Package ‘maraca’

May 8, 2023

Version 0.5.0
Type Package
Title The Maraca Plot: Visualization of Hierarchical Composite Endpoints in Clinical Trials
License Apache License (>= 2)
Description Library that supports visual interpretation of hierarchical composite endpoints (HCEs). HCEs are complex constructs used as primary endpoints in clinical trials, combining outcomes of different types into ordinal endpoints, in which each patient contributes the most clinically important event (one and only one) to the analysis.
URL https://github.com/AstraZeneca/maraca
BugReports https://github.com/AstraZeneca/maraca/issues
Encoding UTF-8
LazyData true
Depends R (>= 3.5)
Imports dplyr (>= 1.0), tidyr (>= 1.2), ggplot2 (>= 3.3), hce (>= 0.0.2), checkmate (>= 2.1)
RoxygenNote 7.2.1
Suggests knitr (>= 1.39), here (>= 1.0.1), lintr (>= 3.0.0), withr (>= 2.5.0), testthat (>= 3.1), rmarkdown
NeedsCompilation no
VignetteBuilder knitr
Author Martin Karpefors [aut], Samvel B. Gasparyan [aut], Monika Huhn [aut, cre], Stefano Borini [ctb]
Maintainer Monika Huhn <monika.huhn@astrazeneca.com>
Repository CRAN
Date/Publication 2023-05-08 18:20:09 UTC
**R topics documented:**

- `hce_scenario_a` ................................................. 2
- `hce_scenario_b` ................................................. 3
- `hce_scenario_c` ................................................. 3
- `hce_scenario_d` ................................................. 4
- `hce_scenario_kccq3` ............................................ 5
- `maraca` .......................................................... 5
- `plot.hce` ........................................................ 7
- `plot.maraca` .................................................... 8
- `plot_maraca` ..................................................... 9
- `validate_maraca_plot` ....................................... 10

**Index**

<table>
<thead>
<tr>
<th>hce_scenario_a</th>
<th>Example HCE scenario A.</th>
</tr>
</thead>
</table>

**Description**

This is example data frame containing the example for scenario A.

**Usage**

```r
data(hce_scenario_a)
```

**Format**

A data frame with 1000 rows.

- **X** Row number
- **SUBJID** The patient identifier
- **GROUP** Which type of outcome the row belongs to
- **GROUPN** Not required for computation. The group as an arbitrary numerical value
- **AVAL0** Contains both the time-to-event data for hard outcomes and the continuous data for the continuous outcome
- **AVAL** Not required for computation. Create an ordered sequence of values where the AVAL0 value associated with the patient is offset by GROUPN
- **TRTP** Treatment group
Example HCE scenario B.

**Description**

This is example data frame containing the example for scenario B.

**Usage**

```r
data(hce_scenario_b)
```

**Format**

A data frame with 1000 rows.

- **X** Row number
- **SUBJID** The patient identifier
- **GROUP** Which type of outcome the row belongs to
- **GROUPN** Not required for computation. The group as an arbitrary numerical value
- **AVAL0** Contains both the time-to-event data for hard outcomes and the continuous data for the continuous outcome
- **AVAL** Not required for computation. Create an ordered sequence of values where the AVAL0 value associated with the patient is offset by GROUPN
- **TRTP** Treatment group

Example HCE scenario C.

**Description**

This is example data frame containing the example for scenario C.

**Usage**

```r
data(hce_scenario_c)
```
**Format**

A data frame with 1000 rows.

X  Row number

SUBJID  The patient identifier

GROUP  Which type of outcome the row belongs to

GROUPN  Not required for computation. The group as an arbitrary numerical value

AVAL0  Contains both the time-to-event data for hard outcomes and the continuous data for the continuous outcome

AVAL  Not required for computation. Create an ordered sequence of values where the AVAL0 value associated with the patient is offset by GROUPN

TRTP  Treatment group

---

**hce_scenario_d**

*Example HCE scenario D.*

**Description**

This is example data frame containing the example for scenario D.

**Usage**

```r
data(hce_scenario_d)
```

**Format**

A data frame with 1000 rows.

X  Row number

SUBJID  The patient identifier

GROUP  Which type of outcome the row belongs to

GROUPN  Not required for computation. The group as an arbitrary numerical value

AVAL0  Contains both the time-to-event data for hard outcomes and the continuous data for the continuous outcome

AVAL  Not required for computation. Create an ordered sequence of values where the AVAL0 value associated with the patient is offset by GROUPN

TRTP  Treatment group
Example HCE scenario KCCQ3.

Description

This is example data frame containing the example for scenario KCCQ3.

Usage

data(hce_scenario_kccq3)

Format

A data frame with 5000 rows.

- **SUBJID**: The patient identifier
- **GROUP**: Which type of outcome the row belongs to
- **GROUPN**: Not required for computation. The group as an arbitrary numerical value
- **AVAL0**: Contains both the time-to-event data for hard outcomes and the continuous data for the continuous outcome
- **AVAL**: Not required for computation. Create an ordered sequence of values where the AVAL0 value associated with the patient is offset by GROUPN
- **TRTP**: Treatment group
- **HFHT**: Not needed
- **SEED**: Not needed

maraca  

**maraca** package.

Description

Creates the maraca analysis object as an S3 object of class 'maraca'.

Usage

```r
maraca(
  data,
  tte_outcomes,
  continuous_outcome,
  arm_levels = c(active = "active", control = "control"),
  column_names = c(outcome = "outcome", arm = "arm", value = "value"),
  fixed_followup_days,
  compute_win_odds = FALSE
)
```

## S3 method for class 'maraca'
print(x, ...)

```r
```
Arguments

data A data frame with columns for the following information: - outcome column, containing the time-to-event and continuous labels - arm column, containing the arm a given row belongs to. - value column, containing the values.
tte_outcomes A vector of strings containing the time-to-event outcome labels. The order is kept for the plot.
continuous_outcome A single string containing the continuous outcome label.
arm_levels A named vector of exactly two strings, mapping the values used for the active and control arms to the values used in the data. The names must be "active" and "control" in this order. Note that this parameter only need to be specified if you have labels different from "active" and "control".
column_names A named vector to map the outcome, arm, value to the associated column names in the data. The vector names must match in order "outcome", "arm", and "value". Note that this parameter only need to be specified if you have column names different from the ones above.
fixed_followup_days A mandatory specification of the integer number of fixed follow-up days in the study.
compute_win_odds If TRUE compute the win odds, otherwise (default) don’t compute them.
x an object of class maraca
... further arguments passed to or from other methods.

Value

An object of class 'maraca'. The object information must be considered private.

Examples

data(hce_scenario_a)
hce_test <- maraca(
data = hce_scenario_a,
tte_outcomes = c("Outcome I", "Outcome II", "Outcome III", "Outcome IV"),
continuous_outcome = "Continuous outcome",
fixed_followup_days = 3 * 365,
column_names = c(outcome = "GROUP", arm = "TRTP", value = "AVAL0"),
arm_levels = c(active = "Active", control = "Control"),
compute_win_odds = TRUE)
plot.hce

Generic function to plot the hce object using plot().

Description

Generic function to plot the hce object using plot().

Usage

```r
## S3 method for class 'hce'
plot(
  x,
  continuous_outcome = "C",
  continuous_grid_spacing_x = 10,
  trans = "identity",
  density_plot_type = "default",
  vline_type = "median",
  fixed_followup_days = NULL,
  compute_win_odds = FALSE,
  ...
)
```

Arguments

- `x`: an object of S3 class 'hce'.
- `continuous_outcome`: A single string containing the continuous outcome label. Default value "C".
- `continuous_grid_spacing_x`: The spacing of the x grid to use for the continuous section of the plot.
- `trans`: the transformation to apply to the data before plotting. The accepted values are the same that ggplot2::scale_x_continuous.
- `density_plot_type`: The type of plot to use to represent the density. Accepts "default", "violin", "box" and "scatter".
- `vline_type`: what the vertical dashed line should represent. Accepts "median", "mean", "none".
- `fixed_followup_days`: Not needed if HCE object contains information on fixed follow-up days in the study (column TTEfixed). Otherwise, this argument must be specified. Note: If argument is specified and HCE object contains TTEfixed column, then fixed_followup_days argument is used.
- `compute_win_odds`: If TRUE compute the win odds, otherwise (default) don’t compute them.
- `...`: not used
Value

Used for side effect. Plots the maraca object.

Examples

```r
set.seed(31337)
Rates_A <- c(1.72, 1.74, 0.58, 1.5, 1)
Rates_P <- c(2.47, 2.24, 2.9, 4, 6)
HCE <- hce::simHCE(n = 2500, TTE_A = Rates_A, TTE_P = Rates_P,
                  CM_A = -3, CM_P = -6, CSD_A = 16, CSD_P = 15, fixedfy = 3)
plot(HCE)
plot(HCE, fixed_followup_days = 3 * 365)
```

Description

Generic function to plot the maraca object using plot().

Usage

```r
## S3 method for class 'maraca'
plot(
  x,
  continuous_grid_spacing_x = 10,
  trans = "identity",
  density_plot_type = "default",
  vline_type = "median",
  ...
)
```

Arguments

- `x`: An object of S3 class `maraca`.
- `continuous_grid_spacing_x`: The spacing of the x grid to use for the continuous section of the plot.
- `trans`: The transformation to apply to the data before plotting. The accepted values are the same that `ggplot2::scale_x_continuous`.
- `density_plot_type`: The type of plot to use to represent the density. Accepts "default", "violin", "box" and "scatter".
- `vline_type`: what the vertical dashed line should represent. Accepts "median", "mean", "none".
- `...`: not used
Value

Used for side effect. Plots the maraca object.

Examples

data(hce_scenario_a)

hce_test <- maraca(
  data = hce_scenario_a,
  tte_outcomes = c("Outcome I", "Outcome II", "Outcome III", "Outcome IV"),
  continuous_outcome = "Continuous outcome",
  fixed_followup_days = 3 * 365,
  column_names = c(outcome = "GROUP", arm = "TRTP", value = "AVAL0"),
  arm_levels = c(active = "Active", control = "Control"),
  compute_win_odds = TRUE
)

plot(hce_test)
validate_maraca_plot

Value

A ggplot2 object of the data. This function will not render the plot immediately. You have to print() the returned object for it to be displayed.

Examples

data(hce_scenario_a)
hce_test <- maraca(
data = hce_scenario_a,
tte_outcomes = c("Outcome I", "Outcome II", "Outcome III", "Outcome IV"),
continuous_outcome = "Continuous outcome",
fixed_followup_days = 3 * 365,
column_names = c(outcome = "GROUP", arm = "TRTP", value = "AVAL0"),
arm_levels = c(active = "Active", control = "Control"),
compute_win_odds = TRUE
)
plot <- plot_maraca(hce_test)

validate_maraca_plot

Generic function to generate validation data for the maraca plot object.

Description

This will produce the 4 validation datasets.

Usage

validate_maraca_plot(x, ...)

Arguments

x An object of S3 class 'maracaPlot'.
...
Not used.

Value

Creates a list of datasets for validation purposes.

Examples

data(hce_scenario_a)
hce_test <- maraca(
data = hce_scenario_a,
tte_outcomes = c("Outcome I", "Outcome II", "Outcome III", "Outcome IV"),
continuous_outcome = "Continuous outcome",
fixed_followup_days = 3 * 365,
column_names = c(outcome = "GROUP", arm = "TRTP", value = "AVAL0"),
...
arm_levels = c(active = "Active", control = "Control"),
compute_win_odds = TRUE
)
p <- plot(hce_test)
validate_maraca_plot(p)
Index

* datasets
  hce_scenario_a, 2
  hce_scenario_b, 3
  hce_scenario_c, 3
  hce_scenario_d, 4
  hce_scenario_kccq3, 5

hce_scenario_a, 2
hce_scenario_b, 3
hce_scenario_c, 3
hce_scenario_d, 4
hce_scenario_kccq3, 5

maraca, 5

plot.hce, 7
plot.maraca, 8
plot_maraca, 9
print.maraca(maraca), 5

validate_maraca_plot, 10