Package ‘mand’

June 29, 2021

Type Package
Title Multivariate Analysis for Neuroimaging Data
Version 1.0
Date 2021-06-29
Maintainer Atsushi Kawaguchi <kawa_a24@yahoo.co.jp>
Depends R (>= 3.5), msma
Imports oro.nifti, oro.dicom, imager, caret
License GPL (>= 2)
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Author Atsushi Kawaguchi [aut, cre]
Repository CRAN
Date/Publication 2021-06-29 05:00:02 UTC

R topics documented:

mand-package .. 2
atlas .. 2
atlasdatasets .. 3
atlastable ... 3
baseimg ... 4
basisprod ... 4
coat .. 5
diffimg ... 7
exbrain ... 8
Description

A Package for implementation of multivariate data analysis for neuroimaging data.

Author(s)

Atsushi Kawaguchi. <kawa_a24@yahoo.co.jp>

References

atlas

Atlas set

Description

The data is the atlas image data. An image whose element is "ROFid" is stored for each atlas.

Usage

```r
data(atlas)
```

Format

A list of array
atlasdatasets

Description
The data is the atlas data. Various atlases are stored. Each matrix has "ROIid" and "ROIname" as column names.

Usage
data(atlasdatasets)

Format
A list of matrix

atlastable
Result report with atlas data

Description
This function refers to the results obtained by the analysis in an atlas image, and reports a summary of the results for each anatomical region.

Usage
atlastable(x, y, atlasdataset = NULL, ROIids = NULL, ...)

S3 method for class 'atlastable'
print(x, ...)

Arguments
x an array for the atlas image.
y an array for the result image.
atlasdataset a matrix or data.frame. The colnames should include "ROIid" and "ROIname".
ROIids a vector indicating ROI id shown in the result.
... further arguments passed to or from other methods.

Details
atlastable requires the atlas image and data frame including the ROI id and the name.
Examples

```r
data(diffimg)
data(atlasdatasets)
data(atlas)
atlasname = "aal"
atlasdataset = atlasdatasets[[atlasname]]
tmpatlas = atlas[[atlasname]]
atlastable(tmpatlas, diffimg, atlasdataset=atlasdataset, ROIids = c(1:2, 37:40))
```

baseimg

Base Brain Data

Description

The data is the base brain data. This is an average image of a healthy person, and is used when generating artificial data.

Usage

```r
data(baseimg)
```

Format

A array

basisprod

Product Radial Basis Function

Description

This is a function to product the output for the rbfunc function with data matrix for a dimension reduction.

Usage

```r
basisprod(A, B)
```

Arguments

- **A**
 - a list or a matrix correponding to the output for the rbfunc function with the argument hispec=FALSE or data matrix, respectivey.
- **B**
 - a list or a matrix.

Details

basisprod requires one list and one matrix.
coat

Value

a producted matrix

Examples

imagedim1=c(10,10,10)

B1 = rbfunc(imagedim=imagedim1, seppix=4, hispec=TRUE)
B2 = rbfunc(imagedim=imagedim1, seppix=4, hispec=FALSE)

n = 50
S = matrix(rnorm(n*prod(imagedim1)), nrow = n, ncol = prod(imagedim1))

SB1 = S %*% B1
SB12 = tcrossprod(S, t(B1))
all(SB1-SB12 == 0)

SB2 = basisprod(S, B2)
all(SB1-SB2 == 0)

BS1 = t(B1) %*% t(S)
BS2 = basisprod(B2, S)
all(BS1-t(BS2) == 0)

coat

Coat Function

Description

This is a function for plotting an image. The analysis result can be overcoated on the template.

Usage

ccoat(
 x,
 y = NULL,
 pseq = NULL,
 xyz = NULL,
 col.x = gray(0:64/64),
 col.y = NULL,
 breaks.y = NULL,
 zlim.x = NULL,
 zlim.y = NULL,
 rownum = 5,
 colnum = NULL,
 plane = c("axial", "coronal", "sagittal", "all")[1],
)
xlab = "",
ylab = "",
axes = FALSE,
oma = rep(0, 4),
mar = rep(0, 4),
bg = "black",
paron = TRUE,
cross.hair = FALSE,
chxy = NULL,
color.bar = TRUE,
regionplot = FALSE,
atlasdataset = NULL,
regionname = c("atlas", "stat")[1],
regionlegend = FALSE,
atlasname = "",
ROIids = 1:9,
...}

Arguments

x image1. Base image.
y image2 to be overcoated.
pseq a vector plot sequence.
xyz a vector position to be plotted.
col.x a color vector for image1.
col.y a color vector for image2.
brbreaks.y a vector breaks value for y.
zlim.x a vector plot limitation values for z of x.
zlim.y a vector plot limitation values for z of y.
rownum a numeric, the number of row for the plot.
colnum a numeric, the number of colnum for the plot.
plane a vector plot sequence.
xlab a character for a label in the x axis.
ylab a character for a label in the y axis.
axes a logical. TRUE presents the axes.
oma a vector for outer margin area.
mar a vector for margin.
bg a character for color of background.
paron a logical. TRUE means par is used.
cross.hair a logical.
chxy a vector cross hair position to be plotted.

diffimg

color.bar a logical.
regionplot a logical.
atlasdataset a matrix or data.frame. colnames should include "ROIid" and "ROIname".
regionname a character.
regionlegend a logical.
atlasname a character.
ROIids a vector
... further arguments passed to or from other methods.

Details

ccoat requires a image array.

Examples

data(exbrain)
coat(exbrain)

diffimg Difference Brain Data

Description

The data is the difference brain data. This represents the difference between the average images of healthy subjects and patients with Alzheimer’s disease, and is used when generating artificial data.

Usage

data(diffimg)

Format

A array
Example Brain Data

Description

The data are from a MRI gray matter brain data for one subject.

Usage

```r
data(exbrain)
```

Format

A array

Create Data Matrix Function

Description

This is a function that creates a data matrix for analysis from a file saved in image format.

Usage

```r
imgdatamat(
  imgfnames,
  mask = NULL,
  ROI = FALSE,
  atlas = NULL,
  atlasdataset = NULL,
  ROIids = NULL,
  zeromask = FALSE,
  schange = FALSE,
  ...
)
```

Arguments

- `imgfnames` a vector for (nifti) file names to be used.
- `mask` a vector for brain mask data.
- `ROI` a logical for roi data set.
- `atlas` an array for the atlas.
- `atlasdataset` a matrix or data.frame. colnames should include "ROIid" and "ROIname".
- `ROIids` a vector
mask

eromask a logical for masking voxel with all zeros.
schange a logical for change dimension.
... further arguments passed to or from other methods.

Details

imgdatamat requires image file names.

Value

S data matrix
brainpos binary brain position.
imagedim three dimensional vector for image dimension

Examples

imgfnames1 = c("img1.nii", "img2.nii")
imgdata = imgdatamat(imgfnames1)

mask Brain Mask

Description

The data is the brain mask. This is used to exclude extra-brain regions from the analysis.

Usage

data(mask)

Format

A array
multicompplot

Description

This is a function that plots the vectorized image returned to its original dimensions by the multirec function.

Usage

multicompplot(
 object,
 x,
 comps = NULL,
 row4comp = 6,
 col4comp = 1,
 pseq4comp = NULL,
 ...
)

Arguments

object
an object of class "multirec." Usually, a result of a call to multirec
x
template image
comps
a component sequence to be plotted.
row4comp
the number of rows per a component
col4comp
the number of columns per a component
pseq4comp
the number of images per a component
...
进一步 arguments passed to or from other methods.

Details

multicompplot requires the output result of msma function.

Examples

data(baseimg)
data(diffimg)
data(mask)
data(template)
img1 = simbrain(baseimg = baseimg, diffimg = diffimg, mask=mask)
B1 = rbfunc(imagedim=img1$imagedim, seppix=2, hispec=FALSE, mask=img1$brainpos)
SB1 = basisprod(img1$S, B1)
fit111 = msma(SB1, comp=2)
ws = multirec(fit111, imagedim=img1$imagedim, B=B1, mask=img1$brainpos)
multicompplot(ws, template)
multirec

Multi components reconstruction

Description

This is a function that returns the weight vector of multiple components obtained by the `msma` function applied after dimension reduction by the radial basis function to the same dimension as the original image.

Usage

```r
multirec(
  object,
  imagedim,
  B = NULL,
  mask = NULL,
  midx = 1,
  comps = NULL,
  XY = c("X", "Y", "XY")[1],
  signflip = FALSE
)
```

Arguments

- `object`: an object of class `msma`. Usually, a result of a call to `msma`
- `imagedim`: a vector for original dimension.
- `B`: a list or a matrix.
- `mask`: a list or a matrix.
- `midx`: a block number.
- `comps`: a component sequence to be plotted.
- `XY`: a character, indicating "X" or "Y". "XY" for the scatter plots using X and Y scores from `msma`.
- `signflip`: a logical if the sign in the block is flipped to pose the super as positive.

Details

`multirec` requires the output result of `msma` function.

Examples

```r
data(baseimg)
data(diffimg)
data(mask)
img1 = simbrain(baseimg = baseimg, diffimg = diffimg, mask=mask)
B1 = rbfnc(img1$imagedim, seppix=2, hispec=FALSE, mask=img1$brainpos)
```
SB1 = basisprod(img1$S, B1)
fit111 = msma(SB1, comp=2)
ws = multirec(fit111, imagedim=img1$imagedim, B=B1, mask=img1$brainpos)

ptest Prediction Model Function

Description

This is the function that creates and evaluates the predictive model.

Usage

```r
code
ptest(
  object,
  Z = Z,
  newdata = NULL,
  testZ = NULL,
  regmethod = "glm",
  methods1 = c("boot", "boot632", "cv", "repeatedcv", "LOOCV", "LGOCV")[4],
  metric = "ROC",
  number1 = 10,
  repeats1 = 5,
  params = NULL
)
```

Arguments

- `object` a matrix indicating the explanatory variable(s), or an object of class `msma`, which is a result of a call to `msma`.
- `Z` a vector, response variable(s) for the construction of the prediction model. The length of `Z` is the number of subjects for the training.
- `newdata` a matrix for the prediction.
- `testZ` a vector, response variable(s) for the prediction evaluation. The length of `testZ` is the number of subjects for the validation.
- `regmethod` a character for the name of the prediction model. This corresponds to the `method` argument of the `train` function in the `caret` package.
- `methods1` a character for the name of the evaluation method.
- `metric` a character for the name of summary metric to select the optimal model.
- `number1` a number of folds or number of resampling iterations
- `repeats1` a number of repeats for the repeated cross-validation
- `params` a data frame with possible tuning values.
rbfunc

Details

pctest requires the output result of msma function.

Value

predict results

Examples

data(baseimg)
data(diffimg)
data(mask)
data(template)
img1 = simbrain(baseimg = baseimg, diffimg = diffimg, mask=mask)
B1 = rbfunc(imagedim=im1$imagedim, seppix=2, hispec=FALSE, mask=img1$brainpos)
SB1 = basisprod(img1$S, B1)
fit111 = msma(SB1, comp=2)
predmodel = ptest(fit111, Z=img1$Z)

rbfunc

Radial Basis Function

Description

This makes a radial basis function.

Usage

rbfunc(imagedim, seppix, hispec = FALSE, mask = NULL)

Arguments

imagedim a vector indicating image three dimension.
seppix a numeric. distance between knots.
hispec a logical. TRUE produces a matrix output. FALSE produces a list output to reduce the data memory.
mask a vector.

Details

rbfunc requires the dimensions of the original image to be applied and the knot interval. The output is obtained as a matrix, with the number of rows corresponding to the number of voxels in the original image and the number of columns determined by the knot spacing. By setting hispec = TRUE, you can get the output in list format with a smaller memory.
Examples

```
имagedim1=c(10,10,10)
B1 = rbf func(имagedim=имagedim1, seppix=4, hispec=TRUE)
B2 = rbf func(имagedim=имagedim1, seppix=4, hispec=FALSE)
```

Description

This is a function that restores the vectorized image to its original dimensions, reduced in dimension by the radial basis function.

Usage

```
rec(Q, imagedim, B = NULL, mask = NULL)
```

Arguments

- **Q**: a vector for reduced data.
- **imagedim**: a vector for original dimension.
- **B**: a list or a matrix indicating the basis function used in the dimension reduction.
- **mask**: a list or a matrix indicating the mask image used in the dimension reduction.

Details

rec requires a vector to be converted to a array.

Value

a reconstructed array

Examples

```
имagedim1=c(10,10,10)
recvec = rec(rnorm(prod(имagedim1)), имagedim1)
```
sdevimg

Standard Deviation Brain Data

Description

The data is the standard deviation brain data. This represents the common standard deviation between the average images of healthy subjects and patients with Alzheimer’s disease, and is used when generating artificial data.

Usage

```r
data(sdevimg)
```

Format

A array

simbrain

Generate simulation data Function

Description

This is a function for simulation data based on the real base brain image data and difference in brain between healthy and disease groups.

Usage

```r
simbrain(
  baseimg,
  diffimg,
  sdevimg = NULL,
  mask = NULL,
  n0 = 10,
  c1 = 0.5,
  sd1 = 0.01,
  zeromask = FALSE,
  reduce = c("no", "rd1", "rd2")[1],
  output = c("rdata", "nifti")[1],
  seed = 1
)
```
Arguments

- `baseimg` an array for the basis image.
- `diffimg` an array for the difference image.
- `sdevimg` an array for the standard deviation image.
- `mask` an array for the mask image.
- `n0` a numeric, which is a sample size per group.
- `c1` a numeric,
- `sd1` a numeric, standard deviation for the individual variation.
- `zeromask` a logical, whether mask the position with zero values for all subjects.
- `reduce` a vector.
- `output` a vector.
- `seed` a numeric for seed for random variables.

Details

`simbrain` requires a base brain image data and mean difference image data.

Value

- `S` data matrix
- `Z` binary group variable
- `brainpos` binary brain position.
- `imagedim` three dimensional vector for image dimension

Examples

```r
data(baseimg)
data(diffimg)
sim1 = simbrain(baseimg = baseimg, diffimg = diffimg)
```

sizechange

Size change Function

Description

This is a function that changes the resolution of the image.

Usage

```r
sizechange(img1, simscale = NULL, refsize = NULL, ...)
```
Arguments

- **img1**: a array or nifti class, which is an image data to be changed the size.
- **simscale**: a numeric.
- **refsize**: a vector with length 3, which is a size to be changed.
- ... further arguments passed to or from other methods.

Details

sizechange requires the array data.

Value

size changed image

Examples

data(exbrain)
exbrain2 = sizechange(exbrain, simscale=1/2)

<table>
<thead>
<tr>
<th>template</th>
<th>Brain Template</th>
</tr>
</thead>
</table>

Description

The data is the brain template. This is an average brain image, and is mainly used for overlaying analysis results.

Usage

data(template)

Format

A array
Index

* datasets
 atlas, 2
 atlasdatasets, 3
 baseimg, 4
 diffimg, 7
 exbrain, 8
 mask, 9
 sdevimg, 15
 template, 17
* documentation
 mand-package, 2
* print
 atlastable, 3

atlas, 2
atlasdatasets, 3
atlastable, 3
baseimg, 4
basisprod, 4
coat, 5
diffimg, 7
exbrain, 8
imgdatamat, 8
mand-package, 2
mask, 9
multicomplot, 10
multirec, 11
print.atlastable(atlastable), 3
ptest, 12
rbfunc, 13
rec, 14
sdevimg, 15
simbrain, 15
sizechange, 16
template, 17

18