standard format for cellular data with or without header and the first columns (year,regiospatial) or only (regiospatial),
"cs2b" is identical to "cs2" except that it will suppress the data name if it has only 1 element in the data dimension. "csv" is the standard format for regional data with or without header and the first columns (year,region,cellnumber) or only (region,cellnumber). "cs3" is another csv format which is specifically designed for multidimensional data for usage in GAMS. All these variants are written without further specification. "rds" is a R-default format for storing R objects. "magpie" (.m) and "magpie zipped" (.mz) are new formats developed to allow a less storage intensive management of MAgPIE-data. The only difference between both formats is that .mz is gzipped whereas .m is not compressed. So .mz needs less memory, whereas .m might have a higher compatibility to other languages. "asc" is the ASCII grid format. "nc" is the netCDF format. It can only be applied for half degree data and writes one file per year per data column. In the case that more than one year and data column is supplied several files are written with the structure filename_year_datacolumn.asc

**Note**

The binary MAgPIE formats .m and .mz have the following content/structure (you only have to care for that if you want to implement read.magpie/write.magpie functions in other languages):

[ FileFormatVersion | Current file format version number (currently 6) | integer | 2 Byte ]
[ nchar_comment | Number of character bytes of the file comment | integer | 4 Byte ]
[ nbyte_metadata | Number of bytes of the serialized metadata | integer | 4 Byte ]
[ nchar_sets | Number of characters bytes of all regionnames + 2 delimiter | integer | 2 Byte ]
[ nyears | Number of years | integer | 2 Byte ]
[ year_list | All years of the dataset (0, if year is not present) | integer | 2*nyears Byte ]
[ ncells | Number of cells | integer | 4 Byte ]
[ nchar_cell | Number of characters bytes of all regionnames + (nreg-1) for delimiters | integer | 4 Byte ]
[ cells | Cell names saved as cell1\cell2 (\n is the delimiter) | character | 1*nchar_cell Byte ]
[ nelem | Total number of data elements | integer | 4 Byte ]
[ nchar_data | Number of char. bytes of all datanames + (ndata - 1) for delimiters | integer | 4 Byte ]
[ datanames | Names saved in the format data1\ndata2 (\n as del.) | character | 1*nchar_data Byte ]
[ data | Data of the MAgPIE array in vectorized form | numeric | 4*nelem Byte ]
[ comment | Comment with additional information about the data | character | 1*nchar_comment Byte ]
[ sets | Set names with \n as delimiter | character | 1*nchar_sets Byte ]
[ metadata | serialized metadata information | bytes | 1*nbyte_metadata Byte ]

**Author(s)**

Jan Philipp Dietrich, Stephen Bi

**See Also**

"magpie", read.magpie.mbind.write.magpie.ncdf

**Examples**

```r
a <- read.magpie("lpj_yield_ir.csv")
write.magpie(a,"lpj_yield_ir.mz")
```
write.magpie.ncdf

Description

Writes Magpie object into netcdf4 file.

Usage

write.magpie.ncdf(
  x,
  file,
  nc_compression = 9,
  var_style = "fullname",
  comment = NULL,
  verbose = TRUE
)

Arguments

  x  MAgPIE object. Has to be on half degree resolution. If x as comments in attr, they are plotted as global attributes.
  file  file path as provided in write.magpie
  nc_compression  Only used if filetype="nc". Sets the compression level for netCDF files (default is 9). If set to an integer between 1 (least compression) and 9 (most compression), the netCDF file is written in netCDF version 4 format. If set to NA, the netCDF file is written in netCDF version 3 format.
  var_style  change between variable naming in nc-file; "fullname" for ungrouped name, "grouped" for variable names divided into sub-groups
  comment  Vector of comments (also used for setting the unit). Comments are set as global attributes in the netcdf file. Format of comments: "indicator: comment" (e.g. "unit: Share of land area per grid cell")
  verbose  Boolean deciding about whether function should be verbose or not

Value

netcdf file. Writes one file per year per data column. In the case that more than one year and data column is supplied several files are written with the structure filename_year_datacolumn.asc. In the case several data dimensions exist, they are saved as subcategories.

Author(s)

Jan Philipp Dietrich, Florian Humpenoeder, Benjamin Leon Bodirsky, Stephen Bi, Kristine Karstens
See Also

write.magpie

write.report

Write file in report format

Description

This function writes the content of a MAgPIE object into a file or returns it directly using the reporting format as it is used for many model intercomparisons.

Usage

write.report(
  x,
  file = NULL,
  model = "MAgPIE",
  scenario = "default",
  unit = NA,
  ndigit = 4,
  append = FALSE,
  skipempty = TRUE
)

Arguments

x MAgPIE object or a list of lists with MAgPIE objects as created by read.report. In the latter case settings for model and scenario are overwritten by the information given in the list.

file file name the object should be written to. If NULL the formatted content is returned

model Name of the model which calculated the results

scenario The scenario which was used to get that results.

unit Unit of the data. Only relevant if unit is not already supplied in Dimnames (format "name (unit)"). Can be either a single string or a vector of strings with a length equal to the number of different data elements in the MAgPIE object

ndigit Number of digits the output should have

append Logical which decides whether data should be added to an existing file or an existing file should be overwritten

skipempty Determines whether empty entries (all data NA) should be written to file or not.

Author(s)

Jan Philipp Dietrich
write.report2

See Also

read.report

Examples

## Not run:
pop <- maxample("pop")
write.report(pop)

## End(Not run)

write.report2 Write file in report format

Description

This function writes the content of a MAgPIE object into a file or returns it directly using the reporting format as it is used for many model intercomparisons. It is a rewritten version of write.report and will probably replace write.report somewhen in the future.

Usage

write.report2(
  x,
  file = NULL,
  model = NULL,
  scenario = NULL,
  unit = NULL,
  ndigit = 4,
  append = FALSE,
  skipempty = TRUE,
  extracols = NULL
)

Arguments

x MAgPIE object or a list of lists with MAgPIE objects as created by read.report. In the latter case settings for model and scenario are overwritten by the information given in the list.

file file name the object should be written to. If NULL the formatted content is returned

model Name of the model which calculated the results

scenario The scenario which was used to get that results.
unit  Unit of the data. Only relevant if unit is not already supplied in Dimnames (format "name (unit)"). Can be either a single string or a vector of strings with a length equal to the number of different data elements in the MAgPIE object.

ndigit  Number of digits the output should have.

append  Logical which decides whether data should be added to an existing file or an existing file should be overwritten.

skipempty  Determines whether empty entries (all data NA) should be written to file or not.

extracols  names of dimensions which should appear in the output as additional columns.

Author(s)

Jan Philipp Dietrich

See Also

read.report

Examples

write.report2(maxample("pop"))
Index

* ~~
  colSums-methods, 13
  rowSums-methods, 71

* classes
  magpie-class, 47

* keyword(s)
  colSums-methods, 13
  rowSums-methods, 71

* methods
  as.array-methods, 7
  as.data.frame-methods, 7
  colSums-methods, 13
  rowSums-methods, 71
  setNames-methods, 73

* other
  colSums-methods, 13
  rowSums-methods, 71

* possible
  colSums-methods, 13
  rowSums-methods, 71
  [, magpie, ANY, ANY-method (magpie-class), 47
  [, magpie-method (magpie-class), 47
  [<=], magpie, ANY, ANY-method
    (magpie-class), 47
  [<=], magpie-method (magpie-class), 47
  as.array, ANY-method (as.array-methods), 7
  as.array, magpie-method
    (as.array-methods), 7
  as.array-methods, 7
  as.data.frame (as.data.frame-methods), 7
  as.data.frame, ANY-method
    (as.data.frame-methods), 7
  as.data.frame, magpie-method
    (as.data.frame-methods), 7
  as.data.frame-methods, 7
  as.data.frame, ANY-method
    (as.data.frame-methods), 7
  as.data.frame-methods, 7

  colMeans, ANY-method (colSums-methods), 13
  colMeans, magpie-method
    (colSums-methods), 13
  colMeans-methods (colSums-methods), 13
  colSums, ANY-method (colSums-methods), 13
  colSums, magpie-method
    (colSums-methods), 13
  colSums-methods, 13
  complete_magpie, 14

  as.data.frame-methods, 7
  as.magpie, 25, 52, 53, 60
  as.magpie (magpie-class), 47
  as.magpie, array-method (magpie-class), 47
  as.magpie, data.frame-method
    (magpie-class), 47
  as.magpie, lpj-method (magpie-class), 47
  as.magpie, magpie-method (magpie-class), 47
  as.magpie, NULL-method (magpie-class), 47
  as.magpie, numeric-method
    (magpie-class), 47
  as.magpie, quitte-method (magpie-class), 47
  as.magpie, RasterBrick-method
    (magpie-class), 47
  as.magpie, RasterLayer-method
    (magpie-class), 47
  as.magpie, RasterStack-method
    (magpie-class), 47
  as.magpie, tbl_df-method
    (magpie-class), 47
  as.magpie, RasterBrick, 8, 28
  calibrate_it, 9
  clean_magpie, 10, 14
  collapseDim, 11, 12, 13
  collapseNames, 11, 12, 58
  colMeans, ANY-method (colSums-methods), 13
  colMeans, magpie-method
    (colSums-methods), 13
  colMeans-methods (colSums-methods), 13
  colSums, ANY-method (colSums-methods), 13
  colSums, magpie-method
    (colSums-methods), 13
  colSums-methods, 13
  complete_magpie, 14
INDEX

convergence, 10, 15
convert.report, 16
copy.attributes, 17
copy.attributes<- (copy.attributes), 17
copy.magpie, 19
dimCode, 11, 19, 21, 23, 30, 31, 72
dimExists, 20
dimOrder, 21
dimReduce, 22
dimSums, 23, 23
ecapeRegex, 24
fulldim, 25, 77, 82
getCells, 26
getCells<- (getCells), 26
getComment, 27, 33, 79
getComment<- (getComment), 27
getCoords, 8, 28, 39, 40
getCoords<- (getCoords), 28
getCPR, 26, 27, 29, 33–38, 48, 79
getDim, 20, 30
getItems, 12, 13, 28, 31, 72
getItems<- (getItems), 31
getMetadata, 32, 79, 81
getMetadata<- (getMetadata), 32
getNames, 26, 27, 33, 33, 35–38, 48, 73, 79
getNames<- (getNames), 33
getRegionList, 35, 36
getRegionList<- (getRegionList), 35
getRegions, 26, 27, 29, 33–35, 36, 37, 38, 48
getRegions<- (getRegions), 36
getSets, 37, 60
getSets<- (getSets), 37
getYears, 27, 33–37, 38, 48, 79
ggetYears<- (getYears), 38
grep, 24
hasCoords, 39
hasSets, 40
head, 41
head.magpie, 40
install_conversion_constant, 42
install_magpie_units, 41
install_symbolic_unit, 42
is.magpie (magpie-class), 47
is.spatial (is.temporal), 42
is.spatial (is.temporal), 42
is_unit_installed, 44
isYear, 43
lin.convergence, 10, 16, 44, 45, 76
lowpass, 46
magclass (magclass-package), 4
magclass-package, 4
magclassdata, 17, 47
magpie-class, 47
magpie_expand, 51, 53
magpie_expand_dim, 53
magpieComp, 49
magpieResolution, 50
mappiesort, 51
magapply, 54
maxample, 50, 55
mbind, 5, 55, 62, 84
mbind2 (mbind), 55
mcalc, 30, 56
mcalc<- (mcalc), 56
mselect, 20, 57, 57
mselect<- (mselect), 57
ncells, 48, 58
ndata, 34, 48
ndata (ncells), 58
new.magpie, 60
nregions (ncells), 58
nyears, 48
nyears (ncells), 58
old_dim_convention, 61
Ops, magpie, magpie-method (magpie-class), 47
Ops, magpie, numeric-method (magpie-class), 47
Ops, numeric, magpie-method (magpie-class), 47
options, 52, 53
place_x_in_y, 62
population_magpie, 63
print, 64
print.magpie, 63
read_lpjml_nc, 64
INDEX

read.magpie, 19, 26, 27, 29, 33–38, 48, 65, 67, 79, 84
read.report, 17, 67, 87, 88
remind2maggie, 69
replace_non_finite, 70
round, magpie-method (round-methods), 70
round-methods, 70
rowMeans, ANY-method (rowSums-methods), 71
rowMeans, magpie-method
  (rowSums-methods), 71
rowMeans-methods (rowSums-methods), 71
rowSums, 23
rowSums, ANY-method (rowSums-methods), 71
rowSums, magpie-method
  (rowSums-methods), 71
rowSums-methods, 71
set_magpie_units, 73
set_units, 74
setCells (getCell), 26
setComment (getComment), 27
setItems, 72
setNames, 26, 38
setNames (setNames-methods), 73
setNames, magpie-method
  (setNames-methods), 73
setNames, NULL-method
  (setNames-methods), 73
setNames-methods, 73
setYears (getYears), 38
sizeCheck, 74
tail, 41
tail.magpie (head.magpie), 40
time_interpolate, 75
ud.are.convertible, 6
units, 76
units.magpie, 42
units.magpie (units<-.magpie), 76
units<-.magpie, 76
unwrap, 25, 77, 82
updateMetadata, 77
where, 80
withMetadata, 80
wrap, 25, 77, 81
write.magpie, 19, 26, 27, 29, 33–38, 48, 67, 79, 82, 86
write.magpie.ncdf, 84, 85
write.report, 17, 69, 86
write.report2, 87