Package ‘manhattanly’

November 16, 2016

Type Package
Title Interactive Q-Q and Manhattan Plots Using 'plotly.js'
Version 0.2.0
Date 2016-11-17
LazyData true

Description Create interactive Q-Q, manhattan and volcano plots that are usable from the R console, in the 'RStudio' viewer pane, in 'R Markdown' documents, and in 'Shiny' apps. Hover the mouse pointer over a point to show details or drag a rectangle to zoom. A manhattan plot is a popular graphical method for visualizing results from high-dimensional data analysis such as a (epi)genome wide association study (GWAS or EWAS), in which p-values, Z-scores, test statistics are plotted on a scatter plot against their genomic position. Manhattan plots are used for visualizing potential regions of interest in the genome that are associated with a phenotype. Interactive manhattan plots allow the inspection of specific value (e.g. rs number or gene name) by hovering the mouse over a cell, as well as zooming into a region of the genome (e.g. a chromosome) by dragging a rectangle around the relevant area. This work is based on the 'qqman' package by Stephen Turner and the 'plotly.js' engine. It produces similar manhattan and Q-Q plots as the 'manhattan' and 'qq' functions in the 'qqman' package, with the advantage of including extra annotation information and interactive web-based visualizations directly from R. Once uploaded to a 'plotly' account, 'plotly' graphs (and the data behind them) can be viewed and modified in a web browser.

Depends R (>= 3.0.0)
Imports stats, magrittr (>= 1.0.1), plotly (>= 4.5.6), ggplot2 (>= 2.1.0)
Suggests knitr, rmarkdown
VignetteBuilder knitr
License MIT + file LICENSE

BugReports https://github.com/sahirbhatnagar/manhattanly/issues
HapMap

RoxygenNote 5.0.1

NeedsCompilation no

Author Sahir Bhatnagar [aut, cre] (http://sahirbhatnagar.com/)

Maintainer Sahir Bhatnagar <sahir.bhatnagar@gmail.com>

Repository CRAN

Date/Publication 2016-11-16 01:56:53

R topics documented:

HapMap . 2
manhattanly . 3
manhattanr . 5
qqly . 7
qqr . 8
significantSNP . 10
volcanoly . 10
volcanor . 12

Index 14

HapMap

Subset of HapMap data with simulated GWAS results

Description

A dataset containing a subset of the draft release 2 for genome-wide SNP genotyping in DNA samples from 11 human populations (sometimes referred to as the “HapMap 3” samples). Only the PLINK .map file was used. Approximately 2.5% of the SNPs in each chromosome were retained. The p-values, z-scores, and effect sizes were simulated using random distributions in R. Annotation information (nearest gene and distance to nearest gene) was obtained from the UCSC genome annotation database for the Mar. 2006 GenBank freeze assembled by NCBI (hg18, Build 36.1)

Usage

HapMap

Format

A data frame with 14412 rows and 8 variables:

CHR chromosome number. Autosomes coded 1 through 22, and 23 is the X chromosome (integer)
BP genomic base-pair position (integer)
P p-value (numeric)
SNP rs# or snp identifier (character)
ZSCORE z-score (numeric)
EFFECTSIZE effect size (numeric)

GENE nearest gene to the SNP (character)

DISTANCE distance between the SNP and GENE. if DISTANCE=0 then the SNP is located in the GENE (integer)

Source
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/

Description

Creates an interactive manhattan plot with multiple annotation options

Usage

```r
manhattanly(x, col = c("#969696", "#252525"), point_size = 5,
labelchr = NULL, suggestiveline = -log10(1e-05),
suggestiveline_color = "blue", suggestiveline_width = 1,
genomewideline = -log10(5e-08), genomewideline_color = "red",
genomewideline_width = 1, highlight = NULL, highlight_color = "#00FF00",
showlegend = FALSE, showgrid = FALSE, xlab = NULL, ylab = "-log10(p)",
title = "Manhattan Plot", ...)
```

Arguments

- **x**: Can be an object of class `manhattanr` produced by the `manhattanr` function or a data.frame which must contain at least the following three columns:
 - the chromosome number
 - genomic base-pair position
 - a numeric quantity to plot such as a p-value or z-score

- **col**: A character vector indicating the colors of each chromosome. If the number of colors specified is less than the number of unique chromosomes, then the elements will be recycled. Can be Hex Codes as well.

- **point_size**: A numeric indicating the size of the points on the plot. Default is 5

- **labelchr**: A character vector equal to the number of chromosomes specifying the chromosome labels (e.g., c(1:22, "X", "Y", "MT")). Default is NULL, meaning that the actual chromosome numbers will be used.

- **suggestiveline**: Where to draw a "suggestive" line. Default is -log10(1e-5). Set to FALSE to disable.
suggestiveline_color
 color of "suggestive" line. Only used if suggestiveline is not set to FALSE. Default is "blue".

suggestiveline_width
 Width of suggestiveline. Default is 1.

genomewideline
 Where to draw a "genome-wide significant" line. Default $-\log_{10}(5e-8)$. Set to FALSE to disable.

genomewideline_color
 color of "genome-wide significant" line. Only used if genomewideline is not set to FALSE. Default is "red".

genomewideline_width
 Width of genomewideline. Default is 1.

highlight
 A character vector of SNPs in your dataset to highlight. These SNPs should all be in your dataset. Default is NULL which means that nothing is highlighted.

highlight_color
 Color used to highlight points. Only used if highlight argument has been specified

showlegend
 Should a legend be shown. Default is FALSE.

showgrid
 Should gridlines be shown. Default is FALSE.

xlab
 X-axis label. Default is NULL which means that the label is automatically determined by the manhattanr function. Specify here to overwrite the default.

ylab
 Y-axis label. Default is "$-\log_{10}(p)$".

title
 Title of the plot. Default is "Manhattan Plot"
...

other parameters passed to manhattanr

Value

An interactive manhattan plot.

Note

This package is inspired by the qqman package by Stephen Turner. Much of the plot format and pre-processing is the same. This package provides additional annotation options and builds on the plotly d3.js engine. These plots can be included in Shiny apps, Rmarkdown documents or embedded in websites using simple HTML code.

See Also

manhattanr, HapMap, significantSNP, manhattan, https://github.com/stephenturner/qqman, D3ManhattanPlots

Examples

Not run:
library(manhattanly)
manhattanly(HapMap)
manhattanr

highlight SNPs of interest
'signicantSNP' is a character vector of SNPs included in this package
manhattanly(HapMap, snp = "SNP", highlight = significantSNP)

End(Not run)

manhattanr

Creates a manhattanr object

Description

An object of class manhattanr includes all the needed information for producing a manhattan plot. The goal is to separate the pre-processing of the manhattan plot elements from the graphical rendering of the object, which could be done using any graphical device including `plot_ly` and `plot` in base R.

Usage

```r
manhattanr(x, chr = "CHR", bp = "BP", p = "P", snp, gene, annotation1, annotation2, logp = TRUE, ...)
```

Arguments

- `x` A data.frame which must contain at least the following three columns:
 - the chromosome number
 - genomic base-pair position
 - a numeric quantity to plot such as a p-value or zscore
- `chr` A string denoting the column name for the chromosome. Default is `chr = "CHR"`. This column must be numeric or integer. Minimum number of chromosomes required is 1. If you have X, Y, or MT chromosomes, be sure to renumber these 23, 24, 25, etc.
- `bp` A string denoting the column name for the chromosomal position. Default is `bp = "BP"`. This column must be numeric or integer.
- `p` A string denoting the column name for the numeric quantity to be plotted on the y-axis. Default is `p = "P"`. This column must be numeric or integer. This does not have to be a p-value. It can be any numeric quantity such as peak heights, bayes factors, test statistics. If it is not a p-value, make sure to set `logp = FALSE`.
- `snp` A string denoting the column name for the SNP names (e.g. rs number). More generally, this column could be anything that identifies each point being plotted. For example, in an Epigenomewide association study (EWAS) this could be the probe name or cg number. This column should be a character. This argument is optional, however it is necessary to specify if you want to highlight points on the plot using the highlight argument in the `manhattanly` function
gene A string denoting the column name for the GENE names. This column could be a character or numeric. More generally this could be any annotation information that you want to include in the plot. This argument is optional.

annotation1 A string denoting the column name for an annotation. This column could be a character or numeric. This could be any annotation information that you want to include in the plot (e.g. zscore, effect size, minor allele frequency). This argument is optional.

annotation2 A string denoting the column name for an annotation. This column could be a character or numeric. This could be any annotation information that you want to include in the plot (e.g. zscore, effect size, minor allele frequency). This argument is optional.

logp If TRUE, the -log10 of the p-value is plotted. It isn’t very useful to plot raw p-values, but plotting the raw value could be useful for other genome-wide plots, for example, peak heights, bayes factors, test statistics, other “scores” etc.

... currently ignored

Value
A list object of class manhattanr with the following elements

data processed data to be used for plotting
xlabel The label of the x-axis which is determined by the number of chromosomes present in the data
ticks the coordinates on the x-axis of where the tick marks should be placed
labs the labels for each tick. This defaults to the chromosome number but can be changed in the manhattanly function
nchr the number of unique chromosomes present in the data
pName, snpName, geneName, annotation1Name, annotation2Name The names of the columns corresponding to the data provided. This information is used for annotating the plot in the manhattanly function

Source
The pre-processing is mostly the same as the manhattan function from the qqman package by Stephen Turner

See Also
manhattanly, https://github.com/stephenturner/qqman, D3ManhattanPlots

Examples
HapMap dataset included in this package already has columns named P, CHR and BP
library(manhattanly)
DT <- manhattanr(HapMap)
class(DT)
head(DT[1"data"[]])
#include snp and gene information
DT2 <- manhattanr(HapMap, snp = "SNP", gene = "GENE")
head(DT2[["data"]])

qqly

Creates a plotly Q-Q plot

Description

Creates an interactive Q-Q plot with multiple annotation options

Usage

```r
qqly(x, col = "<<color code>>", size = 1, type = 20, abline_col = "red",
    abline_size = 0.5, abline_type = 1, highlight = NULL,
    highlight_color = "<color code>", xlab = "Expected -log10(p)",
    ylab = "Observed -log10(p)", title = "Q-Q Plot", ...)
```

Arguments

- **x** Can be an object of class qqr produced by the qqr function or a data.frame which must contain at least the following column:
 - a p-value, must be numeric
- **col** A character indicating the color of the points. Can be Hex Codes as well.
- **size** A numeric specifying the size of the points. Default is 1
- **type** An integer between 0 and 25 specifying the point shape. Default is 20 (filled circle). See R Cookbook for complete list
- **abline_col** A character indicating the color of the 45 degree diagonal line. Can be Hex Codes as well. Default is "red".
- **abline_size** A numeric indicating the size of the 45 degree diagonal line. Default is 0.5.
- **abline_type** An integer between 0 and 6 specifying the line type of the diagonal 45 degree line. Default is 1 (solid line). See R Cookbook for complete list
- **highlight** A character vector of SNPs in your dataset to highlight. These SNPs should all be in your dataset. Default is NULL which means that nothing is highlighted.
- **highlight_color** Color used to highlight points. Only used if highlight argument has been specified
- **xlab** X-axis label. Default is "Expected -log10(p)"
- **ylab** Y-axis label. Default is "Observed -log10(p)"
- **title** Title of the plot. Default is "Q-Q Plot"
- ... other parameters passed to qqr
Value

An interactive Q-Q plot.

Note

This function first creates a ggplot2 object and then converts it to a plotly object using `ggplotly`

See Also

qqr, HapMap, significantSNP, qq, https://github.com/stephenturner/qqman

Examples

```r
## Not run:
library(manhattanly)
qqlpy(HapMap)

# highlight SNPs of interest
# 'significantSNP' is a character vector of SNPs included in this package
qqlpy(HapMap, snp = "SNP", highlight = significantSNP)

## End(Not run)
```

qqr

Creates a qq object

Description

An object of class `qq` includes all the needed information for producing a quantile-quantile plot of p-values. The goal is to separate the pre-processing of the quantile-quantile plot elements from the graphical rendering of the object, which could be done using any graphical device including `plot_ly` and `plot` in base R.

Usage

`qqr(x, p = "P", snp, gene, annotation1, annotation2, ...)`

Arguments

- `x`: A data.frame which must contain at least the following column:
 - a p-value, must be numeric
- `p`: A string denoting the column name for the p-values. Default is `p = "P"`.
 - This column must be numeric or integer.
 - Should not have missing, NA, NaN, or NULL values and should be between 0 and 1.
snpl A string denoting the column name for the SNP names (e.g. rs number). More
generally, this column could be anything that identifies each point being plotted.
For example, in an Epigenomewide association study (EWAS) this could be the
probe name or cg number. This column should be a character. This argument
is optional, however it is necessary to specify if you want to highlight points on
the plot using the highlight argument in the qqlx function

gene A string denoting the column name for the GENE names. This column could be
a character or numeric. More generally this could be any annotation informa-
tion that you want to include in the plot. This argument is optional.

annotation1 A string denoting the column name for an annotation. This column could be
a character or numeric. This could be any annotation information that you
want to include in the plot (e.g. zscore, effect size, minor allele frequency). This
argument is optional.

annotation2 A string denoting the column name for an annotation. This column could be
a character or numeric. This could be any annotation information that you
want to include in the plot (e.g. zscore, effect size, minor allele frequency). This
argument is optional.

... currently ignored

Value
An list object of class qqr with the following elements

- **data** processed data to be used for plotting the Q-Q plot including the observed and expected p-
values on the -log10 scale

- **pName, snpName, geneName, annotation1Name, annotation2Name** The names of the columns
corresponding to the data provided. This information is used for annotating the plot in the qqlx
function

Note
This function will return an error if any of the p-values are NA, less than 0 or greater than 1

Source
The calculation of the expected p-value is taken from the qq function from the qqman package by
Stephen Turner

See Also
qqlx

Examples
library(manhattanly)
qqrObj <- qqr(HapMap, snp = "SNP", highlight = significantSNP)
class(qqrObj)
head(qqrObj[["data"]])
significantSNP \textit{Character vector of SNPs to highlight}

\section*{Description}

SNP rs identifiers from \texttt{HapMap} dataset that are significant at p-value < 1e-6

\section*{Usage}

\texttt{significantSNP}

\section*{Format}

A character vector with 20 elements

\section*{See Also}

\texttt{HapMap}

\section*{volcanolyno}

\textit{Creates a plotly volcano plot}

\section*{Description}

Creates an interactive volcano plot with multiple annotation options

\section*{Usage}

\texttt{volcanolyno(x, col = c("#252525"), point_size = 5, effect_size_line = c(-1, 1), effect_size_line_color = "grey", effect_size_line_width = 0.5, effect_size_line_type = 2, genomewideline = -log10(1e-05), genomewideline_color = "grey", genomewideline_width = 0.5, genomewideline_type = 2, highlight = NULL, highlight_color = "red", xlab = NULL, ylab = "-log10(p)", title = "Volcano Plot", ...)}

\section*{Arguments}

\begin{itemize}
 \item \texttt{x} Can be an object of class volcanor produced by the \texttt{volcanor} function or a \texttt{data.frame} which must contain at least the following two columns:
 \begin{itemize}
 \item a p-value, must be numeric
 \item a measure of the strength of association, typically an odds ratio, regression coefficient or log fold change. Must be numeric
 \end{itemize}
 \item \texttt{col} A character of length 1 indicating the color of the points. Only the first argument will be used if more than one color is supplied. Can be \texttt{Hex Codes} as well.
 \item \texttt{point_size} A numeric indicating the size of the points on the plot. Default is 5
\end{itemize}
effect_size_line
Where to draw a "suggestive" line on the x-axis. Default is -1 and +1. Must be a vector of length 2. If a longer vector is supplied, only the first two elements will be used. First element must be smaller than second element. Set to FALSE to disable.

effect_size_line_color
color of "suggestive" line. Only used if effect_size_line is not set to FALSE. Default is "blue".

effect_size_line_width
Width of effect_size_line. Default is 1.

effect_size_line_type
An integer between 0 and 6 specifying the line type of the effect_size_line. Default is 1 (solid line). See R Cookbook for complete list

genomewideline
Where to draw a "genome-wide significant" line. Default -log10(1e-5). Set to FALSE to disable. If more than one element is provided, only the first will be used

genomewideline_color
color of "genome-wide significant" line. Only used if genomewideline is not set to FALSE. Default is "red".

genomewideline_width
Width of genomewideline. Default is 1.

genomewideline_type
An integer between 0 and 6 specifying the line type of the genomewideline. Default is 1 (solid line). See R Cookbook for complete list

highlight
A character vector of SNPs in your dataset to highlight. These SNPs should all be in your dataset. Default is NULL which means that all points that are both beyond genomewideline and effect_size_line are highlighted. Set to FALSE if you don't want any points highlighted.

highlight_color
Color used to highlight points. Only used if highlight argument has been specified

xlab
X-axis label. Default is NULL which means that the label is automatically determined by the volcanol function. Specify here to overwrite the default.

ylab
Y-axis label. Default is "-log10(p)".

title
Title of the plot. Default is "Volcano Plot"

Value
An interactive volcano plot.

Note
This package is inspired by the qqman package by Stephen Turner. Much of the plot format and pre-processing is the same. This package provides additional annotation options and builds on the plotly d3.js engine. These plots can be included in Shiny apps, Rmarkdown documents or embedded in websites using simple HTML code.
See Also

volcanor, HapMap, significantSNP

Examples

```r
## Not run:
library(manhattanly)
volcanol(HapMap)

# highlight SNPs of interest
# 'signigicantSNP' is a character vector of SNPs included in this package
volcanol(HapMap, snp = "SNP", highlight = significantSNP)

## End(Not run)
```

volcanor
Creates a volcano object

Description

An object of class volcano includes all the needed information for producing a volcano plot of p-values against effect sizes or fold-changes. The goal is to separate the pre-processing of the volcano plot elements from the graphical rendering of the object, which could be done using any graphical device including `plot_ly` and `plot` in base R.

Usage

```r
volcanor(x, p = "p", effect_size = "EFFECTSIZE", snp, gene, annotation1, 
         annotation2, ...)
```

Arguments

- `x` A data frame which must contain at least the following columns:
 - a p-value, must be numeric
 - a measure of the strength of association, typically an odds ratio, regression coefficient or log fold change. Must be numeric
- `p` A character string denoting the column name for the p-values. Default is `p = "p"`. This column must be numeric or integer. Should not have missing, NA, NaN, or NULL values and should be between 0 and 1.
- `effect_size` A string denoting the column name for the effect size. Default is `effect_size = "EFFECTSIZE"`. This column must be numeric or integer. Should not have missing, NA, NaN, or NULL values.
- `snp` A string denoting the column name for the SNP names (e.g. rs number). This argument is optional but required if you want to highlight any points. More generally, this column could be anything that identifies each point being plotted. For example, in an Epigenomewide association study (EWAS) this could be the probe name or cg number. This column should contain characters. This argument is necessary. `volcanol` function
gene A string denoting the column name for the GENE names. This column could be a character or numeric. More generally this could be any annotation information that you want to include in the plot. This argument is optional.

annotation1 A string denoting the column name for an annotation. This column could be a character or numeric. This could be any annotation information that you want to include in the plot (e.g. zscore, effect size, minor allele frequency). This argument is optional.

annotation2 A string denoting the column name for an annotation. This column could be a character or numeric. This could be any annotation information that you want to include in the plot (e.g. zscore, effect size, minor allele frequency). This argument is optional.

... currently ignored

Value
An list object of class volcano with the following elements

- **data** processed data to be used for plotting the volcano plot including the observed and expected p-values on the -log10 scale

- **pName, snpName, geneName, annotation1Name, annotation2Name** The names of the columns corresponding to the data provided. This information is used for annotating the plot in the volcano function

Note
This function will return an error if any of the p-values are NA, less than 0 or greater than 1

See Also
volcano

Examples

```r
library(manhattanly)
volcanorObj <- volcano(HapMap)
class(volcanorObj)
head(volcanorObj)
```
Index

*Topic **datasets**
 HapMap, 2
 significantSNP, 10

ggplotly, 8

HapMap, 2, 4, 8, 10, 12

manhattan, 4, 6
manhattanly, 3, 5, 6
manhattanr, 3, 4, 5

plot, 5, 8, 12
plot_ly, 5, 8, 12
plotly, 4, 11

qq, 8, 9
qqly, 7, 9
qqr, 7, 8, 8

significantSNP, 4, 8, 10, 12

volcanoly, 10, 12, 13
volcanor, 10–12, 12