The markovchain Package: A Package for Easily Handling Discrete Markov Chains in R

Giorgio Alfredo Spedicato, Tae Seung Kang, and Sai Bhargav Yalamanchi

Abstract

The markovchain package aims to fill a gap within the R framework providing S4 classes and methods for easily handling discrete time Markov chains, homogeneous and simple inhomogeneous ones as well as continuous time Markov chains. The S4 classes for handling and analysing discrete and continuous time Markov chains are presented, as well as functions and method for performing probabilistic and statistical analysis. Finally, some examples in which the package’s functions are applied to Economics, Finance and Natural Sciences topics are shown.

Keywords: discrete time Markov chains, continuous time Markov chains, transition matrices, communicating classes, periodicity, first passage time, stationary distributions..

1. Introduction

Markov chains represent a class of stochastic processes of great interest for the wide spectrum of practical applications. In particular, discrete time Markov chains (DTMC) permit to model the transition probabilities between discrete states by the aid of matrices. Various R packages deal with models that are based on Markov chains:

- msm (?) handles Multi-State Models for panel data;
- mcmcR (?) implements Monte Carlo Markov Chain approach;
- hmm (?) fits hidden Markov models with covariates;
- mstate fits Multi-State Models based on Markov chains for survival analysis (?).

Nevertheless, the R statistical environment (?) seems to lack a simple package that coherently defines S4 classes for discrete Markov chains and allows to perform probabilistic analysis, statistical inference and applications. For the sake of completeness, markovchain is the second package specifically dedicated to DTMC analysis, being DTMCPack (?) the first one. Notwithstanding, markovchain package (?) aims to offer more flexibility in handling DTMC than other existing solutions, providing S4 classes for both homogeneous and non-homogeneous Markov chains as well as methods suited to perform statistical and probabilistic analysis.

The markovchain package depends on the following R packages: expm (?) to perform efficient matrices powers; igraph (?) to perform pretty plotting of markovchain objects and matlab (?), that contains functions for matrix management and calculations that emulate
those within MATLAB environment. Moreover, other scientific softwares provide functions specifically designed to analyze DTMC, as Mathematica 9 (?).

The paper is structured as follows: Section 2 briefly reviews mathematics and definitions regarding DTMC, Section 3 discusses how to handle and manage Markov chain objects within the package, Section 4 and Section 5 show how to perform probabilistic and statistical modelling, while Section 6 presents some applied examples from various fields analyzed by means of the markovchain package.

2. Review of core mathematical concepts

2.1. General Definitions

A DTMC is a sequence of random variables $X_1, X_2, \ldots, X_n, \ldots$ characterized by the Markov property (also known as memoryless property, see Equation 1). The Markov property states that the distribution of the forthcoming state X_{n+1} depends only on the current state X_n and doesn’t depend on the previous ones $X_{n-1}, X_{n-2}, \ldots, X_1$.

$$Pr(X_{n+1} = x_{n+1} | X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = Pr(X_{n+1} = x_{n+1} | X_n = x_n).$$ (1)

The set of possible states $S = \{s_1, s_2, \ldots, s_r\}$ of X_n can be finite or countable and it is named the state space of the chain.

The chain moves from one state to another (this change is named either ’transition’ or ’step’) and the probability p_{ij} to move from state s_i to state s_j in one step is named transition probability:

$$p_{ij} = Pr(X_1 = s_j | X_0 = s_i).$$ (2)

The probability of moving from state i to j in n steps is denoted by $p_{ij}^{(n)} = Pr(X_n = s_j | X_0 = s_i)$. A DTMC is called time-homogeneous if the property shown in Equation 3 holds. Time homogeneity implies no change in the underlying transition probabilities as time goes on.

$$Pr(X_{n+1} = s_j | X_n = s_i) = Pr(X_n = s_j | X_{n-1} = s_i).$$ (3)

If the Markov chain is time-homogeneous, then $p_{ij} = Pr(X_{k+1} = s_j | X_k = s_i)$ and $p_{ij}^{(n)} = Pr(X_{n+k} = s_j | X_k = s_i)$, where $k > 0$.

The probability distribution of transitions from one state to another can be represented into a transition matrix $P = (p_{ij})_{i,j}$, where each element of position (i, j) represents the transition probability p_{ij}. E.g., if $r = 3$ the transition matrix P is shown in Equation 4

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}. \quad (4)$$

The distribution over the states can be written in the form of a stochastic row vector x (the term stochastic means that $\sum_i x_i = 1, x_i \geq 0$): e.g., if the current state of x is s_2, $x = (0 1 0)$.
As a consequence, the relation between \(x^{(1)} \) and \(x^{(0)} \) is \(x^{(1)} = x^{(0)}P \) and, recursively, we get
\[
x^{(2)} = x^{(0)}P^2 \quad \text{and} \quad x^{(n)} = x^{(0)}P^n, \quad n > 0.
\]

DTMC are explained in most theory books on stochastic processes, see \(? \) and \(? \) for example. Valuable references online available are: \(?, \) \(? \) and \(? \).

2.2. Properties and classification of states

A state \(s_j \) is said accessible from state \(s_i \) (written \(s_i \to s_j \)) if a system started in state \(s_i \) has a positive probability to reach the state \(s_j \) at a certain point, i.e., \(\exists n > 0 : p^n_{ij} > 0 \). If both \(s_i \to s_j \) and \(s_j \to s_i \), then \(s_i \) and \(s_j \) are said to communicate.

A communicating class is defined to be a set of states that communicate. A DTMC can be composed by one or more communicating classes. If the DTMC is composed by only one communicating class (i.e., if all states in the chain communicate), then it is said irreducible. A communicating class is said to be closed if no states outside of the class can be reached from any state inside it.

If \(p_{ii} = 1 \), \(s_i \) is defined as absorbing state: an absorbing state corresponds to a closed communicating class composed by one state only.

The canonic form of a DTMC transition matrix is a matrix having a block form, where the closed communicating classes are shown at the beginning of the diagonal matrix.

A state \(s_i \) has period \(k_i \) if any return to state \(s_i \) must occur in multiplies of \(k_i \) steps, that is \(k_i = \gcd \{ n : Pr \{ X_n = s_i | X_0 = s_i \} > 0 \} \), where \(\gcd \) is the greatest common divisor. If \(k_i = 1 \) the state \(s_i \) is said to be aperiodic, else if \(k_i > 1 \) the state \(s_i \) is periodic with period \(k_i \). Loosely speaking, \(s_i \) is periodic if it can only return to itself after a fixed number of transitions \(k_i > 1 \) (or multiple of \(k_i \)), else it is aperiodic.

If states \(s_i \) and \(s_j \) belong to the same communicating class, then they have the same period \(k_i \). As a consequence, each of the states of an irreducible DTMC share the same periodicity. This periodicity is also considered the DTMC periodicity.

It is possible to analyze the timing to reach a certain state. The first passage time from state \(s_i \) to state \(s_j \) is the number \(T_{ij} \) of steps taken by the chain until it arrives for the first time to state \(s_j \), given that \(X_0 = s_i \). The probability distribution of \(T_{ij} \) is defined by Equation 5

\[
h_{ij}^{(n)} = Pr \{ T_{ij} = n \} = Pr \{ X_n = s_j, X_{n-1} \neq s_j, \ldots, X_1 \neq s_j | X_0 = s_i \} \tag{5}
\]

and can be found recursively using Equation 6, given that \(h_{ij}^{(n)} = p_{ij} \).

\[
h_{ij}^{(n)} = \sum_{k \in S-\{s_j\}} p_{ik} h_{kj}^{(n-1)}. \tag{6}
\]

If in the definition of the first passage time we let \(s_i = s_j \), we obtain the first return time \(T_i = \inf \{ n \geq 1 : X_n = s_i | X_0 = s_i \} \). A state \(s_i \) is said to be recurrent if it is visited infinitely often, i.e., \(Pr(T_i < +\infty | X_0 = s_i) = 1 \). On the opposite, \(s_i \) is called transient if there is a positive probability that the chain will never return to \(s_i \), i.e., \(Pr(T_i = +\infty | X_0 = s_i) > 0 \).

Given a time homogeneous Markov chain with transition matrix \(P \), a stationary distribution \(z \) is a stochastic row vector such that \(z = z \cdot P \), where \(0 \leq z_j \leq 1 \forall j \) and \(\sum_j z_j = 1 \).
If a DTMC \(\{X_n\} \) is irreducible and aperiodic, then it has a limit distribution and this distribution is stationary. As a consequence, if \(P \) is the \(k \times k \) transition matrix of the chain and \(z = (z_1, \ldots, z_k) \) is the eigenvector of \(P \) such that \(\sum_{i=1}^{k} z_i = 1 \), then we get

\[
\lim_{n \to \infty} P^n = Z,
\]

where \(Z \) is the matrix having all rows equal to \(z \). The stationary distribution of \(\{X_n\} \) is represented by \(z \).

2.3. A short example

Consider the following numerical example. Suppose we have a DTMC with a set of 3 possible states \(S = \{s_1, s_2, s_3\} \). Let the transition matrix be

\[
P = \begin{bmatrix}
0.5 & 0.2 & 0.3 \\
0.15 & 0.45 & 0.4 \\
0.25 & 0.35 & 0.4
\end{bmatrix}.
\]

In \(P \), \(p_{11} = 0.5 \) is the probability that \(X_1 = s_1 \) given that we observed \(X_0 = s_1 \) is 0.5, and so on. It is easy to see that the chain is irreducible since all the states communicate (it is made by one communicating class only).

Suppose that the current state of the chain is \(X_0 = s_2 \), i.e., \(x^{(0)} = (010) \), then the probability distribution of states after 1 and 2 steps can be computed as shown in Equations 9 and 10.

\[
x^{(1)} = (010) \begin{bmatrix}
0.5 & 0.2 & 0.3 \\
0.15 & 0.45 & 0.4 \\
0.25 & 0.35 & 0.4
\end{bmatrix} = (0.15 0.45 0.4).
\]

\[
x^{(n)} = x^{(n-1)} P \to (0.15 0.45 0.4) \begin{bmatrix}
0.5 & 0.2 & 0.3 \\
0.15 & 0.45 & 0.4 \\
0.25 & 0.35 & 0.4
\end{bmatrix} = (0.2425 0.3725 0.385).
\]

If, i.e., we are interested in the probability of reaching the state \(s_3 \) in two steps, then \(Pr(X_2 = s_3 | X_0 = s_2) = 0.385 \).
3. The structure of the package

3.1. Creating markovchain objects

The package is loaded within the R command line as follows:

R> library("markovchain")

The markovchain and markovchainList S4 classes (?) are defined within the markovchain package as displayed:

Class "markovchain" [package "markovchain"]

Slots:

Name: states byrow transitionMatrix
Class: character logical matrix

Name: name
Class: character

Class "markovchainList" [package "markovchain"]

Slots:

Name: markovchains name
Class: list character

The first class has been designed to handle homogeneous Markov chain processes, while the latter (which is itself a list of markovchain objects) has been designed to handle non-homogeneous Markov chains processes.

Any element of markovchain class is comprised by following slots:

1. states: a character vector, listing the states for which transition probabilities are defined.
2. byrow: a logical element, indicating whether transition probabilities are shown by row or by column.
3. transitionMatrix: the probabilities of the transition matrix.
4. name: optional character element to name the DTMC.

The markovchainList objects are defined by following slots:

1. markovchains: a list of markovchain objects.
2. name: optional character element to name the DTMC.
The `markovchain` objects can be created either in a long way, as the following code shows:

```r
R> weatherStates <- c("sunny", "cloudy", "rain")
R> byRow <- TRUE
R> weatherMatrix <- matrix(data = c(0.70, 0.2, 0.1,
+ 0.3, 0.4, 0.3,
+ 0.2, 0.45, 0.35), byrow = byRow, nrow = 3,
+ dimnames = list(weatherStates, weatherStates))
R> mcWeather <- new("markovchain", states = weatherStates, byrow = byRow,
+ transitionMatrix = weatherMatrix, name = "Weather")
```

or in a shorter way, displayed below:

```r
R> mcWeather <- new("markovchain", states = c("sunny", "cloudy", "rain"),
+ transitionMatrix = matrix(data = c(0.70, 0.2, 0.1,
+ 0.3, 0.4, 0.3,
+ 0.2, 0.45, 0.35), byrow = byRow, nrow = 3),
+ name = "Weather")
```

When `new("markovchain")` is called alone, a default Markov chain is created.

```r
R> defaultMc <- new("markovchain")
```

The quicker way to create `markovchain` objects is made possible thanks to the implemented `initialize` S4 method that checks that:

- the `transitionMatrix` to be a transition matrix, i.e., all entries to be probabilities and either all rows or all columns to sum up to one.
- the columns and rows names of `transitionMatrix` to be defined and to coincide with `states` vector slot.

The `markovchain` objects can be collected in a list within `markovchainList` S4 objects as following example shows.

```r
R> mcList <- new("markovchainList", markovchains = list(mcWeather, defaultMc),
+ name = "A list of Markov chains")
```

3.2. Handling `markovchain` objects

Table 1 lists which methods handle and manipulate `markovchain` objects.

The examples that follow shows how operations on `markovchain` objects can be easily performed. For example, using the previously defined matrix we can find what is the probability distribution of expected weather states in two and seven days, given the actual state to be cloudy.
<table>
<thead>
<tr>
<th>Method</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Direct multiplication for transition matrices.</td>
</tr>
<tr>
<td>[</td>
<td>Direct access to the elements of the transition matrix.</td>
</tr>
<tr>
<td>==</td>
<td>Equality operator between two transition matrices.</td>
</tr>
<tr>
<td>as</td>
<td>Operator to convert <code>markovchain</code> objects into <code>data.frame</code> and <code>table</code> object.</td>
</tr>
<tr>
<td>dim</td>
<td>Dimension of the transition matrix.</td>
</tr>
<tr>
<td>names</td>
<td>Equal to <code>states</code>.</td>
</tr>
<tr>
<td>names<-</td>
<td>Change the <code>states</code> name.</td>
</tr>
<tr>
<td>plot</td>
<td><code>plot</code> method for <code>markovchain</code> objects.</td>
</tr>
<tr>
<td>print</td>
<td><code>print</code> method for <code>markovchain</code> objects.</td>
</tr>
<tr>
<td>show</td>
<td><code>show</code> method for <code>markovchain</code> objects.</td>
</tr>
<tr>
<td>states</td>
<td>Name of the transition states.</td>
</tr>
<tr>
<td>t</td>
<td>Transposition operator (which switches byrow slot value and modifies the transition matrix coherently).</td>
</tr>
</tbody>
</table>

Table 1: `markovchain` methods for handling `markovchain` objects.

```r
R> initialState <- c(0, 1, 0)
R> after2Days <- initialState * (mcWeather * mcWeather)
R> after7Days <- initialState * (mcWeather ^ 7)
R> after2Days

sunny cloudy rain
[1,] 0.39 0.355 0.255

R> round(after7Days, 3)

sunny cloudy rain
[1,] 0.462 0.319 0.219
```

A similar answer could have been obtained defining the vector of probabilities as a column vector. A column - defined probability matrix could be set up either creating a new matrix or transposing an existing `markovchain` object thanks to the `t` method.

```r
R> initialState <- c(0, 1, 0)
R> after2Days <- (t(mcWeather) * t(mcWeather)) * initialState
R> after7Days <- (t(mcWeather) ^ 7) * initialState
R> after2Days

[,1]
sunny 0.390
cloudy 0.355
rain 0.255

R> round(after7Days, 3)
```
The initial state vector previously shown can not necessarily be a probability vector, as the code that follows shows:

```r
R> fvals<-function(mchain,initialstate,n) {
+   out<-data.frame()
+   names(initialstate)<-names(mchain)
+   for (i in 0:n)
+     {  
+       iteration<-initialstate*mchain^i
+       out<-rbind(out,iteration)
+     }
+   out<-cbind(out, i=seq(0,n))
+   out<-out[,c(4,1:3)]
+   return(out)
+ }
R> fvals(mchain=mcWeather,initialstate=c(90,5,5),n=4)

  i    sunny   cloudy   rain
1 0 90.00000 5.000000 5.00000
2 1 65.50000 22.250000 12.25000
3 2 54.97500 27.512500 17.51250
4 3 50.23875 29.880630 19.88062
5 4 48.10744 30.946280 20.94628
```

Basic methods have been defined for `markovchain` objects to quickly get states and transition matrix dimension.

```r
R> states(mcWeather)
[1] "sunny" "cloudy" "rain"
R> names(mcWeather)
[1] "sunny" "cloudy" "rain"
R> dim(mcWeather)
[1] 3
```

A direct access to transition probabilities is provided both by `transitionProbability` method and `"["` method.
The transition matrix of a `markovchain` object can be displayed using `print` or `show` methods (the latter being less laconic). Similarly, the underlying transition probability diagram can be plotted by the use of `plot` method (as shown in Figure 1) which is based on `igraph` package (?). `plot` method for `markovchain` objects is a wrapper of `plot.igraph` for `igraph` S4 objects defined within the `igraph` package. Additional parameters can be passed to `plot` function to control the network graph layout. There are also `diagram` and `DiagrammeR` ways available for plotting as shown in Figure 2.

```r
R> print(mcWeather)
sunny cloudy rain
sunny 0.7 0.20 0.10
cloudy 0.3 0.40 0.30
rain 0.2 0.45 0.35
```

```r
R> show(mcWeather)
Weather
A 3 - dimensional discrete Markov Chain with following states:
sunny, cloudy, rain
The transition matrix (by rows) is defined as follows:
sunny cloudy rain
sunny 0.7 0.20 0.10
cloudy 0.3 0.40 0.30
rain 0.2 0.45 0.35
```

Import and export from some specific classes is possible, as shown in Figure 3 and in the following code.

```r
R> mcDf <- as(mcWeather, "data.frame")
R> mcNew <- as(mcDf, "markovchain")
R> mcDf
   t0     t1 prob
1 sunny sunny 0.70
2 sunny cloudy 0.20
3 sunny rain 0.10
```
The markovchain package

Weather transition matrix

Figure 1: Weather example. Markov chain plot.
Figure 2: Weather example. Markov chain plot with diagram. \texttt{plot(mcWeather, package="diagram", box.size = 0.04)}
The markovchain package

4 cloudy sunny 0.30
5 cloudy cloudy 0.40
6 cloudy rain 0.30
7 rain sunny 0.20
8 rain cloudy 0.45
9 rain rain 0.35

R> mcIgraph <- as(mcWeather, "igraph")

R> library(msm)
R> Q <- rbind (c(0, 0.25, 0, 0.25),
+ c(0.166, 0, 0.166, 0.166),
+ c(0, 0.25, 0, 0.25),
+ c(0, 0, 0, 0))
R> cavmsm <- msm(state ~ years, subject = PTNUM, data = cav, qmatrix = Q, death = 4)
R> msmMc <- as(cavmsm, "markovchain")
R> msmMc

Unnamed Markov chain
A 4-dimensional discrete Markov Chain with following states:
State 1, State 2, State 3, State 4
The transition matrix (by rows) is defined as follows:
 State 1 State 2 State 3 State 4
State 1 0.853958721 0.08836953 0.01475543 0.04291632
State 2 0.155576908 0.56663284 0.20599563 0.07179462
State 3 0.009903994 0.07853691 0.65965727 0.25190183
State 4 0.000000000 0.00000000 0.00000000 1.00000000

R> library(etm)
R> data(sir.cont)
R> sir.cont <- sir.cont[order(sir.cont$id, sir.cont$time),]
R> for (i in 2:nrow(sir.cont)) {
+ if (sir.cont$id[i]==sir.cont$id[i-1]) {
+ if (sir.cont$time[i]==sir.cont$time[i-1]) {
+ sir.cont$time[i-1] <- sir.cont$time[i-1] - 0.5
+ }
+ }
+ }
R> tra <- matrix(ncol=3,nrow=3,FALSE)
R> tra[1, 2:3] <- TRUE
R> tra[2, c(1, 3)] <- TRUE
R> tr.prob <- etm(sir.cont, c("0", "1", "2"), tra, "cens", 1)
R> tr.prob

Multistate model with 2 transient state(s)
and 1 absorbing state(s)
Possible transitions:
from to
0 1
0 2
1 0
1 2

Estimate of $P(1, 183)$
0 1 2
0 0 0 1
1 0 0 1
2 0 0 1

Estimate of $\text{cov}(P(1, 183))$
0 0 1 2 0 0 1 1 1 2 1 0 2 1 2 2 2
0 0 0 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0
1 0 0 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0
2 0 0 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0
0 1 0 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0
1 1 0 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0
2 1 0 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0
0 2 0 0 0 0 0 0 0 -2.864030e-20 -6.268044e-20 0
1 2 0 0 0 0 0 0 0 -4.785736e-20 2.710505e-19 0
2 2 0 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0

R> etm2mc<-as(tr.prob, "markovchain")
R> etm2mc

Unnamed Markov chain
A 3 - dimensional discrete Markov Chain with following states:
0, 1, 2
The transition matrix (by rows) is defined as follows:
0 1 2
0 0.0000000 0.5000000 0.5000000
1 0.5000000 0.0000000 0.5000000
2 0.3333333 0.3333333 0.3333333

Coerce from matrix method, as the code below shows, represents another approach to create a markovchain method starting from a given squared probability matrix.

R> myMatr<-matrix(c(.1,.8,.1,.2,.6,.2,.3,.4,.3), byrow=TRUE, ncol=3)
R> myMc<-as(myMatr, "markovchain")
R> myMc

Unnamed Markov chain
A 3 - dimensional discrete Markov Chain with following states:
Import – Export from and to markovchain objects

Figure 3: The `markovchain` methods for import and export.
s1, s2, s3

The transition matrix (by rows) is defined as follows:

\[
\begin{array}{ccc}
s1 & s2 & s3 \\
0.1 & 0.8 & 0.1 \\
0.2 & 0.6 & 0.2 \\
0.3 & 0.4 & 0.3 \\
\end{array}
\]

Non-homogeneous Markov chains can be created with the aid of `markovchainList` object. The example that follows arises from health insurance, where the costs associated to patients in a Continuous Care Health Community (CCHC) are modelled by a non-homogeneous Markov Chain, since the transition probabilities change by year. Methods explicitly written for `markovchainList` objects are: `print`, `show`, `dim` and `[`.

```r
R> stateNames = c("H", "I", "D")
R> Q0 <- new("markovchain", states = stateNames,
+ transitionMatrix = matrix(c(0.7, 0.2, 0.1, 0.1, 0.6, 0.3, 0, 0, 1),
+ byrow = TRUE, nrow = 3), name = "state t0")
R> Q1 <- new("markovchain", states = stateNames,
+ transitionMatrix = matrix(c(0.5, 0.3, 0.2, 0, 0.4, 0.6, 0, 0, 1),
+ byrow = TRUE, nrow = 3), name = "state t1")
R> Q2 <- new("markovchain", states = stateNames,
+ transitionMatrix = matrix(c(0.3, 0.2, 0.5, 0, 0.2, 0.8, 0, 0, 1),
+ byrow = TRUE, nrow = 3), name = "state t2")
R> Q3 <- new("markovchain", states = stateNames,
+ transitionMatrix = matrix(c(0, 0, 1, 0, 0, 1, 0, 0, 1),
+ byrow = TRUE, nrow = 3), name = "state t3")
R> mcCCRC <- new("markovchainList", markovchains = list(Q0,Q1,Q2,Q3),
+ name = "Continuous Care Health Community")
R> print(mcCCRC)

Continuous Care Health Community list of Markov chain(s)
Markovchain 1
state t0
A 3 - dimensional discrete Markov Chain with following states:
H, I, D
The transition matrix (by rows) is defined as follows:

\[
\begin{array}{ccc}
H & I & D \\
0.7 & 0.2 & 0.1 \\
0.1 & 0.6 & 0.3 \\
0.0 & 0.0 & 1.0 \\
\end{array}
\]

Markovchain 2
state t1
A 3 - dimensional discrete Markov Chain with following states:
H, I, D
The transition matrix (by rows) is defined as follows:

\[
\begin{array}{ccc}
H & I & D \\
0.5 & 0.3 & 0.2 \\
0.3 & 0.5 & 0.2 \\
0.2 & 0.8 & 0.6 \\
\end{array}
\]

Markovchain 3
state t2
A 3 - dimensional discrete Markov Chain with following states:
H, I, D
The transition matrix (by rows) is defined as follows:

\[
\begin{array}{ccc}
H & I & D \\
0.3 & 0.2 & 0.5 \\
0.2 & 0.8 & 0.6 \\
0.0 & 0.0 & 1.0 \\
\end{array}
\]

Markovchain 4
state t3
A 3 - dimensional discrete Markov Chain with following states:
H, I, D
The transition matrix (by rows) is defined as follows:

\[
\begin{array}{ccc}
H & I & D \\
0.0 & 0.0 & 1.0 \\
0.0 & 0.0 & 1.0 \\
1.0 & 0.0 & 0.0 \\
\end{array}
\]
```
The markovchain package

H 0.5 0.3 0.2
I 0.0 0.4 0.6
D 0.0 0.0 1.0

Markovchain 3
state t2
A 3-dimensional discrete Markov Chain with following states:
H, I, D
The transition matrix (by rows) is defined as follows:
H I D
H 0.3 0.2 0.5
I 0.0 0.2 0.8
D 0.0 0.0 1.0

Markovchain 4
state t3
A 3-dimensional discrete Markov Chain with following states:
H, I, D
The transition matrix (by rows) is defined as follows:
H I D
H 0 0 1
I 0 0 1
D 0 0 1

It is possible to perform direct access to markovchainList elements, as well as to determine the number of markovchain objects by which a markovchainList object is composed.

R> mcCCRC[[1]]

state t0
A 3-dimensional discrete Markov Chain with following states:
H, I, D
The transition matrix (by rows) is defined as follows:
H I D
H 0.7 0.2 0.1
I 0.1 0.6 0.3
D 0.0 0.0 1.0

R> dim(mcCCRC)

[1] 4

The markovchain package contains some data found in the literature related to DTMC models (see Section 6). Table 2 lists datasets and tables included within the current release of the package.

Finally, Table 3 lists the demos included in the demo directory of the package.
Dataset Description

blanden Mobility across income quartiles, ?.
craigsendi CD4 cells, ?.
preproglucacon Preproglucacon DNA basis, ?.
rain Alofi Island rains, ?.
holson Individual states trajectories.

Table 2: The markovchain data.frame and table.

Dataset Description

bard.R Structural analysis of Markov chains from Bard PPT.
examples.R Notable Markov chains, e.g., The Gambler Ruin chain.
quickStart.R Generic examples.

Table 3: The markovchain demos.
4. Probability with markovchain objects

The `markovchain` package contains functions to analyse DTMC from a probabilistic perspective. For example, the package provides methods to find stationary distributions and identifying absorbing and transient states. Many of these methods come from MATLAB listings that have been ported into R. For a full description of the underlying theory and algorithm the interested reader can overview the original MATLAB listings, \(^{1}\) and \(^{2}\).

Table 4 shows methods that can be applied on `markovchain` objects to perform probabilistic analysis.

<table>
<thead>
<tr>
<th>Method</th>
<th>Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorbingStates</td>
<td>the absorbing states of the transition matrix, if any.</td>
</tr>
<tr>
<td>steadyStates</td>
<td>the vector(s) of steady state(s) in matrix form.</td>
</tr>
<tr>
<td>communicatingClasses</td>
<td>list of communicating classes.</td>
</tr>
<tr>
<td>canonicForm</td>
<td>the transition matrix into canonic form.</td>
</tr>
<tr>
<td>is.accessible</td>
<td>verification if a state j is reachable from state i.</td>
</tr>
<tr>
<td>is.irreducible</td>
<td>verification whether a DTMC is irreducible.</td>
</tr>
<tr>
<td>period</td>
<td>the period of an irreducible DTMC.</td>
</tr>
<tr>
<td>recurrentClasses</td>
<td>list of recurrent classes.</td>
</tr>
<tr>
<td>steadyStates</td>
<td>the vector(s) of steady state(s) in matrix form.</td>
</tr>
<tr>
<td>summary</td>
<td>DTMC summary.</td>
</tr>
<tr>
<td>transientStates</td>
<td>the transient states of the transition matrix, if any.</td>
</tr>
</tbody>
</table>

Table 4: `markovchain` methods: statistical operations.

The conditional distribution of weather states, given that current day’s weather is sunny, is given by following code.

```
R> conditionalDistribution(mcWeather, "sunny")

sunny cloudy rain
 0.7 0.2 0.1
```

The steady state(s), also known as stationary distribution(s), of the Markov chains are identified by the such described algorithm:

1. decompose the transition matrix in eigenvalues and eigenvectors;
2. consider only eigenvectors corresponding to eigenvalues equal to one;
3. normalize such eigenvalues so that the sum of their components is one.

The result is returned in matrix form.

```
R> steadyStates(mcWeather)

          sunny   cloudy   rain
[1,] 0.4636364 0.3181818 0.2181818
```
It is possible for a Markov chain to have more than one stationary distribution, as the gambler ruin example shows.

```r
R> gamblerRuinMarkovChain <- function(moneyMax, prob = 0.5) {
+   require(matlab)
+   matr <- zeros(moneyMax + 1)
+   states <- as.character(seq(from = 0, to = moneyMax, by = 1))
+   rownames(matr) = states; colnames(matr) = states
+   matr[1,1] = 1; matr[moneyMax + 1,moneyMax + 1] = 1
+   for(i in 2:moneyMax)
+     { matr[i,i-1] = 1 - prob; matr[i, i + 1] = prob  }
+   out <- new("markovchain",
+                transitionMatrix = matr,
+                name = paste("Gambler ruin", moneyMax, "dim", sep = " ")
+   )
+   return(out)
+ }
R> mcGR4 <- gamblerRuinMarkovChain(moneyMax = 4, prob = 0.5)
R> steadyStates(mcGR4)

   0 1 2 3 4
[1,] 1 0 0 0 0
[2,] 0 0 0 0 1
```

Absorbing states are determined by means of `absorbingStates` method.

```r
R> absorbingStates(mcGR4)

[1] "0" "4"
```

```r
R> absorbingStates(mcWeather)

character(0)
```

The key function used within `markovchain` (and `markovchain`'s derived functions) is `.commclassKernel`, that is called below.

```r
R> .commclassesKernel <- function(P){
+   m <- ncol(P)
+   stateNames <- rownames(P)
+   T <- zeros(m)
+   i <- 1
+   while (i <= m) {
+     a <- i
+     b <- zeros(1,m)
+     b[i,i] <- 1
```
old <- 1
new <- 0
while (old != new) {
 old <- sum(find(b > 0))
 n <- size(a)[2]
 matr <- matrix(as.numeric(P[a,j]), ncol = m,
 nrow = n)
 c <- colSums(matr)
 d <- find(c)
 n <- size(d)[2]
 b[1,d] <- ones(1,n)
 new <- sum(find(b>0))
 a <- d
}
T[i,j] <- b
i <- i+1 }
F <- t(T)
C <- (T > 0)&(F > 0)
v <- (apply(t(C) == t(T), 2, sum) == m)
colnames(C) <- stateNames
rownames(C) <- stateNames
names(v) <- stateNames
out <- list(C = C, v = v)
return(out)

The .commclassKernel function gets a transition matrix of dimension \(n \) and return a list of two items:

1. \(C \), an adjacency matrix showing for each state \(s_j \) (in the row) which states lie in the same communicating class of \(s_j \) (flagged with 1).

2. \(v \), a binary vector indicating whether the state \(s_j \) is transient (0) or not (1).

These functions are used by two other internal functions on which the summary method for markovchain objects works.

The example matrix used in ? well exemplifies the purpose of the function.

R> P <- matlab::zeros(10)
R> P[1, c(1, 3)] <- 1/2;
R> P[2, 2] <- 1/3; P[2,7] <- 2/3;
R> P[3, 1] <- 1;
R> P[4, 5] <- 1;
R> P[5, c(4, 5, 9)] <- 1/3;
R> P[6, 6] <- 1;
R> P[8, c(3, 4, 8, 10)] <- 1/4;
R> P[9, 2] <- 1;
R> P[10, c(2, 5, 10)] <- 1/3;
R> rownames(P) <- letters[1:10]
R> colnames(P) <- letters[1:10]
R> probMc <- new("markovchain", transitionMatrix = P,
+ name = "Probability MC")
R> .commclassesKernel(P)

$C
 a b c d e f g h i j
 a TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 b FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
 c TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 d FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
 e FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
 f FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
 g FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
 h FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
 i FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
 j FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

$v
 a b c d e f g h i j
 a TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE
R> summary(probMc)

Probability MC Markov chain that is composed by:
Closed classes:
 a c
 b g i
 f
Recurrent classes:
 {a,c},{b,g,i},{f}
Transient classes:
 {d,e},{h},{j}
The Markov chain is not irreducible
The absorbing states are: f

All states that pertain to a transient class are named "transient" and a specific method has been written to elicit them.

R> transientStates(probMc)

[1] "d" "e" "h" "j"

Listings from \? have been adapted into canonicForm method that turns a Markov chain into canonic form.
```r
R> probMcCanonic <- canonicForm(probMc)
R> probMc

Probability MC
A 10-dimensional discrete Markov Chain with following states:
a, b, c, d, e, f, g, h, i, j
The transition matrix (by rows) is defined as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.5</td>
<td>0.0000000</td>
<td>0.50</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>b</td>
<td>0.0</td>
<td>0.3333333</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.6666667</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>c</td>
<td>1.0</td>
<td>0.0000000</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>d</td>
<td>0.0</td>
<td>0.0000000</td>
<td>0.00</td>
<td>0.0000000</td>
<td>1.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>e</td>
<td>0.0</td>
<td>0.0000000</td>
<td>0.00</td>
<td>0.3333333</td>
<td>0.3333333</td>
<td>0.3333333</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>f</td>
<td>0.0</td>
<td>0.0000000</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>1.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>g</td>
<td>0.0</td>
<td>0.0000000</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.2500000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.7500000</td>
</tr>
<tr>
<td>h</td>
<td>0.0</td>
<td>0.2500000</td>
<td>0.25</td>
<td>0.2500000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.2500000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>i</td>
<td>0.0</td>
<td>1.0000000</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>j</td>
<td>0.0</td>
<td>0.3333333</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.3333333</td>
<td>0.3333333</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
</tbody>
</table>

R> probMcCanonic

Probability MC
A 10-dimensional discrete Markov Chain with following states:
a, c, b, g, i, f, d, e, h, j
The transition matrix (by rows) is defined as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
<th>b</th>
<th>g</th>
<th>i</th>
<th>f</th>
<th>d</th>
<th>e</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.5</td>
<td>0.50</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>c</td>
<td>1.0</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>b</td>
<td>0.0</td>
<td>0.00</td>
<td>0.3333333</td>
<td>0.6666667</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>g</td>
<td>0.0</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.2500000</td>
<td>0.7500000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>i</td>
<td>0.0</td>
<td>0.00</td>
<td>1.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>f</td>
<td>0.0</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>1.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>d</td>
<td>0.0</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>1.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>e</td>
<td>0.0</td>
<td>0.00</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.3333333</td>
<td>0.3333333</td>
<td>0.3333333</td>
<td>0.3333333</td>
</tr>
<tr>
<td>h</td>
<td>0.0</td>
<td>0.25</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.2500000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.2500000</td>
</tr>
<tr>
<td>j</td>
<td>0.0</td>
<td>0.00</td>
<td>0.3333333</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.3333333</td>
<td>0.0000000</td>
</tr>
</tbody>
</table>
```
The function `is.accessible` permits to investigate whether a state s_j is accessible from state s_i, that is whether the probability to eventually reach s_j starting from s_i is greater than zero.

```r
R> is.accessible(object = probMc, from = "a", to = "c")
[1] TRUE
```

```r
R> is.accessible(object = probMc, from = "g", to = "c")
[1] FALSE
```

In Section 2.2 we observed that, if a DTMC is irreducible, all its states share the same periodicity. Then, the `period` function returns the periodicity of the DTMC, provided that it is irreducible. The example that follows shows how to find if a DTMC is reducible or irreducible by means of the function `is.irreducible` and, in the latter case, the method `period` is used to compute the periodicity of the chain.

```r
R> E <- matrix(0, nrow = 4, ncol = 4)
R> E[1, 2] <- 1
R> E[2, 1] <- 1/3; E[2, 3] <- 2/3
R> E[4, 3] <- 1
R> mcE <- new("markovchain", states = c("a", "b", "c", "d"),
+    transitionMatrix = E,
+    name = "E")
R> is.irreducible(mcE)
[1] TRUE
```

```r
R> period(mcE)
[1] 2
```

The example Markov chain found in Mathematica web site (?) has been used, and is plotted in Figure 4.
Figure 4: Mathematica 9 example. Markov chain plot.

```r
R> require(matlab)
R> mathematicaMatr <- zeros(5)
R> mathematicaMatr[1,] <- c(0, 1/3, 0, 2/3, 0)
R> mathematicaMatr[2,] <- c(1/2, 0, 0, 0, 1/2)
R> mathematicaMatr[3,] <- c(0, 0, 1/2, 1/2, 0)
R> mathematicaMatr[4,] <- c(0, 0, 1/2, 1/2, 0)
R> mathematicaMatr[5,] <- c(0, 0, 0, 0, 1)
R> statesNames <- letters[1:5]
R> mathematicaMc <- new("markovchain", transitionMatrix = mathematicaMatr,
+                        name = "Mathematica MC", states = statesNames)

Mathematica MC  Markov chain that is composed by:
Closed classes:
c  d  e
Recurrent classes:
```
Transient classes:
\{a,b\}
The Markov chain is not irreducible
The absorbing states are: e

\begin{verbatim}
R> .firstpassageKernel <- function(P, i, n){
+ G <- P
+ H <- P[i,]
+ E <- 1 - diag(size(P)[2])
+ for (m in 2:n) {
+ G <- P %*% (G * E)
+ H <- rbind(H, G[i,])
+ }
+ return(H)
+ }
\end{verbatim}

We conclude that the probability for the first rainy day to be the third one, given that the current state is sunny, is given by

R> firstPassagePdF <- firstPassage(object = mcWeather, state = "sunny", n = 10)
R> firstPassagePdF[3, 3]
[1] 0.121

5. Statistical analysis

Table 5 lists the functions and methods implemented within the package which help to fit, simulate and predict DTMC.

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>markovchainFit</td>
<td>Function to return fitted Markov chain for a given sequence.</td>
</tr>
<tr>
<td>predict</td>
<td>Method to calculate predictions from markovchain or markovchainList objects.</td>
</tr>
<tr>
<td>rmarkovchain</td>
<td>Function to sample from markovchain or markovchainList objects.</td>
</tr>
</tbody>
</table>

Table 5: The markovchain statistical functions.

5.1. Simulation

Simulating a random sequence from an underlying DTMC is quite easy thanks to the function rmarkovchain. The following code generates a year of weather states according to mcWeather underlying stochastic process.
The `markovchain` package

```r
R> weathersOfDays <- rmarkovchain(n = 365, object = mcWeather, t0 = "sunny")
R> weathersOfDays[1:30]

[1] "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny"
[ 8] "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "cloudy"
[15] "sunny" "sunny" "cloudy" "rain" "cloudy" "sunny" "sunny"
[22] "cloudy" "sunny" "sunny" "sunny" "cloudy" "sunny" "cloudy"
[29] "rain" "sunny"

Similarly, it is possible to simulate one or more sequences from a non-homogeneous Markov chain, as the following code (applied on CCHC example) exemplifies.

```r
R> patientStates <- rmarkovchain(n = 5, object = mcCCRC, t0 = "H",
+ include.t0 = TRUE)
R> patientStates[1:10,]

iteration values
1 1 H
2 1 I
3 1 H
4 1 H
5 1 H
6 2 H
7 2 H
8 2 H
9 2 H
10 2 H
```

### 5.2. Estimation

A time homogeneous Markov chain can be fit from given data. Four methods have been implemented within current version of `markovchain` package: maximum likelihood, maximum likelihood with Laplace smoothing, Bootstrap approach, maximum a posteriori. Equation 11 shows the maximum likelihood estimator (MLE) of the \( p_{ij} \) entry, where the \( n_{ij} \) element consists in the number sequences \((X_t = s_i, X_{t+1} = s_j)\) found in the sample, that is

\[
\hat{p}_{ij}^{MLE} = \frac{n_{ij}}{\sum_{u=1}^{k} n_{iu}}. \tag{11}
\]

Equation 12 shows the standard error of the MLE (\( SE_{ij} \)).

\[
SE_{ij} = \frac{\hat{p}_{ij}^{MLE}}{\sqrt{n_{ij}}} \tag{12}
\]

```r
R> weatherFittedMLE <- markovchainFit(data = weathersOfDays, method = "mle",
+ name = "Weather MLE")
R> weatherFittedMLE$estimate
```
Weather MLE

A 3-dimensional discrete Markov Chain with following states: cloudy, rain, sunny

The transition matrix (by rows) is defined as follows:

<table>
<thead>
<tr>
<th></th>
<th>cloudy</th>
<th>rain</th>
<th>sunny</th>
</tr>
</thead>
<tbody>
<tr>
<td>cloudy</td>
<td>0.3790212</td>
<td>0.29839555</td>
<td>0.3225832</td>
</tr>
<tr>
<td>rain</td>
<td>0.4871203</td>
<td>0.34614892</td>
<td>0.1667307</td>
</tr>
<tr>
<td>sunny</td>
<td>0.2407579</td>
<td>0.08646547</td>
<td>0.6727766</td>
</tr>
</tbody>
</table>

Both MLE and Laplace approach are based on the `createSequenceMatrix` functions that converts a data (character) sequence into a contingency table, showing the \((X_t = i, X_{t+1} = j)\) distribution within the sample, as code below shows.

```
R> createSequenceMatrix(stringchar = weathersOfDays)
```

<table>
<thead>
<tr>
<th></th>
<th>cloudy</th>
<th>rain</th>
<th>sunny</th>
</tr>
</thead>
<tbody>
<tr>
<td>cloudy</td>
<td>47</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>rain</td>
<td>38</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td>sunny</td>
<td>39</td>
<td>14</td>
<td>109</td>
</tr>
</tbody>
</table>
An issue occurs when the sample contains only one realization of a state (say $X_β$) which is located at the end of the data sequence, since it yields to a row of zero (no sample to estimate the conditional distribution of the transition). In this case the estimated transition matrix is corrected assuming $p_{β,j} = 1/k$, being $k$ the possible states.

A bootstrap estimation approach has been developed within the package in order to provide an indication of the variability of $\hat{p}_{ij}$ estimates. The bootstrap approach implemented within the `markovchain` package follows these steps:

1. bootstrap the data sequences following the conditional distributions of states estimated from the original one. The default bootstrap samples is 10, as specified in `nboot` parameter of `markovchainFit` function.

2. apply MLE estimation on bootstrapped data sequences that are saved in `bootStrapSamples` slot of the returned list.

3. the $p_{BOOTSTRAP}^{i,j}$ is the average of all $p_{MLE}^{i,j}$ across the `bootStrapSamples` list, normalized by row. A `standardError` of $p_{MLE}^{i,j}$ estimate is provided as well.

```r
R> weatherFittedBOOT <- markovchainFit(data = weathersOfDays,
+ method = "bootstrap", nboot = 100)
R> weatherFittedBOOT$estimate
BootStrap Estimate
A 3-dimensional discrete Markov Chain with following states:
cloudy, rain, sunny
The transition matrix (by rows) is defined as follows:
 cloudy rain sunny
cloudy 0.3863976 0.29626070 0.3173417
rain 0.4879763 0.34778834 0.1642354
sunny 0.2393709 0.08636058 0.6742685

R> weatherFittedBOOT$standardError
 cloudy rain sunny
cloudy 0.004054858 0.004154974 0.004186410
rain 0.005832046 0.004697510 0.003960453
sunny 0.003505478 0.002326515 0.003592399

The bootstrapping process can be done in `parallel`.

```
The parallel bootstrapping uses all the available cores on a machine by default. However, it is also possible to tune the number of threads used. Note that this should be done in R before calling the `markovchainFit` function. For example, the following code will set the number of threads to 4.

```r
R> RcppParallel::setNumThreads(4)
```

For more details, please refer to the RcppParallel ([http://rcppcore.github.io/RcppParallel/](http://rcppcore.github.io/RcppParallel/)).

For all the fitting methods, the `logLikelihood` denoted in Equation 14 is provided.

\[
LLH = \sum_{i,j} n_{ij} \times \log(p_{ij})
\]  
(14)

where \( n_{ij} \) is the entry of the frequency matrix and \( p_{ij} \) is the entry of the transition probability matrix.

```r
R> weatherFittedMLE$logLikelihood
[1] -347.8699
R> weatherFittedBOOT$logLikelihood
[1] -347.8876
```

Confidence matrices of estimated parameters (parametric for MLE, non-parametric for BootStrap) are available as well. The `confidenceInterval` is provided with the two matrices: `lowerEndpointMatrix` and `upperEndpointMatrix`. The confidence level (CL) is 0.95 by default and can be given as an argument of the function `markovchainFit`. This is used to obtain the standard score (z-score). Equations 15 and 16 (\( ? \)) show the `confidenceInterval` of a fitting. Note that each entry of the matrices is bounded between 0 and 1.

\[
LowerEndpoint_{ij} = p_{ij} - z\text{score}(CL) \times SE_{ij}
\]  
(15)

\[
UpperEndpoint_{ij} = p_{ij} + z\text{score}(CL) \times SE_{ij}
\]  
(16)

```r
R> weatherFittedMLE$confidenceInterval
$confidenceLevel
[1] 0.95
$lowerEndpointMatrix
 cloudy rain sunny
cloudy 0.2880924 0.21769956 0.23868574
rain 0.3571851 0.23657807 0.09063328
sunny 0.1773327 0.04842914 0.56683472
```
A special function, `multinomialConfidenceIntervals`, has been written in order to obtain multinomial wise confidence intervals. The code has been based on and Rcpp translation of package’s `MultinomialCI` functions that were themselves based on the paper.

```r
R> multinomialConfidenceIntervals(transitionMatrix =
+ weatherFittedMLE$estimate@transitionMatrix,
+ countsTransitionMatrix = createSequenceMatrix(weathersOfDays))
```

```r
$confidenceLevel
[1] 0.95

$lowerEndpointMatrix
 cloudy rain sunny
cloudy 0.2903226 0.20967742 0.23387097
rain 0.3846154 0.24358974 0.06410256
sunny 0.1728395 0.01851852 0.60493827

$upperEndpointMatrix
 cloudy rain sunny
cloudy 0.4798274 0.3991822 0.4233758
rain 0.6130492 0.4720236 0.2925364
sunny 0.3155597 0.1612387 0.7476585
```
The functions for fitting DTMC have mostly been rewritten in C++ using Rcpp since version 0.2.

Is is also possible to fit a DTMC or a markovchainList object from matrix or data.frame objects as shown in following code.

```r
R> data(holson)
R> singleMc<-markovchainFit(data=holson[,2:12],name="holson")
R> mcListFit<-markovchainListFit(data=holson[,2:12],name="holson")
R> mcListFit$estimate[[1]]
```

```text
 time1
A 3 - dimensional discrete Markov Chain with following states:
 1, 2, 3
The transition matrix (by rows) is defined as follows:

```
1  2  3
1 0.94609164 0.05390836 0.0000000
2 0.26356589 0.62790698 0.1085271
3 0.02325581 0.18604651 0.7906977
```

The maximum a posteriori method (MAP) has been implemented using Bayesian inference (?). For details on usage, refer to the stand-alone vignette for MAP (?).

5.3. Prediction

The n-step forward predictions can be obtained using the predict methods explicitly written for markovchain and markovchainList objects. The prediction is the mode of the conditional distribution of X_{t+1} given $X_t = s_j$, being s_j the last realization of the DTMC (homogeneous or non-homogeneous).

Predicting from a markovchain object

The 3-days forward predictions from markovchain object can be generated as follows, assuming that the last two days were respectively "cloudy" and "sunny".

```r
R> predict(object = weatherFittedMLE$estimate, newdata = c("cloudy", "sunny"), + n.ahead = 3)
```

```
[1] "sunny" "sunny" "sunny"
```

Predicting from a markovchainList object

Given an initial two year Healthy status, the 5-year ahead prediction of any CCRC guest is

```r
R> predict(mcCCRC, newdata = c("H", "H"), n.ahead = 5)
```

```
[1] "H" "D" "D"
```
The prediction has stopped at time sequence since the underlying non-homogeneous Markov chain has a length of four. In order to continue five years ahead, the `continue=TRUE` parameter setting makes the `predict` method keeping to use the last `markovchain` in the sequence list.

```r
R> predict(mcCCRC, newdata = c("H", "H"), n.ahead = 5, continue = TRUE)
[1] "H" "D" "D" "D" "D"
```

5.4. Statistical Tests

In this section, we describe the statistical tests: assessing the Markov property (`verifyMarkovProperty`), the order (`assessOrder`), the stationarity (`assessStationarity`) of a Markov chain sequence, and the divergence test for empirically estimated transition matrices (`divergenceTest`). For the first three tests, we use the χ^2 statistics (??). As an example, we use the following sequence.

```r
R> sequence<-c("a", "b", "a", "a", "a", "a", "b", "a", "b", "a",
+ "b", "a", "a", "b", "b", "b", "a")
```

Assessing the Markov property of a Markov chain sequence

The `verifyMarkovProperty` function involves verifying whether the given chain holds the Markov property for which the future state is independent of the past states and depends only on the current state.

$$\Pr\{X_{t+1} = m|X_t = j, X_{t-1} = i\} = \Pr\{X_{t+1} = m|X_t = j\}$$ (17)

We first construct a contingency table in which the columns are the frequency of past→present→future (PPF) (or state transition sequence (STS)), present→future (PF) (or two-state occurrences (STO)) and (PF - PPF), and the rows are the possible three state transitions as shown in Table 6 for each possible present to future transition.

<table>
<thead>
<tr>
<th>Transitions (p→p→f)</th>
<th>PPF (p→p→f)</th>
<th>PF (p→f)</th>
<th>PF - PPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>a → a → b</td>
<td>2 (a → a → b)</td>
<td>4 (a→a)</td>
<td>2</td>
</tr>
<tr>
<td>b → a → b</td>
<td>2 (b → a → b)</td>
<td>5 (b→a)</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 6: Contingency table for Markov property of the transition from the present state a to the future state b (a → b).

Using the table, the function performs the χ^2 test by calling the `chisq.test` function. This test returns a list of the chi-squared value, the degrees of freedom, and the p-value for each possible transition. If the p-value is greater than the given significance level, we cannot reject the hypothesis that the Markov property holds for the specific transition.

```r
R> verifyMarkovProperty(sequence)
```
Giorgio Alfredo Spedicato, Tae Seung Kang, Sai Bhargav Yalamanchi

aa
aastatistic
X-squared
 0

aaparameter
df
 1

aap.value
[1] 1

aamethod
[1] "Pearson's Chi-squared test with Yates' continuity correction"

aadata.name
[1] "table"

aaobserved
 SSO TSO-SSO
 a 2 2
 b 2 3

aaexpected
 SSO TSO-SSO
 a 1.777778 2.222222
 b 2.222222 2.777778

aaresiduals
 SSO TSO-SSO
 a 0.1666667 -0.1490712
 b -0.1490712 0.1333333

aastdres
 SSO TSO-SSO
 a 0.3 -0.3
 b -0.3 0.3

aatable
 SSO TSO
 a 2 4
 b 2 5

ab
abstatistic
X-squared
The markovchain package

0

\$p\$parameter
df
 1

\$p\$p.value
[1] 1

\$p\$method
[1] "Pearson's Chi-squared test with Yates' continuity correction"

\$p\$data.name
[1] "table"

\$p\$observed
 SS0 TSO-SS0
a 2 2
b 2 3

\$p\$expected
 SS0 TSO-SS0
a 1.777778 2.222222
b 2.222222 2.777778

\$p\$residuals
 SS0 TSO-SS0
a 0.1666667 -0.1490712
b -0.1490712 0.1333333

\$p\$stdres
 SS0 TSO-SS0
a 0.3 -0.3
b -0.3 0.3

\$table
 SS0 TSO
a 2 4
b 2 5

\$ba
\$ba\$statistic
 X-squared
 1.55307e-31

\$ba\$parameter
df
1

$p.value$
[1] 1

$method$
[1] "Pearson's Chi-squared test with Yates' continuity correction"

data.name
[1] "table"

$observed$
SSO TSO-SSO
a 4 1
b 1 1

$expected$
SSO TSO-SSO
a 3.571429 1.4285714
b 1.428571 0.5714286

$residuals$
SSO TSO-SSO
a 0.2267787 -0.3585686
b -0.3585686 0.5669467

$stdres$
SSO TSO-SSO
a 0.7937254 -0.7937254
b -0.7937254 0.7937254

$table$
SSO TSO
a 4 5
b 1 2

$statistic$
 X-squared
1.55307e-31

$parameter$
df
1
Assessing the order of a Markov chain sequence

The **assessOrder** function checks whether the given chain is of first order or of second order. For each possible present state, we construct a contingency table of the frequency of the future state for each past to present state transition as shown in Table 7.

<table>
<thead>
<tr>
<th>past</th>
<th>present</th>
<th>future</th>
<th>future</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 7: Contingency table to assess the order for the present state a.
Using the table, the function performs the χ^2 test by calling the \texttt{chisq.test} function. This test returns a list of the chi-squared value and the p-value. If the p-value is greater than the given significance level, we cannot reject the hypothesis that the sequence is of first order.

\begin{verbatim}
R> data(rain)
R> assessOrder(rain$rain)

The assessOrder test statistic is: 26.09575 the Chi-Square d.f. are: 12 the p-value is:
$statistic
[1] 26.09575
$p.value
[1] 0.01040395
\end{verbatim}

\textit{Assessing the stationarity of a Markov chain sequence}

The \texttt{assessStationarity} function assesses if the transition probabilities of the given chain change over time. To be more specific, the chain is stationary if the following condition meets.

\begin{equation}
 p_{ij}(t) = p_{ij} \quad \text{for all} \quad t
\end{equation}

For each possible state, we construct a contingency table of the estimated transition probabilities over time as shown in Table 8.

\begin{table}[h]
\begin{tabular}{ccc}
\hline
time (t) & probability of transition to a & probability of transition to b \\
\hline
1 & 0 & 1 \\
2 & 0 & 1 \\
. & . & . \\
. & . & . \\
. & . & . \\
16 & 0.44 & 0.56 \\
\hline
\end{tabular}
\caption{Contingency table to assess the stationarity of the state a.}
\end{table}

Using the table, the function performs the χ^2 test by calling the \texttt{chisq.test} function. This test returns a list of the chi-squared value and the p-value. If the p-value is greater than the given significance level, we cannot reject the hypothesis that the sequence is stationary.

\begin{verbatim}
R> assessStationarity(rain$rain, 10)

The assessStationarity test statistic is: 4.181815 the Chi-Square d.f. are: 54 the p-value is:
$statistic
[1] 4.181815
$p.value
[1] 1
\end{verbatim}
Divergence test for empirically estimated transition matrices

In order to test if two empirically estimated transition matrices m_1 and m_2 are different, we use the ϕ-divergence test that is given by

$$T_n^\phi(m_1, m_2) = \frac{2n}{\phi'(1)} \sum_{i=1}^M \frac{v_i}{n} \sum_{j=1}^M m_2(i, j) \phi \left(\frac{m_1(i, j)}{m_2(i, j)} \right)$$

(19)

where mc is the markov chain sequence, n is the length of the sequence, M is the number of states, v_i is the number of transitions starting from the state i, and ϕ is

$$\phi(x) = x \log x - x + 1.$$

(20)

This test returns a list of the chi-squared value and the p-value.

```r
R> mcFit <- markovchainFit(data=sequence, byrow=FALSE)
R> divergenceTest(sequence, mcFit$estimate@transitionMatrix)
```

The Divergence test statistic is: 0 the Chi-Square d.f. are: 2 the p-value is: 1

$statistic$

[1] 0

$p.value$

[1] 1

5.5. Continuous Times Markov Chains

Intro

The `markovchain` package provides functionality for continuous time Markov chains (CTMCs). CTMCs are a generalisation of discrete time Markov chains (DTMCs) in that we allow time to be continuous. We assume a finite state space S (for an infinite state space wouldn’t fit in memory). We can think of CTMCs as Markov chains in which state transitions can happen at any time.

More formally, we would like our CTMCs to satisfy the following two properties:

- The Markov property - let $F_X(s)$ denote the information about X upto time s. Let $j \in S$ and $s \leq t$. Then, $P(X(t) = j|F_X(s)) = P(X(t) = j|X(s))$.

- Time homogeneity - $P(X(t) = j|X(s) = k) = P(X(t-s) = j|X(0) = k)$.

If both the above properties are satisfied, it is referred to as a time-homogeneous CTMC. If a transition occurs at time t, then $X(t)$ denotes the new state and $X(t) \neq X(t-)$.

Now, let $X(0) = x$ and let T_x be the time a transition occurs from this state. We are interested in the distribution of T_x. For $s, t \geq 0$, it can be shown that $P(T_x > s + t|T_x > s) = P(T_x > t)$.
This is the memory less property that only the exponential random variable exhibits. Therefore, this is the sought distribution, and each state \(s \in S \) has an exponential holding parameter \(\lambda(s) \). Since \(ET_x = \frac{1}{\lambda(x)} \), higher the rate \(\lambda(x) \), smaller the expected time of transitioning out of the state \(x \).

However, specifying this parameter alone for each state would only paint an incomplete picture of our CTMC. To see why, consider a state \(x \) that may transition to either state \(y \) or \(z \). The holding parameter enables us to predict when a transition may occur if we start off in state \(x \), but tells us nothing about which state will be next.

To this end, we also need transition probabilities associated with the process, defined as follows (for \(y \neq x \) - \(P_{xy} \) is the probability of transition from \(x \) to \(y \) in one instant of time). Let \(Q \) denote this transition matrix (\(Q_{ij} = p_{ij} \)). What is key here is that \(T_x \) and the state \(y \) are independent random variables. Let’s define \(\lambda(x, y) = \lambda(x)p_{xy} \).

We now look at Kolmogorov’s backward equation. Let’s define \(P_{ij}(t) = P(X(t) = j|X(0) = i) \) for \(i, j \in S \). The backward equation is given by (it can be proved) \(P_{ij}(t) = \delta_{ij}e^{-\lambda(i)t} + \int_{0}^{t} \lambda(i)e^{-\lambda(i)s} \sum_{k \neq i} Q_{ik}P_{kj}(t-s)ds \). Basically, the first term is non-zero if and only if \(i = j \) and represents the probability that the first transition from state \(i \) occurs after time \(t \). This would mean that at \(t \), the state is still \(i \). The second term accounts for any transitions that may occur before time \(t \) and denotes the probability that at time \(t \), when the smoke clears, we are in state \(j \).

This equation can be represented compactly as follows \(P'(t) = AP(t) \) where \(A \) is the generator matrix. \(A(i,j) = \begin{cases} \lambda(i,j) & \text{if } i \neq j \\ -\lambda(i) & \text{else} \end{cases} \)

Observe that the sum of each row is 0. A CTMC can be completely specified by the generator matrix.

Stationary Distributions

The following theorem guarantees the existence of a unique stationary distribution for CTMCs. Note that \(X(t) \) being irreducible and recurrent is the same as \(X_n(t) \) being irreducible and recurrent.

Suppose that \(X(t) \) is irreducible and recurrent. Then \(X(t) \) has an invariant measure \(\eta \), which is unique up to multiplicative factors. Moreover, for each \(k \in S \), we have

\[
\eta_k = \frac{\pi_k}{\lambda(k)}
\]

where \(\pi \) is the unique invariant measure of the embedded discrete time Markov chain \(X_n \). Finally, \(\eta \) satisfies

\[0 < \eta_j < \infty, \forall j \in S \]

and if \(\sum_i \eta_i < \infty \) then \(\eta \) can be normalised to get a stationary distribution.

Estimation

Let the data set be \(D = \{(s_0, t_0), (s_1, t_1), \ldots, (s_{N-1}, t_{N-1})\} \) where \(N = |D| \). Each \(s_i \) is a state from the state space \(S \) and during the time \([t_i, t_{i+1}]\) the chain is in state \(s_i \). Let the parameters be represented by \(\theta = \{\lambda, P\} \) where \(\lambda \) is the vector of holding parameters for each state and \(P \) the transition matrix of the embedded discrete time Markov chain.

Then the probability is given by \(Pr(D|\theta) \propto \lambda(s_0)e^{-\lambda(s_0)(t_1-t_0)} Pr(s_1|s_0) \cdot \lambda(s_1)e^{-\lambda(s_1)(t_2-t_1)} Pr(s_2|s_1) \ldots \lambda(s_{N-1}) \).

Let \(n(j|i) \) denote the number of \(i \rightarrow j \) transitions in \(D \), and \(n(i) \) the number of times \(s_i \) occurs
in D. Let $t(s_i)$ denote the total time the chain spends in state s_i. Then the MLEs are given by $\hat{\lambda}(s) = \frac{n(s)}{t(s)}, \hat{P}(j|i) = \frac{n(j|i)}{n(i)}$.

Examples

To create a CTMC object, you need to provide a valid generator matrix. The CTMC object has the following slots - states, generator, byrow, name (look at the documentation object for further details). Consider the following example in which we aim to model the transition of a molecule from the σ state to the σ^* state. When in the former state, if it absorbs sufficient energy, it can make the jump to the latter state and remains there for some time before transitioning back to the original state. Let us model this by a CTMC:

```r
energyStates <- c("sigma", "sigma_star")
byRow <- TRUE
gen <- matrix(data = c(-3, 3,
+ 1, -1), nrow = 2,
+ byrow = byRow, dimnames = list(energyStates, energyStates))
molecularCTMC <- new("ctmc", states = energyStates,
+ byrow = byRow, generator = gen,
+ name = "Molecular Transition Model")
```

To generate random CTMC transitions, we provide an initial distribution of the states. This must be in the same order as the dimnames of the generator. The output can be returned either as a list or a data frame.

```r
statesDist <- c(0.8, 0.2)
rctmc(n = 3, ctmc = molecularCTMC, initDist = statesDist, out.type = "df", include.T0 = TRUE)
```

```
  states  time
1 sigma_star 0.0751540634915531
2   sigma 1.06069539596264
3 sigma_star 1.14196675390431
```

n represents the number of samples to generate. There is an optional argument T for `rctmc`. It represents the time of termination of the simulation. To use this feature, set n to a very high value, say `Inf` (since we do not know the number of transitions beforehand) and set T accordingly.

```r
statesDist <- c(0.8, 0.2)
rctmc(n = Inf, ctmc = molecularCTMC, initDist = statesDist, T = 2)
```

```
[[1]]
[1] "sigma_star" "sigma"    "sigma_star" "sigma"    "sigma_star"
[[2]]
[1] 0.0000000 0.2213810 0.3013211 0.3258045 0.7805044
```
To obtain the stationary distribution simply invoke the `steadyStates` function

```r
R> steadyStates(molecularCTMC)

    sigma sigma_star
[1,] 0.25    0.75
```

For fitting, use the `ctmcFit` function. It returns the MLE values for the parameters along with the confidence intervals.

```r
R> data <- list(c("a", "b", "c", "a", "b", "a", "c", "b", "c"),
               c(0, 0.8, 2.1, 2.4, 4, 5, 5.9, 8.2, 9))
R> ctmcFit(data)

$estimate
An object of class "ctmc"
Slot "states":
[1] "a" "b" "c"

Slot "byrow":
[1] TRUE

Slot "generator":
 a    b    c
a -0.9090909 0.6060606 0.3030303
b 0.3225806 -0.9677419 0.6451613
c 0.3846154 0.3846154 -0.7692308

Slot "name":
[1] ""

$errors
$errors$dtmcConfidenceInterval
$errors$dtmcConfidenceInterval$confidenceLevel
[1] 0.95

$errors$dtmcConfidenceInterval$lowerEndpointMatrix
 a b c
a 0 0 0
b 0 0 0
c 0 0 0

$errors$dtmcConfidenceInterval$upperEndpointMatrix
 a b c
a 0.0000000 1 0.8816179
b 0.8816179 0 1.0000000
5.6. Bayesian Estimation

The markovchain package provides functionality for maximum a posteriori (MAP) estimation of the chain parameters (at the time of writing this document, only first order models are supported) by Bayesian inference. It also computes the probability of observing a new data set, given a (different) data set. This vignette provides the mathematical description for the methods employed by the package.

**Notation and set-up**

The data is denoted by $D$, the model parameters (transition matrix) by $\theta$. The object of interest is $P(\theta|D)$ (posterior density). $\mathcal{A}$ represents an alphabet class, each of whose members represent a state of the chain. Therefore

$$D = s_0 s_1 \ldots s_{N-1}, s_t \in \mathcal{A}$$

where $N$ is the length of the data set. Also,

$$\theta = \{p(s|u), s \in \mathcal{A}, u \in \mathcal{A}\}$$

where $\sum_{s \in \mathcal{A}} p(s|u) = 1$ for each $u \in \mathcal{A}$.

Our objective is to find $\theta$ which maximises the posterior. That is, if our solution is denoted by $\hat{\theta}$, then

$$\hat{\theta} = \arg\max_{\theta} P(\theta|D)$$

where the search space is the set of right stochastic matrices of dimension $|\mathcal{A}| \times |\mathcal{A}|$.

$n(u, s)$ denotes the number of times the word $us$ occurs in $D$ and $n(u) = \sum_{s \in \mathcal{A}} n(u, s)$. The hyperparameters are similarly denoted by $\alpha(u, s)$ and $\alpha(u)$ respectively.

**Methods**

Given $D$, its likelihood is given by

$$P(D|\theta) = \prod_{s \in \mathcal{A}} \prod_{u \in \mathcal{A}} p(s|u)^{n(u, s)}$$

Conjugate priors are used to model the prior $P(\theta)$. The reasons are two fold:
1. Exact expressions can be derived for the MAP estimates, expectations and even variances.
2. Model order selection/comparison can be implemented easily (available in a future release of the package).

The hyperparameters determine the form of the prior distribution, which is a product of Dirichlet distributions:

\[ P(\theta) = \prod_{u \in \mathcal{A}} \left\{ \frac{\Gamma(\alpha(u))}{\prod_{s \in \mathcal{A}} \Gamma(\alpha(u, s))} \prod_{s \in \mathcal{A}} p(s|u)^{\alpha(u, s)-1} \right\} \]

where \( \Gamma(.) \) is the Gamma function. The hyperparameters are specified using the `hyperparam` argument in the `markovchainFit` function. If this argument is not specified, then a default value of 1 is assigned to each hyperparameter resulting in the prior distribution of each chain parameter to be uniform over \([0, 1]\).

Given the likelihood and the prior as described above, the evidence \( P(D) \) is simply given by

\[ P(D) = \int P(D|\theta)P(\theta)d\theta \]

which simplifies to

\[ P(D) = \prod_{u \in \mathcal{A}} \left\{ \frac{\Gamma(\alpha(u))}{\prod_{s \in \mathcal{A}} \Gamma(\alpha(u, s))} \prod_{s \in \mathcal{A}} \frac{\Gamma(n(u, s) + \alpha(u, s))}{\Gamma(n(u) + n(u))} \right\} \]

Using Bayes’ theorem, the posterior now becomes (thanks to the choice of conjugate priors)

\[ P(\theta|D) = \prod_{u \in \mathcal{A}} \left\{ \frac{\Gamma(n(u) + \alpha(u))}{\prod_{s \in \mathcal{A}} \Gamma(n(u, s) + \alpha(u, s))} \prod_{s \in \mathcal{A}} p(s|u)^{n(u, s)+\alpha(u, s)-1} \right\} \]

Since this is again a product of Dirichlet distributions, the marginalised distribution of a particular parameter \( P(s|u) \) of our chain is given by

\[ P(s|u) \sim Beta(n(u, s) + \alpha(u, s), n(u) + \alpha(u) - n(u, s) - \alpha(u, s)) \]

Thus, the MAP estimate \( \hat{\theta} \) is given by

\[ \hat{\theta} = \left\{ \frac{n(u, s) + \alpha(u, s) - 1}{n(u) + \alpha(u) - |\mathcal{A}|}, s \in \mathcal{A}, u \in \mathcal{A} \right\} \]

The function also returns the expected value, given by

\[ E_{post}(s|u) = \left\{ \frac{n(u, s) + \alpha(u, s)}{n(u) + \alpha(u)}, s \in \mathcal{A}, u \in \mathcal{A} \right\} \]

The variance is given by

\[ \text{Var}_{post}(s|u) = \frac{n(u, s) + \alpha(u, s) n(u) + \alpha(u) - n(u, s) - \alpha(u, s)}{(n(u) + \alpha(u))^2} \frac{1}{n(u) + \alpha(u) + 1} \]
The square root of this quantity is the standard error, which is returned by the function. The confidence intervals are constructed by computing the inverse of the beta integral.

**Predictive distribution**

Given the old data set, the probability of observing new data is $P(D'|D)$ where $D'$ is the new data set. Let $m(u, s), m(u)$ denote the corresponding counts for the new data. Then,

$$P(D'|D) = \int P(D'|\theta)P(\theta|D)d\theta$$

We already know the expressions for both quantities in the integral and it turns out to be similar to evaluating the evidence

$$P(D'|D) = \prod_{u \in A} \left\{ \frac{\Gamma(\alpha(u))}{\prod_{s \in A} \Gamma(\alpha(u, s))} \times \frac{\prod_{s \in A} \Gamma(n(u, s) + m(u, s) + \alpha(u, s))}{\Gamma(\alpha(u) + n(u) + m(u))} \right\}$$

**Choosing the hyperparameters**

The hyperparameters model the shape of the parameters' prior distribution. These must be provided by the user. The package offers functionality to translate a given prior belief transition matrix into the hyperparameter matrix. It is assumed that this belief matrix corresponds to the mean value of the parameters. Since the relation

$$\mathbb{E}_{\text{prior}}p(s|u) = \frac{\alpha(u, s)}{\alpha(u)}$$

holds, the function accepts as input the belief matrix as well as a scaling vector (serves as a proxy for $\alpha(.)$) and proceeds to compute $\alpha(.,.)$.

Alternatively, the function accepts a data sample and infers the hyperparameters from it. Since the mode of a parameter (with respect to the prior distribution) is proportional to one less than the corresponding hyperparameter, we set

$$\alpha(u, s) - 1 = m(u, s)$$

where $m(u, s)$ is the $u > s$ transition count in the data sample. This is regarded as a 'fake count' which helps $\alpha(u, s)$ to reflect knowledge of the data sample.

**Usage and examples**

```r
R> weatherStates <- c("sunny", "cloudy", "rain")
R> byRow <- TRUE
R> weatherMatrix <- matrix(data = c(0.7, 0.2, 0.1,
+ 0.3, 0.4, 0.3,
+ 0.2, 0.4, 0.4),
+ byrow = byRow, nrow = 3,
+ dimnames = list(weatherStates, weatherStates))
```
R> mcWeather <- new("markovchain", states = weatherStates,
+         byrow = byRow, transitionMatrix = weatherMatrix,
+         name = "Weather")
R> weathersOfDay <- rmarkovchain(n = 365, object = mcWeather, t0 = "sunny")

For the purpose of this section, we shall continue to use the weather of days example introduced in the main vignette of the package (reproduced above for convenience).
Let us invoke the fit function to estimate the MAP parameters with 92% confidence bounds and hyperparameters as shown below, based on the first 200 days of the weather data. Additionally, let us find out what the probability is of observing the weather data for the next 165 days. The usage would be as follows

R> hyperMatrix <- matrix(c(1, 1, 2,
+                          3, 2, 1,
+                          2, 2, 3),
+             nrow = 3, byrow = TRUE,
+             dimnames = list(weatherStates, weatherStates))
R> markovchainFit(weathersOfDay[1:200], method = "map",
+               confidencelevel = 0.92, hyperparam = hyperMatrix)

$estimate
Bayesian Fit
A 3-dimensional discrete Markov Chain with following states: cloudy, rain, sunny
The transition matrix (by rows) is defined as follows:
cloudy rain sunny
cloudy 0.3943662 0.2112676 0.3943662
rain 0.4090909 0.4090909 0.1818182
sunny 0.2608696 0.1086957 0.6304348

$expectedValue
cloudy rain sunny
cloudy 0.3918919 0.2162162 0.3918919
rain 0.4042553 0.4042553 0.1914894
sunny 0.2631579 0.1157895 0.6210526

$standardError
[,1] [,2] [,3]
[1,] 0.05636933 0.04753480 0.05636933
[2,] 0.07083328 0.07083328 0.05679297
[3,] 0.04494277 0.03265704 0.04951286

$confidenceInterval
$confidenceInterval$confidenceLevel
[1] 0.92
The markovchain package

$confidenceInterval$lowerEndpointMatrix

[,1]   [,2]   [,3]
[1,]  0.3073001 0.1274298 0.30730007
[2,]  0.3030199 0.3030199 0.06647929
[3,]  0.1854550 0.0000000 0.55048814

$confidenceInterval$upperEndpointMatrix

[,1]   [,2]   [,3]
[1,]  0.5158282 0.2936998 0.5158282
[2,]  0.5875307 0.5875307 0.2768335
[3,]  0.3421447 0.1640552 1.0000000

$logLikelihood
[1] -193.0444

R> predictiveDistribution(weathersOfDays[1:200],
+ weathersOfDays[201:365], hyperparam = hyperMatrix)
[1] -166.8887

The results should not change after permuting the dimensions of the matrix.

R> hyperMatrix2 <- hyperMatrix[c(2,3,1), c(2,3,1)]
R> markovchainFit(weathersOfDays[1:200], method = "map",
+ confidencelevel = 0.92, hyperparam = hyperMatrix2)

$estimate
Bayesian Fit
A 3 - dimensional discrete Markov Chain with following states: cloudy, rain, sunny
The transition matrix (by rows) is defined as follows:
cloudy  rain  sunny
cloudy  0.3943662 0.2112676 0.3943662
rain   0.4090909 0.4090909 0.1818182
sunny  0.2608696 0.1086957 0.6304348

$expectedValue
cloudy  rain  sunny
cloudy  0.3918919 0.2162162 0.3918919
rain   0.4042553 0.4042553 0.1914894
sunny  0.2608696 0.1086957 0.6304348

$standardError
[,1]   [,2]   [,3]

Note that the predictive probability is very small. However, this can be useful when comparing model orders.

Suppose we have an idea of the (prior) transition matrix corresponding to the expected value of the parameters, and have a data set from which we want to deduce the MAP estimates. We can infer the hyperparameters from this known transition matrix itself, and use this to obtain our MAP estimates.

```r
R> predictiveDistribution(weathersOfDays[1:200],
+ weathersOfDays[201:365],hyperparam = hyperMatrix2)

[1] -166.8887
```

Alternatively, we can use a data sample to infer the hyperparameters.

```r
R> inferHyperparam(transMatr = weatherMatrix, scale = c(10, 10, 10))

$scaledInference

cloudy rain sunny
cloudy 4 3 3
rain 4 4 2
sunny 2 1 7
```

Alternatively, we can use a data sample to infer the hyperparameters.
\texttt{R} > \texttt{inferHyperparam(data = weathersOfDays[1:15])}

\$\text{dataInference}

\begin{verbatim}
cloudy rain sunny
cloudy 4 2 3
rain 2 2 1
sunny 3 1 5
\end{verbatim}

In order to use the inferred hyperparameter matrices, we do

\begin{verbatim}
R> hyperMatrix3 <- inferHyperparam(transMatr = weatherMatrix, scale = c(10, 10, 10))
R> hyperMatrix3 <- hyperMatrix3\$scaledInference
R> hyperMatrix4 <- inferHyperparam(data = weathersOfDays[1:15])
R> hyperMatrix4 <- hyperMatrix4\$dataInference
\end{verbatim}

Now we can safely use \texttt{hyperMatrix3} and \texttt{hyperMatrix4} with \texttt{markovchainFit} (in the \texttt{hyperparam} argument).

Supposing we don’t provide any hyperparameters, then the prior is uniform. This is the same as maximum likelihood.

\begin{verbatim}
R> data(preproglucacon)
R> preproglucacon <- preproglucacon[[2]]
R> MLEest <- markovchainFit(preproglucacon, method = "mle")
R> MAPest <- markovchainFit(preproglucacon, method = "map")
R> MLEest\$estimate

MLE Fit
A 4 - dimensional discrete Markov Chain with following states:
A, C, G, T
The transition matrix (by rows) is defined as follows:

\begin{verbatim}
A  C  G  T
A 0.3585271 0.1434109 0.16666667 0.3313953
C 0.3840304 0.1558935 0.02281369 0.4372624
G 0.3053097 0.1991150 0.15044248 0.3451327
T 0.2844523 0.1819788 0.17667845 0.3568905
\end{verbatim}

R> MAPest\$estimate

Bayesian Fit
A 4 - dimensional discrete Markov Chain with following states:
A, C, G, T
The transition matrix (by rows) is defined as follows:

\begin{verbatim}
A  C  G  T
A 0.3585271 0.1434109 0.16666667 0.3313953
C 0.3840304 0.1558935 0.02281369 0.4372624
G 0.3053097 0.1991150 0.15044248 0.3451327
T 0.2844523 0.1819788 0.17667845 0.3568905
\end{verbatim}

R> MAPest\$estimate
5.7. Higher Order Markov Chains

Continuous time Markov chains are discussed in the CTMC vignette which is a part of the package.

An experimental `fitHigherOrder` function has been written in order to fit a higher order Markov chain. It takes a sequence and the order as arguments and returns the frequency probability vector $X$ of the given sequence and the parameters $\lambda_i$ with the transition probability matrices $Q_i$ for each order $i$. Its quadratic programming problem is solved using `solnp` function of `Rsolnp`, ?.

```r
R> library(Rsolnp)
R> data(rain)
R> fitHigherOrder(rain$rain, 2)
```

```r
$lambda
[1] 0.5 0.5

$Q
$Q[[1]]
 0 1-5 6+
0 0.6605839 0.4625850 0.1976285
1-5 0.2299270 0.3061224 0.3122530
6+ 0.1094891 0.2312925 0.4901186

$Q[[2]]
 0 1-5 6+
0 0.6021898 0.4489796 0.3412698
1-5 0.2445255 0.2687075 0.3214286
6+ 0.1532847 0.2823129 0.3373016

$X
 0 1-5 6+
0.5000000 0.2691606 0.2308394
```

```r
R> fitHigherOrder(rain$rain, 3)
```

```r
$lambda
[1] 0.3333333 0.3333333 0.3333333

$Q
$Q[[1]]
 0 1-5 6+
0 0.6605839 0.4625850 0.1976285
1-5 0.2299270 0.3061224 0.3122530
6+ 0.1094891 0.2312925 0.4901186
```
6. Applications

This section shows applications of DTMC in various fields.

6.1. Weather forecasting

Markov chains provide a simple model to predict the next day’s weather given the current meteorological condition. The first application herewith shown is the ”Land of Oz example” from ?, the second is the ”Alofi Island Rainfall” from ?.

Land of Oz

The Land of Oz is acknowledged not to have ideal weather conditions at all: the weather is snowy or rainy very often and, once more, there are never two nice days in a row. Consider three weather states: rainy, nice and snowy. Let the transition matrix be as in the following:

\[
\begin{pmatrix}
0 & 0.25 & 0.25 \\
0.5 & 0 & 0.5 \\
0.25 & 0.25 & 0.5
\end{pmatrix}
\]

Given that today it is a nice day, the corresponding stochastic row vector is \( w_0 = (0, 1, 0) \) and the forecast after 1, 2 and 3 days are given by

\[
\begin{align*}
w_0 &= (0, 1, 0) \\
w_1 &= w_0 \cdot mcWP; w_1 \\
\end{align*}
\]

\[
\begin{array}{lcc}
rainy & nice & snowy \\
[1,] & 0.5 & 0 & 0.5
\end{array}
\]
R> W2 <- W0 * (mcWP ^ 2); W2

    rainy nice snowy
[1,] 0.375 0.25 0.375

R> W3 <- W0 * (mcWP ^ 3); W3

    rainy nice snowy
[1,] 0.40625 0.1875 0.40625

As can be seen from $w_1$, if in the Land of Oz today is a nice day, tomorrow it will rain or snow with probability 1. One week later, the prediction can be computed as

R> W7 <- W0 * (mcWP ^ 7)
R> W7

    rainy nice snowy
[1,] 0.4000244 0.1999512 0.4000244

The steady state of the chain can be computed by means of the `steadyStates` method.

R> q <- steadyStates(mcWP)
R> q

    rainy nice snowy
[1,] 0.4 0.2 0.4

Note that, from the seventh day on, the predicted probabilities are substantially equal to the steady state of the chain and they don’t depend from the starting point, as the following code shows.

R> R0 <- t(as.matrix(c(1, 0, 0)))
R> R7 <- R0 * (mcWP ^ 7); R7

    rainy nice snowy
[1,] 0.4000244 0.2000122 0.3999634

R> S0 <- t(as.matrix(c(0, 0, 1)))
R> S7 <- S0 * (mcWP ^ 7); S7

    rainy nice snowy
[1,] 0.3999634 0.2000122 0.4000244

Alofi Island Rainfall

Alofi Island daily rainfall data were recorded from January 1st, 1987 until December 31st, 1989 and classified into three states: "0" (no rain), "1-5" (from non zero until 5 mm) and "6+" (more than 5mm). The corresponding dataset is provided within the `markovchain` package.
The underlying transition matrix is estimated as follows.

```r
R> mcAlofi <- markovchainFit(data = rain$rain, name = "Alofi MC")$estimate
```

**Alofi MC**

A 3-dimensional discrete Markov Chain with following states:
0, 1-5, 6+

The transition matrix (by rows) is defined as follows:
```
0 1-5 6+
0 0.6605839 0.2299270 0.1094891
1-5 0.4625850 0.3061224 0.2312925
6+ 0.1976285 0.3122530 0.4901186
```

The long term daily rainfall distribution is obtained by means of the `steadyStates` method.

```r
R> steadyStates(mcAlofi)
```

```
0 1-5 6+
[1,] 0.5008871 0.2693656 0.2297473
```

### 6.2. Finance and Economics

Other relevant applications of DTMC can be found in Finance and Economics.

**Finance**

Credit ratings transitions have been successfully modelled with discrete time Markov chains. Some rating agencies publish transition matrices that show the empirical transition probabilities across credit ratings. The example that follows comes from `CreditMetrics` R package (\?), carrying Standard & Poor’s published data.

```r
R> creditMatrix <- matrix(c(90.81, 8.33, 0.68, 0.06, 0.08, 0.02, 0.01, 0.01, + 0.70, 90.65, 7.79, 0.64, 0.06, 0.13, 0.02, 0.01, + 0.09, 2.27, 91.05, 5.52, 0.74, 0.26, 0.01, 0.06, + 0.02, 0.33, 5.95, 85.93, 5.30, 1.17, 1.12, 0.18, + 0.03, 0.14, 0.67, 7.73, 80.53, 8.84, 1.00, 1.06, + 0.01, 0.11, 0.24, 0.43, 6.48, 83.46, 4.07, 5.20, + 0.21, 0, 0.22, 1.30, 2.38, 11.24, 64.86, 19.79, + 0, 0, 0, 0, 0, 0, 0, 100 +)/100, 8, 8, dimnames = list(rc, rc), byrow = TRUE)
```
It is easy to convert such matrices into `markovchain` objects and to perform some analyses.

```r
R> creditMc <- new("markovchain", transitionMatrix = creditMatrix,
+ name = "S&P Matrix")
R> absorbingStates(creditMc)

[1] "D"
```

**Economics**

For a recent application of `markovchain` in Economic, see ?.

A dynamic system generates two kinds of economic effects (?):

1. those incurred when the system is in a specified state, and
2. those incurred when the system makes a transition from one state to another.

Let the monetary amount of being in a particular state be represented as a $m$-dimensional column vector $c^S$, while let the monetary amount of a transition be embodied in a $C^R$ matrix in which each component specifies the monetary amount of going from state $i$ to state $j$ in a single step. Henceforth, Equation 21 represents the monetary of being in state $i$.

$$c_i = c^S_i + \sum_{j=1}^{m} C^R_{ij} p_{ij}. \quad (21)$$

Let $\bar{c} = [c_i]$ and let $e_i$ be the vector valued 1 in the initial state and 0 in all other, then, if $f_n$ is the random variable representing the economic return associated with the stochastic process at time $n$, Equation 22 holds:

$$E[f_n(X_n)|X_0 = i] = e_i P^n \bar{c}. \quad (22)$$

The following example assumes that a telephone company models the transition probabilities between customer/non-customer status by matrix $P$ and the cost associated to states by matrix $M$.

```r
R> statesNames <- c("customer", "non customer")
R> P <- zeros(2); P[1, 1] <- .9; P[1, 2] <- .1; P[2, 2] <- .95; P[2, 1] <- .05;
R> rownames(P) <- statesNames; colnames(P) <- statesNames
R> mcP <- new("markovchain", transitionMatrix = P, name = "Telephone company")
R> M <- zeros(2); M[1, 1] <- -20; M[1, 2] <- -30; M[2, 1] <- -40; M[2, 2] <- 0

If the average revenue for existing customer is +100, the cost per state is computed as follows.

```r
R> c1 <- 100 + conditionalDistribution(mcP, state = "customer") \%\% M[1,]
R> c2 <- 0 + conditionalDistribution(mcP, state = "non customer") \%\% M[2,]
```
For an existing customer, the expected gain (loss) at the fifth year is given by the following code.

```R
R> as.numeric((c(1, 0) * mcP ^ 5) %*% (as.vector(c(c1, c2))))
[1] 48.96009
```

6.3. Actuarial science

Markov chains are widely applied in the field of actuarial science. Two classical applications are policyholders’ distribution across Bonus Malus classes in Motor Third Party Liability (MTPL) insurance (Section 6.3.1) and health insurance pricing and reserving (Section 6.3.2).

MPTL Bonus Malus

Bonus Malus (BM) contracts grant the policyholder a discount (enworsen) as a function of the number of claims in the experience period. The discount (enworsen) is applied on a premium that already allows for known (a priori) policyholder characteristics (?) and it usually depends on vehicle, territory, the demographic profile of the policyholder, and policy coverages deep (deductible and policy limits).

Since the proposed BM level depends on the claim on the previous period, it can be modelled by a discrete Markov chain. A very simplified example follows. Assume a BM scale from 1 to 5, where 4 is the starting level. The evolution rules are shown in Equation 23:

\[
bm_{t+1} = \max(1, bm_t - 1) \cdot \left(\tilde{N} = 0\right) + \min\left(5, bm_t + 2 \cdot \tilde{N}\right) \cdot \left(\tilde{N} \geq 1\right).
\]

(23)

The number of claim \(\tilde{N}\) is a random variable that is assumed to be Poisson distributed.

```R
R> getBonusMalusMarkovChain <- function(lambda)
+ {
+   bmMatr <- zeros(5)
+   bmMatr[1, 1] <- dpois(x = 0, lambda)
+   bmMatr[1, 3] <- dpois(x = 1, lambda)
+   bmMatr[1, 5] <- 1 - ppois(q = 1, lambda)
+   bmMatr[2, 1] <- dpois(x = 0, lambda)
+   bmMatr[2, 4] <- dpois(x = 1, lambda)
+   bmMatr[2, 5] <- 1 - ppois(q = 1, lambda)
+   bmMatr[3, 2] <- dpois(x = 0, lambda)
+   bmMatr[3, 5] <- 1 - dpois(x = 0, lambda)
+   bmMatr[4, 3] <- dpois(x = 0, lambda)
+   bmMatr[4, 5] <- 1 - dpois(x = 0, lambda)
+   bmMatr[5, 4] <- dpois(x = 0, lambda)
+ }
```
+ bmMatr[5, 5] <- 1 - dpois(x = 0, lambda)
+ stateNames <- as.character(1:5)
+ out <- new("markovchain", transitionMatrix = bmMatr,
+ states = stateNames, name = "BM Matrix")
+ return(out)
+ }

R>

Assuming that the a-priori claim frequency per car-year is 0.05 in the class (being the class
the group of policyholders that share the same common characteristics), the underlying BM
transition matrix and its underlying steady state are as follows.

R> bmMc <- getBonusMalusMarkovChain(0.05)
R> as.numeric(steadyStates(bmMc))

[1] 0.895836079 0.045930498 0.048285405 0.005969247 0.003978772

If the underlying BM coefficients of the class are 0.5, 0.7, 0.9, 1.0, 1.25, this means that the
average BM coefficient applied on the long run to the class is given by

R> sum(as.numeric(steadyStates(bmMc)) * c(0.5, 0.7, 0.9, 1, 1.25))

[1] 0.534469

This means that the average premium paid by policyholders in the portfolio almost halves in
the long run.

Health insurance example

Actuaries quantify the risk inherent in insurance contracts evaluating the premium of insur-
ance contract to be sold (therefore covering future risk) and evaluating the actuarial reserves
of existing portfolios (the liabilities in terms of benefits or claims payments due to policy-
holder arising from previously sold contracts). Key quantities of actuarial interest are: the
expected present value of future benefits, \(PVFB \), the (periodic) benefit premium, \(P \), and
the present value of future premium \(PVFP \). A level benefit premium could be set equating
at the beginning of the contract \(PVFB = PVFP \). After the beginning of the contract the
benefit reserve is the difference between \(PVFB \) and \(PVFP \). The example comes from ?. The
interest rate is 5\%, benefits are payable upon death (1000) and disability (500). Premiums
are payable at the beginning of period only if the policyholder is active. The contract term
is three years.

R> mcHI <- new("markovchain", states = c("active", "disable", "withdrawn",
+ "death"),
+ transitionMatrix = matrix(c(0.5, .25, .15, .1,
+ 0.4, 0.4, 0.0, 0.2,
+ 0, 0, 1, 0,
+ 0, 0, 0, 1), byrow = TRUE, nrow = 4))
R> benefitVector <- as.matrix(c(0, 0, 500, 1000))
The policyholders is active at T_0. Therefore the expected states at T_1, \ldots, T_3 are calculated in the following.

```r
R> T0 <- t(as.matrix(c(1, 0, 0, 0)))
R> T1 <- T0 * mcHI
R> T2 <- T1 * mcHI
R> T3 <- T2 * mcHI
```

The present value of future benefit at T_0 is given by

```r
R> PVFB <- T0 %%*%% benefitVector * 1.05 ^ -0 +
    + T1 %%*%% benefitVector * 1.05 ^ -1 +
    + T2 %%*%% benefitVector * 1.05 ^ -2 + T3 %%*%% benefitVector * 1.05 ^ -3
```

The yearly premium payable whether the insured is alive is as follows.

```r
R> P <- PVFB / (T0[1] * 1.05 ^ -0 + T1[1] * 1.05 ^ -1 + T2[1] * 1.05 ^ -2)
```

The reserve at the beginning of the second year, in the case of the insured being alive, is as follows.

```r
R> PVFB <- T2 %%*%% benefitVector * 1.05 ^ -1 + T3 %%*%% benefitVector * 1.05 ^ -2
R> PVFP <- P * (T1[1] * 1.05 ^ -0 + T2[1] * 1.05 ^ -1)
R> V <- PVFB - PVFP
R> V
```

```
[,1]
[1,]  300.2528
```

6.4. Sociology

Markov chains have been actively used to model progressions and regressions between social classes. The first study was performed by ?, while a more recent application can be found in ?. The table that follows shows the income quartile of the father when the son was 16 (in 1984) and the income quartile of the son when aged 30 (in 2000) for the 1970 cohort.

```r
R> data("blanden")
R> mobilityMc <- as(blanden, "markovchain")
R> mobilityMc
```

```
Unnamed Markov chain
A 4-dimensional discrete Markov Chain with following states:
   Bottom, 2nd, 3rd, Top
The transition matrix (by rows) is defined as follows:
   2nd 3rd Bottom Top
Bottom 0.2900000 0.2200000 0.3800000 0.1100000
 2nd 0.2772277 0.2574257 0.2475248 0.2178218
 3rd 0.2626263 0.2828283 0.2121212 0.2424242
Top 0.1700000 0.2500000 0.1600000 0.4200000
```
Figure 5: 1970 UK cohort mobility data.

The underlying transition graph is plotted in Figure 5.

The steady state distribution is computed as follows. Since transition across quartiles are shown, the probability function is evenly 0.25.

\[R > \text{round(steadyStates(mobilityMc), 2)} \]

\[
\begin{array}{cccc}
\text{Bottom} & \text{2nd} & \text{3rd} & \text{Top} \\
[1,] & 0.25 & 0.25 & 0.25 & 0.25 \\
\end{array}
\]

6.5. Genetics and Medicine

This section contains two examples: the first shows the use of Markov chain models in genetics, the second shows an application of Markov chains in modelling diseases’ dynamics.

Genetics
The markovchain package

? discusses the use of Markov chains in model Preproglucacon gene protein bases sequence. The preproglucacon dataset in markovchain contains the dataset shown in the package.

\[
R> \text{data("preproglucacon", package = "markovchain")}
\]

It is possible to model the transition probabilities between bases as shown in the following code.

\[
R> \text{mcProtein <- markovchainFit(preproglucacon$preproglucacon, + name = "Preproglucacon MC")}$estimate
\]

Preproglucacon MC
A 4 - dimensional discrete Markov Chain with following states:
A, C, G, T
The transition matrix (by rows) is defined as follows:

\[
\begin{array}{cccc}
A & C & G & T \\
A & 0.3585271 & 0.1434109 & 0.16666667 & 0.3313953 \\
C & 0.3840304 & 0.1558935 & 0.02281369 & 0.4372624 \\
G & 0.3053097 & 0.1991150 & 0.15044248 & 0.3451327 \\
T & 0.2844523 & 0.1819788 & 0.17667845 & 0.3568905 \\
\end{array}
\]

\[
\med\text{Discrete-time Markov chains are also employed to study the progression of chronic diseases. The following example is taken from ?. Starting from six month follow-up data, the maximum likelihood estimation of the monthly transition matrix is obtained. This transition matrix aims to describe the monthly progression of CD4-cell counts of HIV infected subjects.}
\]

\[
R> \text{craigSendiMatr <- matrix(c(682, 33, 25, + 154, 64, 47, + 19, 19, 43), byrow = T, nrow = 3)}
\]

\[
R> \text{hivStates <- c("0-49", "50-74", "75-UP")}
\]

\[
R> \text{rownames(craigSendiMatr) <- hivStates}
\]

\[
R> \text{colnames(craigSendiMatr) <- hivStates}
\]

\[
R> \text{craigSendiTable <- as.table(craigSendiMatr)}
\]

\[
R> \text{mcM6 <- as(craigSendiTable, "markovchain")}
\]

\[
R> \text{mcM6@name <- "Zero-Six month CD4 cells transition"}
\]

\[
R> \text{mcM6}
\]

Zero-Six month CD4 cells transition
A 3 - dimensional discrete Markov Chain with following states:
0-49, 50-74, 75-UP
The transition matrix (by rows) is defined as follows:

\[
\begin{array}{ccc}
0-49 & 50-74 & 75-UP \\
0-49 & 0.9216216 & 0.04459459 & 0.03378378 \\
50-74 & 0.5811321 & 0.24150943 & 0.17735849 \\
75-UP & 0.2345679 & 0.23456790 & 0.53086420 \\
\end{array}
\]
As shown in the paper, the second passage consists in the decomposition of $M_6 = V \cdot D \cdot V^{-1}$ in order to obtain M_1 as $M_1 = V \cdot D^{1/6} \cdot V^{-1}$.

R> eig <- eigen(mcM6@transitionMatrix)
R> D <- diag(eig$values)
R> V <- eig$vectors
R> V %*% D %*% solve(V)

[,1] [,2] [,3]
[1,] 0.9216216 0.0445946 0.0337838
[2,] 0.5811321 0.2415094 0.1773585
[3,] 0.2345679 0.2345679 0.5308642

R> d <- D ^ (1/6)
R> M <- V %*% d %*% solve(V)
R> mcM1 <- new("markovchain", transitionMatrix = M, states = hivStates)

7. Discussion, issues and future plans

The markovchain package has been designed in order to provide easily handling of DTMC and communication with alternative packages.

Some numerical issues have been found when working with matrix algebra using R internal linear algebra kernel (the same calculations performed with MATLAB gave a more accurate result). Some temporary workarounds have been implemented. For example, the condition for row/column sums to be equal to one is valid up to fifth decimal. Similarly, when extracting the eigenvectors only the real part is taken.

Such limitations are expected to be overcome in future releases. Similarly, future versions of the package are expected to improve the code in terms of numerical accuracy and rapidity. An initial rewriting of internal function in C++ by means of Rcpp package (?) has been started.

Aknowledgments

The package was selected for Google Summer of Code 2015 support. The authors wish to thank Michael Cole, Tobi Gutman and Mildenberger Thoralf for their suggestions and bug checks. A final thanks also to Dr. Simona C. Minotti and Dr. Mirko Signorelli for their support in drafting this version of the vignettes.
Affiliation:
Giorgio Alfredo Spedicato
Ph.D C.Stat ACAS
UnipolSai R&D
Via Firenze 11, Paderno Dugnano 20037 Italy
E-mail: spedygiorgio@gmail.com
URL: www.statisticaladvisor.com

Tae Seung Kang
Ph.D student
Computer & Information Science & Engineering
University of Florida
Gainesville, FL, USA
E-mail: tskang3@gmail.com

Sai Bhargav Yalamanchi
B-Tech student
Electrical Engineering
Indian Institute of Technology, Bombay
Mumbai - 400 076, India
E-mail: bhargavcoolboy@gmail.com