Package ‘mand’

October 13, 2022

Type Package
Title Multivariate Analysis for Neuroimaging Data
Version 1.1
Date 2022-05-24
Maintainer Atsushi Kawaguchi <kawa_a24@yahoo.co.jp>
Depends R (>= 3.5), msma
Imports oro.nifti, oro.dicom, imager, caret
Description Several functions can be used to analyze neuroimaging data using multivariate methods based on the ‘msma’ package. The functions used in the book entitled "Multivariate Analysis for Neuroimaging Data" (2021, ISBN-13: 978-0367255329) are contained.
License GPL (>= 2)
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.2.0
NeedsCompilation no
Author Atsushi Kawaguchi [aut, cre]
Repository CRAN
Date/Publication 2022-05-24 10:50:02 UTC

R topics documented:

mand-package .......................................................... 2
atlas ................................................................. 2
atlasdatasets ....................................................... 3
atlastable .......................................................... 3
baseimg ............................................................ 4
basisprod ........................................................... 4
ccoat ............................................................... 5
diffimg ............................................................ 7
exbrain ............................................................. 7
imgdatamat ......................................................... 8
Description

A Package for implementation of multivariate data analysis for neuroimaging data.

Author(s)

Atsushi Kawaguchi. <kawa_a24@yahoo.co.jp>

References


Description

The data is the atlas image data. An image whose element is "ROId" is stored for each atlas.

Usage

data(atlas)

Format

A list of array
atlasdatasets

<table>
<thead>
<tr>
<th>atlasdatasets</th>
<th>Atlas data set</th>
</tr>
</thead>
</table>

Description

The data is the atlas data. Various atlases are stored. Each matrix has "ROIid" and "ROIname" as column names.

Usage

data(atlasdatasets)

Format

A list of matrix

atlastable

Result report with atlas data

Description

This function refers to the results obtained by the analysis in an atlas image, and reports a summary of the results for each anatomical region.

Usage

atlastable(x, y, atlasdataset = NULL, ROIids = NULL, ...)

### S3 method for class 'atlastable'
print(x, ...)

Arguments

- x: an array for the atlas image.
- y: an array for the result image.
- atlasdataset: a matrix or data.frame. The colnames should include "ROIid" and "ROIname".
- ROIids: a vector indicating ROI id shown in the result.
- ...: further arguments passed to or from other methods.

Details

atlastable requires the atlas image and data frame including the ROI id and the name.
Examples

data(diffimg)
data(atlasdatasets)
data(atlas)
atlasname = "aal"
atlasdataset = atlasdatasets[[atlasname]]
tmpatlas = atlas[[atlasname]]
atlastable(tmpatlas, diffimg, atlasdataset=atlasdataset, ROIids = c(1:2, 37:40))

---

**baseimg**  
*Base Brain Data*

Description

The data is the base brain data. This is an average image of a healthy person, and is used when generating artificial data.

Usage

data(baseimg)

Format

A array

---

**basisprod**  
*Product Radial Basis Function*

Description

This is a function to product the output for the rbfunc function with data matrix for a dimension reduction.

Usage

basisprod(A, B)

Arguments

A a list or a matrix correponding to the output for the rbfunc function with the argument hispec=FALSE or data matrix, respectivey.

B a list or a matrix.

Details

basisprod requires one list and one matrix.
Examples

```r
imagedim1 = c(10, 10, 10)

B1 = rbfunc(imagedim=imagedim1, seppix=4, hispec=TRUE)
B2 = rbfunc(imagedim=imagedim1, seppix=4, hispec=FALSE)

n = 50
S = matrix(rnorm(n*prod(imagedim1)), nrow = n, ncol = prod(imagedim1))

SB1 = S %*% B1
SB12 = tcrossprod(S, t(B1))
all(SB1-SB12 == 0)

SB2 = basisprod(S, B2)
all(SB1-SB2 == 0)

BS1 = t(B1) %*% t(S)
BS2 = basisprod(B2, S)
all(BS1-t(BS2) == 0)
```

coat

<table>
<thead>
<tr>
<th>Coat Function</th>
</tr>
</thead>
</table>

Description

This is a function for plotting an image. The analysis result can be overcoated on the template.

Usage

ccoat(
x,
y = NULL,
pseq = NULL,
xyz = NULL,
col.x = gray(0:64/64),
col.y = NULL,
breaks.y = NULL,
zlim.x = NULL,
zlim.y = NULL,
rownum = 5,
colnum = NULL,
plane = c("axial", "coronal", "sagittal", "all")[1],
xlab = "",
ylab = "",
axes = FALSE,
oma = rep(0, 4),
mar = rep(0, 4),
bg = "black",
paron = TRUE,
cross.hair = FALSE,
chxy = NULL,
color.bar = TRUE,
regionplot = FALSE,
atlasdataset = NULL,
regionname = c("atlas", "stat")[1],
regionlegend = FALSE,
atlasname = "",
ROIids = 1:9,
...
)

Arguments

  x  image1. Base image.
  y  image2 to be overcoated.
  pseq  a vector plot sequence.
  xyz  a vector position to be plotted.
  col.x  a color vector for image1.
  col.y  a color vector for image2.
  breaks.y  a vector breaks value for y.
  zlim.x  a vector plot limitation values for z of x.
  zlim.y  a vector plot limitation values for z of y.
  rownum  a numeric, the number of row for the plot.
  colnum  a numeric, the number of colnum for the plot.
  plane  a vector plot sequence.
  xlab  a character for a label in the x axis.
  ylab  a character for a label in the y axis.
  axes  a logical. TRUE presents the axes.
  oma  a vector for outer margin area.
  mar  a vector for margin.
  bg  a character for color of background.
  paron  a logical. TRUE means par is used.
  cross.hair  a logical.
  chxy  a vector cross hair position to be plotted.
  color.bar  a logical.
  regionplot  a logical.
  atlasdataset  a matrix or data.frame. colnames should include "ROIid" and "ROIname".
diffimg

regionname
regionlegend
atlasname
ROIs

Details

coat requires a image array.

Examples

data(exbrain)
coat(exbrain)

---

diffimg

**Difference Brain Data**

Description

The data is the difference brain data. This represents the difference between the average images of healthy subjects and patients with Alzheimer’s disease, and is used when generating artificial data.

Usage

data(diffimg)

Format

A array

---

exbrain

**Example Brain Data**

Description

The data are from a MRI gray matter brain data for one subject.

Usage

data(exbrain)

Format

A array
**imgdatamat**  
*Create Data Matrix Function*

**Description**

This is a function that creates a data matrix for analysis from a file saved in image format.

**Usage**

```r
imgdatamat(
  imgfnames,
  mask = NULL,
  ROI = FALSE,
  atlas = NULL,
  atlasdataset = NULL,
  ROIids = NULL,
  zeromask = FALSE,
  schange = FALSE,
  ...
)
```

**Arguments**

- `imgfnames`: a vector for (nifti) file names to be used.
- `mask`: a vector for brain mask data.
- `ROI`: a logical for roi data set.
- `atlas`: an array for the atlas.
- `atlasdataset`: a matrix or data.frame. colnames shold include "ROIid" and "ROIname".
- `ROIids`: a vector
- `zeromask`: a logical for masking voxel with all zeros.
- `schange`: a logical for change dimension.
- `...`: further arguments passed to or from other methods.

**Details**

`imgdatamat` requires image file names.

**Value**

- `S`: data matrix
- `brainpos`: binary brain position.
- `imagedim`: three dimensional vector for image dimension
Examples

```r
# imgfnames1 = c("img1.nii", "img2.nii")
# imgdata = imgdatamat(imgfnames1)
```

---

**mask**

**Brain Mask**

---

**Description**

The data is the brain mask. This is used to exclude extra-brain regions from the analysis.

**Usage**

```r
data(mask)
```

**Format**

A array

---

**multicomppplot**

**Multi components plot**

---

**Description**

This is a function that plots the vectorized image returned to its original dimensions by the multirec function.

**Usage**

```r
multicomppplot(
    object,
    x,
    comps = NULL,
    row4comp = 6,
    col4comp = 1,
    pseq4comp = NULL,
    ...
)
```
Arguments

object: an object of class "multirec." Usually, a result of a call to multirec
x: template image
comps: a component sequence to be plotted.
row4comp: the number of rows per a component
col4comp: the number of columns per a component
pseq4comp: the number of images per a component
... further arguments passed to or from other methods.

Details

multicompplot requires the output result of msma function.

Examples

data(baseimg)
data(diffimg)
data(mask)
data(template)
img1 = simbrain(baseimg = baseimg, diffimg = diffimg, mask=mask)
B1 = rbffunc(imagedim=img1$imagedim, seppix=2, hispec=FALSE, mask=img1$brainpos)
SB1 = basisprod(img1$S, B1)
fit111 = msma(SB1, comp=2)
ws = multirec(fit111, imagedim=img1$imagedim, B=B1, mask=img1$brainpos)
multicompplot(ws, template)

multirec 

Multi components reconstruction

Description

This is a function that returns the weight vector of multiple components obtained by the msma function applied after dimension reduction by the radial basis function to the same dimension as the original image.

Usage

multirec(
  object,
  imagedim,
  B = NULL,
  mask = NULL,
  midx = 1,
  comps = NULL,
\[
XY = c("X", "Y", "XY")[1], 
\]

\[
\text{signflip = FALSE}
\]

\)

**Arguments**

- object: an object of class `msma`. Usually, a result of a call to `msma`
- imagedim: a vector for original dimension.
- B: a list or a matrix.
- mask: a list or a matrix.
- midx: a block number.
- comps: a component sequence to be plotted.
- XY: a character, indicating "X" or "Y". "XY" for the scatter plots using X and Y scores from `msma`.
- signflip: a logical if the sign in the block is flipped to pose the super as positive.

**Details**

`multirec` requires the output result of `msma` function.

**Examples**

```r
data(baseimg)
data(diffimg)
data(mask)
im1 = simbrain(baseimg = baseimg, diffimg = diffimg, mask=mask)
B1 = rbfunc(imagedim=img1$imagedim, seppix=2, hispec=FALSE, mask=img1$brainpos)
SB1 = basisprod(img1$S, B1)
fit111 = msma(SB1, comp=2)
ws = multirec(fit111, imagedim=img1$imagedim, B=B1, mask=img1$brainpos)
```

---

**ptest**

*Prediction Model Function*

**Description**

This is the function that creates and evaluates the predictive model.
Usage

ptest(
  object,
  Z = Z,
  newdata = NULL,
  testZ = NULL,
  regmethod = "glm",
  methods1 = c("boot", "boot632", "cv", "repeatedcv", "LOOCV", "LGOCV")[4],
  metric = "ROC",
  number1 = 10,
  repeats1 = 5,
  params = NULL
)

Arguments

object a matrix indicating the explanatory variable(s), or an object of class msma, which
is a result of a call to msma.

Z a vector, response variable(s) for the construction of the prediction model. The
length of Z is the number of subjects for the training.

newdata a matrix for the prediction.

testZ a vector, response variable(s) for the prediction evaluation. The length of testZ
is the number of subjects for the validation.

regmethod a character for the name of the prediction model. This corresponds to the method
argument of the train function in the caret package.

methods1 a character for the name of the evaluation method.

metric a character for the name of summary metric to select the optimal model.

number1 a number of folds or number of resampling iterations

repeats1 a number of repeats for the repeated cross-validation

params a data frame with possible tuning values.

Details

ptest requires the output result of msma function.

Value

object an object of class "msma", usually, a result of a call to msma

trainout a predictive model output from the train function in the caret package with scores
computed by the msma function as predictors

scorecvroc the training evaluation measure and values of the tuning parameters

evalmeasure evaluation measures and information criterion for the msma model

traincnfmat a confusion matrix in training data

predcnfmat a confusion matrix in test data
**rbfunc**

*Radial Basis Function*

**Description**

This makes a radial basis function.

**Usage**

```
rbfunc(imagedim, seppix, hispec = FALSE, mask = NULL)
```

**Arguments**

- **imagedim**: a vector indicating image three dimension.
- **seppix**: a numeric. distance between knots.
- **hispec**: a logical. TRUE produces a matrix output. FALSE produces a list output to reduce the data memory.
- **mask**: a vector.

**Details**

`rbfunc` requires the dimensions of the original image to be applied and the knot interval. The output is obtained as a matrix, with the number of rows corresponding to the number of voxels in the original image and the number of columns determined by the knot spacing. By setting `hispec = TRUE`, you can get the output in list format with a smaller memory.

**Examples**

```
imagedim1=c(10,10,10)
B1 = rbfunc(imagedim=imagedim1, seppix=4, hispec=TRUE)
B2 = rbfunc(imagedim=imagedim1, seppix=4, hispec=FALSE)
```
**rec**  
*Reconstruction*

**Description**
This is a function that restores the vectorized image to its original dimensions, reduced in dimension by the radial basis function.

**Usage**
```r
rec(Q, imagedim, B = NULL, mask = NULL)
```

**Arguments**
- `Q`: a vector for reduced data.
- `imagedim`: a vector for original dimension.
- `B`: a list or a matrix indicating the basis function used in the dimension reduction.
- `mask`: a list or a matrix indicating the mask image used in the dimension reduction.

**Details**
`rec` requires a vector to be converted to an array.

**Examples**
```r
imagedim1 = c(10, 10, 10)
recvec = rec(rnorm(prod(imagedim1)), imagedim1)
```

---

**sdevimg**  
*Standard Deviation Brain Data*

**Description**
The data is the standard deviation brain data. This represents the common standard deviation between the average images of healthy subjects and patients with Alzheimer’s disease, and is used when generating artificial data.

**Usage**
```r
data(sdevimg)
```

**Format**
- A array
**simbrain**

*Generate simulation data Function*

**Description**

This is a function for simulation data based on the real base brain image data and difference in brain between healthy and disease groups.

**Usage**

```r
simbrain(
  baseimg, 
  diffimg, 
  sdevimg = NULL, 
  mask = NULL, 
  n0 = 10, 
  c1 = 0.5, 
  sd1 = 0.01, 
  zeromask = FALSE, 
  reduce = c("no", "rd1", "rd2")[1], 
  output = c("rdata", "nifti")[1], 
  seed = 1
)
```

**Arguments**

- `baseimg`: an array for the basis image.
- `diffimg`: an array for the difference image.
- `sdevimg`: an array for the standard deviation image.
- `mask`: an array for the mask image.
- `n0`: a numeric, which is a sample size per group.
- `c1`: a numeric,
- `sd1`: a numeric, standard deviation for the individual variation.
- `zeromask`: a logical, whether mask the position with zero values for all subjects.
- `reduce`: a vector.
- `output`: a vector.
- `seed`: a numeric for seed for random variables.

**Details**

`simbrain` requires a base brain image data and mean difference image data.
Value

S data matrix
Z binary group variable
brainpos binary brain position.
imagedim three dimensional vector for image dimension

Examples

data(baseimg)
data(diffimg)
sim1 = simbrain(baseimg = baseimg, diffimg = diffimg)

---

sizechange Size change Function

Description

This is a function that changes the resolution of the image.

Usage

sizechange(img1, simscale = NULL, refsize = NULL, ...)

Arguments

img1 a array or nifti class, which is a image data to be changed the size.
simscale a numeric.
refsize a vector with length 3, which is a size to be changed.
... further arguments passed to or from other methods.

Details

sizechange requires the array data.

Examples

data(exbrain)
exbrain2 = sizechange(exbrain, simscale=1/2)
template

__________

<table>
<thead>
<tr>
<th>template</th>
<th>Brain Template</th>
</tr>
</thead>
</table>

**Description**

The data is the brain template. This is an average brain image, and is mainly used for overlaying analysis results.

**Usage**

data(template)

**Format**

A array
Index

* datasets
  atlas, 2
  atlasdatasets, 3
  baseimg, 4
  diffimg, 7
  exbrain, 7
  mask, 9
  sdevimg, 14
  template, 17
* documentation
  mand-package, 2
* print
  atlastable, 3

atlas, 2
atlasdatasets, 3
atlastable, 3

baseimg, 4
basisprod, 4

coat, 5
diffimg, 7
exbrain, 7

imgdatamat, 8
mand-package, 2
mask, 9
multicomplot, 9
multirec, 10

print.atlastable(atlastable), 3
ptest, 11

rbfunc, 13
rec, 14

sdevimg, 14

simbrain, 15
sizechange, 16
template, 17