Package ‘mangoTraining’

June 3, 2020

Title Mango Solutions Training Datasets

Version 1.1

Contact

Description Datasets to be used primarily in conjunction with Mango Solutions training materials but also for the book ‘SAMS Teach Yourself R in 24 Hours’ (ISBN: 978-0-672-33848-9).

Version 1.0-7 is largely for use with the book; however, version 1.1 has a much greater focus on use with training materials, whilst retaining compatibility with the book.

URL http://www.mango-solutions.com

Depends R (>= 3.5.0)

Imports tibble

Suggests testthat

License GPL-2

LazyLoad yes

LazyData yes

RoxygenNote 7.1.0

BugReports https://github.com/MangoTheCat/mangoTraining/issues

NeedsCompilation no

Author Mango Solutions [aut],

Karina Marks [ctb, cre],

Aimee Gott [aut],

Andrew Little [ctb, dtc, rev],

Owen Jones [ctb]

Maintainer Karina Marks <kmarks@mango-solutions.com>

Repository CRAN

Date/Publication 2020-06-03 09:10:06 UTC
Description

Datasets designed to be used in conjunction with Mango Solutions training materials.

Details

Datasets designed to be used in conjunction with Mango Solutions’ training materials and book, SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9). The data covers a range of applications and has been collected together from a number of sources. The airquality dataset, from the Core R datasets package is also provided in xlsx format in the extdata directory of this package.
auto_mpg

Author(s)
Mango Solutions
Contact: Mango Solutions <rin24hours@mango-solutions.com>

auto_mpg

Auto MPG Data Set

Description

Data concerns city-cycle fuel consumption - revised from CMU StatLib library.

Usage

`auto_mpg`

Format

A matrix containing 398 observations and 10 attributes.

- **mpg** Miles per gallon of the engine. Predictor attribute
- **cylinders** Number of cylinders in the engine
- **displacement** Engine displacement
- **horsepower** Horsepower of the car
- **weight** Weight of the car (lbs)
- **acceleration** Acceleration of the car (seconds taken for 0-60mph)
- **model_year** Model year of the car in the 1900s
- **origin** Car origin
- **make** Car manufacturer
- **car_name** Name of the car

Source

http://archive.ics.uci.edu/ml/datasets/Auto+MPG

References

bbc_articles

Description

A collection of BBC news articles from the business or politics sections. There are a total of 927 articles used.

Usage

bbc_articles

Format

A tibble with 201,571 observations, each a word on a document.

- word A word in an article
- document The document/article ID where the word was taken from

Source

- https://www.bbc.co.uk/news

bbc_articles_full

Full BBC Articles data

Description

Full BBC Articles data

Usage

bbc_articles_full

Format

A tibble, with 927 observations of separate documents and their contents. This results in two columns.

- words The words from a given article
- document The 'document' (article) ID

Details

A collection of business and politics BBC news articles. Each row represents each article (document), with a document ID and a string of the text content with stop words removed. This is a 'dirty' version of the bbc_articles dataset, where we now have a string of text for each observation, as opposed to a single word.
bbc_business_123

Source
- https://www.bbc.co.uk/news

bbc_business_123 BBC Business article data

Description
A single BBC Business article (not included in the full BBC articles dataset), given in tidy, one word per row format.

Usage
bbc_business_123

Format
A tibble with 107 observations, each a word on a document.
- word A word in an article
- document The document/article ID where the word was taken from. Note: this only has one unique value, however the column is kept for comparison with other BBC datasets.

Source
- https://www.bbc.co.uk/news

bbc_politics_123 BBC Politics article data

Description
A single BBC Politics article (not included in the full BBC articles dataset), given in tidy, one word per row format.

Usage
bbc_politics_123

Format
A tibble with 86 observations, each a word on a document.
- word A word in an article
- document The document/article ID where the word was taken from. Note: this only has one unique value, however the column is kept for comparison with other BBC datasets.
Source

- https://www.bbc.co.uk/news

body_image Body image dataset

Description

Body image dataset

Usage

body_image

Format

A tibble of 246 observations on 8 attributes.

- ethnicity Subject’s ethnicity (Asian, European, Maori, Pacific)
- married How many times have they been married?
- bodyim Subject’s rating of themselves (slight.uw, right, slight.ow, mod.ow, very.ow)
- sm.ever Have they ever smoked?
- weight Weight in kilograms
- height Height in centimetres
- age Age in years
- stressgp What stress group are they in?

Details

A simulated dataset containing data on the self-image of subjects with differing body aesthetics

Source

Simulated data
book_sections

Gutenberg Project books dataset

Description
A mixed up collection of words from different book sections of two books.

Usage

Usage

book_sections

Format
A tibble with 108,657 observations, each a word on a document. This data set is designed to show how LDA can be used to separate a set of mixed documents into two distinct "topics" (or books).

word Words from a given section within a book.
document The book section ID that the word came from.

Source
Data taken from two books of the Gutenberg Project

* https://www.gutenberg.org/

boston

Boston housing dataset

Description
Dataset containing housing values in the suburbs of Boston.

Usage

Usage

boston

Format
This data frame contains the following columns:

tract Census tract
medv Median value of owner-occupied homes in $1,000s.
crim Per capita crime rate by town.
zn Proportion of residential land zoned for lots over 25,000 sq.ft.
indus Proportion of non-retail business acres per town.
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
nox Nitrogen oxides concentration (parts per 10 million).
rm Average number of rooms per dwelling.
age Proportion of owner-occupied units built prior to 1940.
dis Weighted mean of distances to five Boston employment centres.
rad Index of accessibility to radial highways.
tax Full-value property-tax rate per $10,000.
ptratio Pupil-teacher ratio by town.
b $1000(Bk − 0.63)^2$ where Bk is the proportion of blacks by town.
lstat Lower status of the population (percent).

Details

The boston data frame has 506 rows and 15 columns.

Source

Described variables

<table>
<thead>
<tr>
<th>breast_cancer</th>
<th>Wisconsin Diagnostic Breast Cancer (WDBC)</th>
</tr>
</thead>
</table>

Description

The data contain measurements on cells in suspicious lumps in a women's breast. Features are computed from a digitised image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. All samples are classified as either benign or malignant.

Usage

breast_cancer

Format

breast_cancer is a tibble with 22 columns. The first column is an ID column. The second indicates whether the sample is classified as benign or malignant. The remaining columns contain measurements for 20 features. Ten real-valued features are computed for each cell nucleus. The references listed below contain detailed descriptions of how these features are computed. The mean, and "worst" (or largest - mean of the three largest values) of these features were computed for each image, resulting in 20 features. Below are descriptions of these features where * should be replaced by either mean or worst.
* _radius_ mean of distances from center to points on the perimeter
* _texture_ standard deviation of gray-scale values
* _perimeter_ perimeter value
* _area_ area value
* _smoothness_ local variation in radius lengths
* _compactness_ perimeter^2 / area - 1.0
* _concavity_ severity of concave portions of the contour
* _concave_points_ number of concave portions of the contour
* _symmetry_ symmetry value
* _fractal_dimension_ "coastline approximation" - 1

Note

This breast cancer database was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg.

Source

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

References

Format

A list containing a training and test dataset. These come from a data frame with 699 observations on 11 variables, however the ID and class columns have been removed. There is a train to test ratio of 0.8.

Cl.thickness Clump Thickness
Cell.size Uniformity of Cell Size
Cell.shape Uniformity of Cell Shape
Marg.adhesion Marginal Adhesion
Epith.c.size Single Epithelial Cell Size
Bare.nuclei Bare Nuclei
Bl.cromatin Bland Chromatin
Normal.nucleoli Normal Nucleoli
Mitoses Mitoses

Source

• Creator: Dr. William H. Wolberg (physician); University of Wisconsin Hospital ; Madison; Wisconsin; USA
• Donor: Olvi Mangasarian (mangasarian@cs.wisc.edu)
• Received: David W. Aha (aha@cs.jhu.edu)

These data have been taken from the UCI Repository Of Machine Learning Databases at

• http://www.ics.uci.edu/~mlearn/MLRepository.html

and were converted to R format by Evgenia Dimitriadou.

References

 - Size of data set: only 369 instances (at that point in time)
 - Collected classification results: 1 trial only
 - Two pairs of parallel hyperplanes were found to be consistent with 50% of the data
 - Accuracy on remaining 50% of dataset: 93.5%
 - Three pairs of parallel hyperplanes were found to be consistent with 67% of data
 - Accuracy on remaining 33% of dataset: 95.9%

 - Size of data set: only 369 instances (at that point in time)
 - Applied 4 instance-based learning algorithms
 - Collected classification results averaged over 10 trials
- Best accuracy result:
 - 1-nearest neighbor: 93.7%
 - trained on 200 instances, tested on the other 169
- Also of interest:
 - Using only typical instances: 92.2% (storing only 23.1 instances)
 - trained on 200 instances, tested on the other 169

Wisconsin Breast Cancer Database

Description

Wisconsin Breast Cancer Database

Usage

breast_cancer_clean_target

Format

A list containing a training and test dataset. These come from a data frame with 699 observations on 11 variables, however only the target classes have been kept. There is a train to test ratio of 0.8.

- **Class.Benign** Whether the sample was classified as benign
- **Class.malignant** Whether the sample was classified as malignant

- Size of data set: only 369 instances (at that point in time)
- Applied 4 instance-based learning algorithms
- Collected classification results averaged over 10 trials
- Best accuracy result:
 - 1-nearest neighbor: 93.7%
 - trained on 200 instances, tested on the other 169
- Also of interest:
 - Using only typical instances: 92.2% (storing only 23.1 instances)
 - trained on 200 instances, tested on the other 169

Source

- Creator: Dr. William H. Wolberg (physician); University of Wisconsin Hospital; Madison; Wisconsin; USA
- Donor: Olvi Mangasarian (mangasarian@cs.wisc.edu)
- Received: David W. Aha (aha@cs.jhu.edu)

These data have been taken from the UCI Repository Of Machine Learning Databases at

and were converted to R format by Evgenia Dimitriadou.

<table>
<thead>
<tr>
<th>carriers</th>
<th>Carrier data</th>
</tr>
</thead>
</table>

Description

This data comes from the RITA/Transtats database

Usage
carriers

Format

A dataframe with 1492 observations and 2 variables

Code A character string giving the IATA code for the carrier
Description Carrier name/description

<table>
<thead>
<tr>
<th>commute</th>
<th>R For Data Science tidyTuesday commute dataset</th>
</tr>
</thead>
</table>

Description

Data from the ACS Survey detailing the use of different transport modes

Usage

commute
Format

A tibble containing 3,496 observations of 9 variables

city City
state State
city_size City Size -
 • Small = 20K to 99,999
 • Medium = 100K to 199,999
 • Large = >= 200K
mode Mode of transport, either walk or bike
n Number of individuals
percent Percent of total individuals
moe Margin of Error (percent)
state_abb Abbreviated state name
state_region ACS State region

Source

American Community Survey, United States Census Bureau

• R For Data Science repository: https://github.com/rfordatascience/tidyTuesday/tree/master/data/2019/2019-11-05
• Article and underlying data can be found at: https://www.census.gov/library/publications/2014/acs/acs-25.html#
Format

A data frame with 33 observations on the following 7 demographic variables. This data is designed so that it can be merged with the dataset pk_data.

Subject A numeric vector giving the subject identifier
Sex A factor with levels F M
Age A numeric vector giving the age of the subject
Weight A numeric vector giving weight in kg
Height A numeric vector giving height in cm
BMI A numeric vector giving the subject body mass index
Smokes A factor with levels No Yes

Details

This dataset has been renamed using tidyverse-style snake_case naming conventions. However the original name of the dataset has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Source

Simulated data

dow_jones_data

Dow Jones Index Data

Description

Dataset containing the Dow Jones Index between 2014-01-01 and 2015-01-01, which is a stock market index that measures the stock performance of 30 large companies listed on stock exchanges in the United States.

Usage

dow_jones_data
dowJonesData

Format

A data frame with 252 observations on the following 7 variables containing data from 2014-01-01 to 2015-01-01.

Date Date of observation in character string format "%m/%d/%Y"
DJI.Open Opening value of DJI on the specified date
DJI.High High value of the DJI on the specified date
Details

This dataset has been renamed using tidyverse-style snake_case naming conventions. However the original name of the dataset has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Source

Data obtained using `yahooSeries` from the `fImport` package.

drugs

Repeated Measures Drug data

Description

Repeated Measures Drug data

Usage

`drugs`

Format

A data frame with 20 observations on the following 3 variables.

- **Subj** A numeric vector, giving the subject ID
- **Drug** A numeric vector giving the drug ID, numbered 1 to 4
- **Value** A numeric vector, giving the observation value

Source

emax_data
Data that can be used to fit or plot Emax models

Description

Data that can be used to fit or plot Emax models

Usage

```r
emax_data
eemaxData
```

Format

A data frame with 64 observations on the following 6 variables.

- **Subject**: a numeric vector giving the unique subject ID
- **Dose**: a numeric vector giving the dose group
- **E**: a numeric vector giving the Emax
- **Gender**: a numeric vector giving the gender
- **Age**: a numeric vector giving the age of the subject
- **Weight**: a numeric vector giving the weight

Details

This dataset has been renamed using tidyverse-style snake_case naming conventions. However, the original name of the dataset has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Source

Simulated data

emax_fun
Function to calculate Emax

Description

Calculation used for Emax in Mango Training materials. Note: This function has been renamed using tidyverse-style snake_case naming conventions. However, the original name of the function has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).
Usage

```r
eemax_fun(Dose, E0 = 0, ED50 = 50, Emax = 100)
```

Arguments

- **Dose**: User provided dose values
- **E0**: Effect at time 0
- **ED50**: 50% of maximum effect
- **Emax**: Maximum effect

Examples

```r
eemax_fun(Dose = 100)
```

logistic_fun

Function to fit logistic model

Description

Simple logistic function as used in Mango training materials. Note: This function has been renamed using tidyverse-style snake_case naming conventions. However, the original name of the function has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Usage

```r
logistic_fun(Dose, E0 = 0, EC50 = 50, Emax = 1, rc = 5)
```

Arguments

- **Dose**: The dose value to calculate at
- **E0**: Effect at time 0
- **EC50**: 50% of maximum effect
- **Emax**: Maximum effect
- **rc**: rate constant

Examples

```r
logistic_fun(Dose = 50)
```
Description

Simulated dataset for examples of reshaping data

Usage

messy_data
messyData

Format

A data frame with 33 observations on the following 7 variables. This data has been designed to show reshaping/tidying of data.

Subject A numeric vector giving the subject ID
Placebo.1 A numeric vector giving the subjects observed value on treatment Placebo at time 1
Placebo.2 A numeric vector giving the subjects observed value on treatment Placebo at time 2
Drug1.1 A numeric vector giving the subjects observed value on treatment Drug1 at time 1
Drug1.2 A numeric vector giving the subjects observed value on treatment Drug1 at time 2
Drug2.1 A numeric vector giving the subjects observed value on treatment Drug2 at time 1
Drug2.2 A numeric vector giving the subjects observed value on treatment Drug2 at time 2

Details

This dataset has been renamed using tidyverse-style snake_case naming conventions. However the original name of the dataset has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Source

Simulated data
Clinical trial data

Description
Clinical trial data

Usage
missing_pk
missingPk

Format
A data frame with 165 observations on the following 4 variables.

Subject a numeric vector giving the subject identifier
Dose a numeric vector giving the dose group
Time a numeric vector giving the observation times
Conc a numeric vector giving the observed concentration

Details
This dataset has been renamed using tidyverse-style snake_case naming conventions. However the original name of the dataset has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Source
Simulated from 'pk_data'

Typical PK data

Description
Typical PK data

Usage
pk_data
pkData
Format

A data frame with 165 observations on the following 4 variables.

- **Subject**: a numeric vector giving the subject identifier
- **Dose**: a numeric vector giving the dose group
- **Time**: a numeric vector giving the observation times
- **Conc**: a numeric vector giving the observed concentration

Details

This dataset has been renamed using tidyverse-style snake_case naming conventions. However, the original name of the dataset has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Source

Simulated data

policy_data

* policy_data

Insurance Policy Data

Description

Insurance Policy Data

Usage

policy_data

policyData

Format

A data frame with 926 observations on the following 13 variables.

- **Year**: The four digit year of the policy
- **PolicyNo**: The policy number
- **TotalPremium**: The total insurance premium
- **BonusMalus**: Discount level
- **WeightClass**: The weight class of the car
- **Region**: Region of the car owner
- **Age**: Age of the main driver
- **Mileage**: Estimated annual mileage
- **Usage**: Car usage
qtpk2

Details

This dataset has been renamed using tidyverse-style snake_case naming conventions. However, the original name of the dataset has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Source

Simulated based on details of how to simulate car insurance data in Modern Actuarial Risk Theory Using R 2nd Edition (Rob Kaas, Marc Goovaerts, Jan Dhaene, Michel Denuit)

Description

Typical PK data

Usage

`qtpk2`

Format

A data frame with 2061 observations on the following 8 variables.

- **subjid**: A numeric vector giving the subject ID
- **treat**: A factor giving the treatment
- **time**: A numeric vector giving the observation times
- **qt**: A numeric vector giving the QT interval value
- **qtcb**: A numeric vector giving corrected QT interval
- **hr**: A numeric vector giving the heart rate
- **rr**: A numeric vector giving the R-R interval
- **sex**: A factor giving the subject sex

Source

A subset of the data qtpk originally provided in the QT package
An example of NONMEM run data

Description

This dataset has been renamed using tidyverse-style snake_case naming conventions. However, the original name of the dataset has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Usage

run_data
runData

Format

A data frame with 73 observations on the following 10 variables.

- ID: a numeric vector giving the subject ID
- DAY: a numeric vector giving the day of the observation
- CL: a numeric vector giving the clearance value
- V: a numeric vector giving the volume of distribution
- WT: a numeric vector giving the weight
- DV: a numeric vector giving the dependent variable
- IPRE: a numeric vector giving the individual prediction
- PRED: a numeric vector giving the population prediction
- RES: a numeric vector giving the residual
- WRES: a numeric vector giving the weighted residual

Source

Simulated Data
Description

Students simulated data

Usage

students

Format

A tibble with 146 observations of 15 variables.

Grade Final grade (A, B, C, D)
Pass Did they pass the course? (No, Yes)
Exam Mark in final exam (out of 100)
Degree The degree type undertaken by the student
Gender Gender of the student
Attend Did they regularly attend class? (No, Yes)
Assign Score obtained in mid-term assignment (out of 20)
Test Score obtained in previous term test (out of 20)
B Mark for short answer section (out of 20)
C Mark for long answer section (out of 20)
MC Mark for multiple choice section (out of 30)
Colour Colour of exam booklet (Blue, Green, Pink, Yellow)
Stage1 Stage one grade (A, B, C)
Years.Since Number of years since doing Stage 1
Repeat Where they repeating the paper? (No, Yes)

Source

Simulated data
tube_data

London Tube Performance data

Description

London Tube Performance data

Usage

tube_data
tubeData

Format

A data frame with 1050 observations on the following 9 variables.

- **Line** A factor with 10 levels, one for each London tube line
- **Month** A numeric vector indicating the month of the observation
- **Scheduled** A numeric vector giving the scheduled running time
- **Excess** A numeric vector giving the excess running time
- **TOTAL** A numeric vector giving the total running time
- **Opened** A numeric vector giving the year the line opened
- **Length** A numeric vector giving the line length
- **Type** A factor indicating the type of tube line
- **Stations** A numeric vector giving the number of stations on the line

Details

This dataset has been renamed using tidyverse-style snake_case naming conventions. However the original name of the dataset has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Source

This data was taken from "http://data.london.gov.uk/datafiles/transport/assembly-tube-performance.xls"
xp_data

Typical NONMEM data

Description

Typical NONMEM data

Usage

xp_data

xpData

Format

A data frame with 1061 observations on the following 23 variables.

ID a numeric vector giving the subject ID
SEX a numeric vector giving the subject sex
RACE a numeric vector giving the subject race
SMOK a numeric vector giving the subject smoking status
HCTZ a numeric vector giving the treatment status
PROP a numeric vector giving the treatment status
CON a numeric vector giving the treatment status
DV a numeric vector giving the dependent variable
PRED a numeric vector giving population prediction
RES a numeric vector giving the residual
WRES a numeric vector giving the weighted residual
AGE a numeric vector giving the subject age
HT a numeric vector giving the subject height
WT a numeric vector giving the subject weight
SECR a numeric vector giving the serum creatinine value
OCC a numeric vector giving the occasion
TIME a numeric vector giving the time of the observation time
IPRE a numeric vector giving individual prediction
IWRE a numeric vector giving the individual weighted residual
SID a numeric vector giving the site ID
CL a numeric vector giving the clearance
V a numeric vector giving the volume of distribution
KA a numeric vector giving the absorption rate constant
Details

This dataset has been renamed using tidyverse-style snake_case naming conventions. However, the original name of the dataset has been kept to ensure backwards compatibility with the book SAMS Teach Yourself R in 24 Hours (ISBN: 978-0-672-33848-9).

Source

Simulated Data

x_iris

Iris predictors data for Species classification

Description

This data was taken from Edgar Anderson's famous iris data set. This gives the measurements (in centimeters) of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica. However, the species is seen as the target variable, and as such has been removed from this dataset, whilst being added to the counterpart y_iris dataset. Furthermore, the 4 remaining 'predictor' variables have been separated into a training and test set with a ratio of 4:1, followed by centering and scaling.

Usage

x_iris

Format

A list of two named matrices, 'train' and 'test', representing the training and test sets for the predictors. These have 4 columns each, with 120 and 30 rows respectively.

Sepal.Length Sepal length
Sepal.Width Sepal width
Petal.Length Petal length
Petal.Width Petal width

Source

References

Description

This data was taken from Edgar Anderson's famous iris data set. This gives the measurements (in centimeters) of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica. This is the target dataset (as a counterpart to the `x_iris` dataset) and thus only retains the Species information. As with the `x_iris` dataset, the data has been split into a training and test set with a ratio of 4:1. Following this the species class has been one-hot encoded to give three columns, one for each species level.

Usage

`y_iris`

Format

A list of two named matrices, `train` and `test`, representing the training and test sets for the predictors. These have 3 indicator columns each, with 120 and 30 rows respectively.

- **Species.setosa** Indicator column for the species class setosa
- **Species.versicolor** Indicator column for the species class versicolor
- **Species.virginica** Indicator column for the species class virginica

Source

References

Index

+Topic datasets
 auto_mpg, 3
 bbc_articles, 4
 bbc_articles_full, 4
 bbc_business_123, 5
 bbc_politics_123, 5
 body_image, 6
 book_sections, 7
 boston, 7
 breast_cancer, 8
 breast_cancer_clean_features, 9
 breast_cancer_clean_target, 11
 carriers, 12
 commute, 12
 demo_data, 13
 demoData (demo_data), 13
 dow_jones_data, 14
 dowJonesData (dow_jones_data), 14
 drugs, 15
 emax_data, 16
 emax_fun, 16
 emaxData (emax_data), 16
 logistic_fun, 17
 mangoTraining (mangoTraining-package), 2
 mangoTraining-package, 2
 messy_data, 18
 messyData (messy_data), 18
 missing_pk, 19
 missingPk (missing_pk), 19
 pk_data, 19
 pkData (pk_data), 19
 policy_data, 20
 policyData (policy_data), 20
 qtpk2, 21
 run_data, 22
 runData (run_data), 22
 students, 23
 tube_data, 24
 tubeData (tube_data), 24
 x_iris, 26
 x_p_data, 25
 y_iris, 27

auto_mpg, 3

bbc_articles, 4
bbc_articles_full, 4
bbc_business_123, 5
bbc_politics_123, 5
body_image, 6
book_sections, 7
boston, 7
breast_cancer, 8

breast_cancer_clean_features, 9
breast_cancer_clean_target, 11
carriers, 12
commute, 12
demo_data, 13
demoData (demo_data), 13
dow_jones_data, 14
dowJonesData (dow_jones_data), 14
drugs, 15
emax_data, 16
emax_fun, 16
emaxData (emax_data), 16
logistic_fun, 17
mangoTraining (mangoTraining-package), 2
mangoTraining-package, 2
messy_data, 18
messyData (messy_data), 18
missing_pk, 19
missingPk (missing_pk), 19
pk_data, 19
pkData (pk_data), 19
policy_data, 20
policyData (policy_data), 20
qtpk2, 21
run_data, 22
runData (run_data), 22
students, 23
tube_data, 24
tubeData (tube_data), 24
x_iris, 26
x_p_data, 25

28
xpData (xp_data), 25

y_iris, 27