Package ‘maptpx’

May 28, 2020

Title MAP Estimation of Topic Models
Version 1.9-7
Author Matt Taddy <mataddy@gmail.com>
Depends R (>= 2.10), slam
Suggests MASS
Description Maximum a posteriori (MAP) estimation for topic models (i.e., Latent Dirichlet Allocation) in text analysis, as described in Taddy (2012) ‘On estimation and selection for topic models’. Previous versions of this code were included as part of the ‘textir’ package. If you want to take advantage of openmp parallelization, uncomment the relevant flags in src/MAKEVARS before compiling.
Maintainer Matt Taddy <mataddy@gmail.com>
License GPL-3
URL http://taddylab.com
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-05-28 10:50:06 UTC

R topics documented:
counts .. 2
predict.topics 2
rdir ... 4
topics ... 4
topicVar 7

Index 9
Utilities for count matrices

Description
Tools for manipulating (sparse) count matrices.

Usage
normalize(x, byrow=TRUE)
stm_tfidf(x)

Arguments
x A simple_triplet_matrix or matrix of counts.
byrow Whether to normalize by row or column totals.

Value
normalize divides the counts by row or column totals, and stm_tfidf returns a matrix with entries \(x_{ij} \log[n_i/(d_j+1)] \), where \(x_{ij} \) is term-j frequency in document-i, and \(d_j \) is the number of documents containing term-j.

Author(s)
Matt Taddy <mataddy@gmail.com>

Examples
normalize(matrix(1:9, ncol=3))
normalize(matrix(1:9, ncol=3), byrow=FALSE)

(x <- matrix(rbinom(15, size=2, prob=.25), ncol=3))
stm_tfidf(x)

predict.topics

Description
Predict function for Topic Models

Usage
S3 method for class 'topics'
predict(object, newcounts, loglhd=FALSE, ...)
predict.topics

Arguments

object An output object from the topics function, or the corresponding matrix of estimated topics.

newcounts An \(nrow(object \cdot theta)\)-column matrix of multinomial phrase/category counts for new documents/observations. Can be either a simple matrix or a simple_triplet_matrix.

loglhd Whether or not to calculate and return \(\sum(x \cdot \log(p))\), the un-normalized log likelihood.

... Additional arguments to the undocumented internal tpx* functions.

Details

Under the default mixed-membership topic model, this function uses sequential quadratic programming to fit topic weights \(\Omega\) for new documents. Estimates for each new \(\omega_i\) are, conditional on \(object \cdot theta\), MAP in the (K-1)-dimensional logit transformed parameter space.

Value

The output is an \(nrow(newcounts)\) by \(object \cdot K\) matrix of document topic weights, or a list with including these weights as \(W\) and the log likelihood as \(L\).

Author(s)

Matt Taddy <mataddy@gmail.com>

References

See Also

topics, plot.topics, summary.topics, congress109

Examples

```r
## Simulate some data
omega <- t(rdir(500, rep(1/10,10)))
theta <- rdir(10, rep(1/1000,1000))
Q <- omega%*%t(theta)
counts <- matrix(ncol=1000, nrow=500)
totals <- rpois(500, 200)
for(i in 1:500){ counts[i,] <- rmultinom(1, size=totals[i], prob=Q[i,]) }

## predict omega given theta
W <- predict.topics( theta, counts )
plot(W, omega, pch=21, bg=8)
```
rdir
Dirichlet RNG

Description

Generate random draws from a Dirichlet distribution

Usage

```r
rdir(n, alpha)
```

Arguments

- `n`
The number of observations.
- `alpha`
A vector of scale parameters, such that $E[p_j] = \alpha_j / \sum_i \alpha_i$.

Value

An `n` column matrix containing the observations.

Author(s)

Matt Taddy <mataddy@gmail.com>

Examples

```r
rdir(3, rep(1, 6))
```

topics
Estimation for Topic Models

Description

MAP estimation of Topic models

Usage

```r
topics(counts, K, shape=NULL, initopics=NULL, tol=0.1, bf=FALSE, kill=2, ord=TRUE, verb=1, ...)
```
Arguments

`counts` A matrix of multinomial response counts in `nrow(counts)` phrases/categories for `ncol(counts)` documents/observations. Can be either a simple matrix or a `simple_triplet_matrix`.

`K` The number of latent topics. If `length(K)>1`, `topics` will find the Bayes factor (vs a null single topic model) for each element and return parameter estimates for the highest probability `K`.

`shape` Optional argument to specify the Dirichlet prior concentration parameter as shape for topic-phrase probabilities. Defaults to `1/(K*ncol(counts))`. For fixed single `K`, this can also be a `ncol(counts)` by `K` matrix of unique shapes for each topic element.

`inittopics` Optional start-location for `\[\theta_1...\theta_K\]`, the topic-phrase probabilities. Dimensions must accord with the smallest element of `K`. If `NULL`, the initial estimates are built by incrementally adding topics.

`tol` Convergence tolerance: optimization stops, conditional on some extra checks, when the absolute posterior increase over a full parameter set update is less than `tol`.

`bf` An indicator for whether or not to calculate the Bayes factor for univariate `K`. If `length(K)>1`, this is ignored and Bayes factors are always calculated.

`kill` For choosing from multiple `K` numbers of topics (evaluated in increasing order), the search will stop after `kill` consecutive drops in the corresponding Bayes factor. Specify `kill=0` if you want Bayes factors for all elements of `K`.

`ord` If `TRUE`, the returned topics (columns of `theta`) will be ordered by decreasing usage (i.e., by decreasing `colSums(omega)`).

`verb` A switch for controlling printed output. `verb > 0` will print something, with the level of detail increasing with `verb`.

`...` Additional arguments to the undocumented internal `tpx*` functions.

Details

A latent topic model represents each i’th document’s term-count vector X_i (with $\sum_j x_{ij} = m_i$ total phrase count) as having been drawn from a mixture of K multinomials, each parameterized by topic-phrase probabilities θ_i, such that

$$X_i \sim MN(m_i, \omega_1\theta_1 + ... + \omega_K\theta_K).$$

We assign a K-dimensional Dirichlet(1/K) prior to each document’s topic weights $[\omega_1...\omega_K]$, and the prior on each θ_k is Dirichlet with concentration α. The `topics` function uses quasi-newton accelerated EM, augmented with sequential quadratic programming for conditional $\Omega|\Theta$ updates, to obtain MAP estimates for the topic model parameters. We also provide Bayes factor estimation, from marginal likelihood calculations based on a Laplace approximation around the converged MAP parameter estimates. If input `length(K)>1`, these Bayes factors are used for model selection. Full details are in Taddy (2011).
Value

An topics object list with entries

- **K** The number of latent topics estimated. If input length(K)>1, on output this is a single value corresponding to the model with the highest Bayes factor.
- **theta** The ncol(counts) by K matrix of estimated topic-phrase probabilities.
- **omega** The nrow(counts) by K matrix of estimated document-topic weights.
- **BF** The log Bayes factor for each number of topics in the input K, against a null single topic model.
- **D** Residual dispersion: for each element of K, estimated dispersion parameter (which should be near one for the multinomial), degrees of freedom, and p-value for a test of whether the true dispersion is > 1.
- **X** The input count matrix, in dgTMatrix format.

Note

Estimates are actually functions of the MAP (K-1 or p-1)-dimensional logit transformed natural exponential family parameters.

Author(s)

Matt Taddy <mataddy@gmail.com>

References

See Also

plot.topics, summary.topics, predict.topics, wsjibm, congress109, we8there

Examples

```r
## Simulation Parameters
K <- 10
n <- 100
p <- 100
omega <- t(rdir(n, rep(1/K,K)))
theta <- rdir(K, rep(1/p,p))

## Simulated counts
Q <- omega%*%t(theta)
counts <- matrix(ncol=p, nrow=n)
totals <- rpois(n, 100)
for(i in 1:n){ counts[i,] <- rmultinom(1, size=totals[i], prob=Q[i,]) }  

## Bayes Factor model selection (should choose K or nearby)
summary(simselect <- topics(counts, K=K+c(-5:5)), nwrd=0)
```
topicVar

MAP fit for given K
summary(simfit <- topics(counts, K=K, verb=2), n=0)

Adjust for label switching and plot the fit (color by topic)
toplab <- rep(0,K)
for(k in 1:K){ toplab[k] <- which.min(colSums(abs(simfit$theta-theta[,k]))) }
par(mfrow=c(1,2))
tpxcols <- matrix(rainbow(K), ncol=ncol(theta), byrow=TRUE)
plot(theta,simfit$theta[,toplab], ylab="fitted values", pch=21, bg=tpxcols)
plot(omega,simfit$omega[,toplab], ylab="fitted values", pch=21, bg=tpxcols)
title("True vs Fitted Values (color by topic)", outer=TRUE, line=-2)

The S3 method plot functions
par(mfrow=c(1,2))
plot(simfit, lgd.K=2)
plot(simfit, type="resid")

topicVar

topic variance

Description

Tools for looking at the variance of document-topic weights.

Usage

topicVar(counts, theta, omega)

logit(prob)

expit(eta)

Arguments

counts A matrix of multinomial response counts, as inputed to the topics or predict.topics functions.

theta A fitted topic matrix, as ouput from the topics or predict.topics functions.

omega A fitted document topic-weight matrix, as ouput from the topics or predict.topics functions.

prob A probability vector (positive and sums to one) or a matrix with probability vector rows.

eta A vector of the natural exponential family parameterization for a probability vector (with first category taken as null) or a matrix with each row the NEF parameters for a single observation.
Details

These function use the natural exponential family (NEF) parametrization of a probability vector $q_0...q_{K-1}$ with the first element corresponding to a 'null' category; that is, with $NEF(q) = e_1...e_{K-1}$ and setting $e_0 = 0$, the probabilities are

$$q_k = \frac{\exp[e_k]}{1 + \sum \exp[e_j]}.$$

Refer to Taddy (2012) for details.

Value

`topicVar` returns an array with dimensions $(K-1, K-1, n)$, where $K = \text{ncol(omega)} = \text{ncol(theta)}$ and $n = \text{nrow(counts)} = \text{nrow(omega)}$, filled with the posterior covariance matrix for the NEF parametrization of each row of `omega`. Utility `logit` performs the NEF transformation and `expit` reverses it.

Author(s)

Matt Taddy <mataddy@gmail.com>

References

See Also

topics, predict.topics
Index

counts, 2
expit (topicVar), 7
logit (topicVar), 7
normalize (counts), 2
predict.topics, 2
rdir, 4
stm_tfidf (counts), 2
topics, 4
topicVar, 7