Package ‘malani’

September 26, 2016

Type Package
Title Machine Learning Assisted Network Inference
Version 1.0
Author Mehrab Ghanat Bari
Maintainer Mehrab Ghanat Bari <m.ghanatbari@gmail.com>
Description Find dark genes. These genes are often disregarded due to no detected mutation or differential expression, but are important in coordinating the functionality in cancer networks.
License GPL-3
LazyData TRUE
Depends e1071, stats
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-09-26 23:44:53

R topics documented:

dat ... 2
grp ... 2
Gsvmod .. 2
intGenes ... 3
malanidata ... 4
pairmod ... 4

Index 5
dat
A matrix of expression values.

Description

A numeric matrix 100*20.

Usage

dat

Format

matrix.

grp
A vector of class labels for dat.

Description

Vector length of 20.

Usage

grp

Format

vector

Gsvmod
G SVM models.

Description

Returns accuracy performance of all genes. G support vector machine (SVM) classifiers trained using G different data matrixes, are used to predict labels in test data. Models are ranked based on prediction performances.

Usage

Gsvmod(dat.train, lab.train, dat.test, lab.test)
Arguments

- `dat.train`: Train data with G features and \((k-1)\times S/k\) samples. Parameter \(k\) comes from cross-validation scheme and is specified by user (default is 2).
- `lab.train`: Class labels for train data.
- `dat.test`: Test data with G features and \(S/k\) samples.
- `lab.test`: Class labels for test data.

Value

Accuracy scores for models. Each model represents one gene.

intGenes

Select initial gene list from original data matrix.

Description

Train G-1 SVM models in \(k\)-fold cross validation scheme to select initial genes list.

Usage

```r
intGenes(dat, grp, nfolds.out = 2, top.per = 0.05)
```

Arguments

- `dat`: Original gene expression data matrix with G rows (number of genes) and S column (number of samples).
- `grp`: Class labels.
- `nfolds.out`: Outer cross validation number (default is 2).
- `top.per`: All genes are ranked based on their models performance and `top.per`% of them are selected as initial genes.

Value

Selected initial genes.

Examples

```r
data(malanidata)
int <- intGenes(dat,grp)
print(int$top.genes)
```
malanidata

Dataset for malani package

Description

A numeric matrix $G*S$ contains gene expressions data. G are the genes (rows) and S are the samples (columns).

Usage

malanidata

Format

A matrix of numeric values, 100 genes, 20 samples and class labels.

Examples

data(malanidata)

pairmod

Find best performing pairs

Description

Combine each gene in initial set with all genes in the original set. Top $npair$ pairs are selected to construct the Q matrix.

Usage

pairmod(X, L, theta, npair = 10)

Arguments

- **X**: Original gene expression data matrix. With G rows (number of genes) and S column (number of samples).
- **L**: Class labels.
- **theta**: Initial gene set.
- **npair**: Given a gene in initial set, top $npair$ best performing pairs correspond to that gene are selected (Default is 10).

Value

Best ($npair*G/20$) performing pairs.
Index

*Topic datasets
 dat, 2
 grp, 2
 malanidata, 4

 dat, 2, 2

 grp, 2
 Gsvmmod, 2

 intGenes, 3
 malanidata, 4
 pairmod, 4