Crash Introduction to markovchain R package

Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS

2019-01-20
The markovchain package (Spedicato 2017) will be introduced. The package is intended to provide S4 classes to perform probabilistic and statistical analysis of Discrete Time Markov Chains (DTMC). See (Brémaud 1999) for a theoretical review of the mathematics underlying the DTMC models.

The vignette will show: how to load the package and create a DTMC, how to manage a DTMC, how to perform basic probabilistic analysis, how to fit a DTMC.
- The package is on Cran since Summer 2013.
- It requires a recent version of R (≥ 3.0). Since version 0.2 parts of code have been moved to Rcpp (Eddelbuettel 2013).
- The package won a slot in Google Summer of Code 2015 for optimizing internals and expanding functionalities.
First moves into the markovchain package

Loading the package

- The package is loaded using

```r
library(markovchain)
```
Creating a DTMC

- DTMC can be easily create following standard S4 classes syntax. The show method displays it.

```r
tmA <- matrix(c(0, 0.5, 0.5, .5, 0, .5, .5, 0), nrow = 3, byrow = TRUE) # define the transition matrix
dtmcA <- new("markovchain", transitionMatrix = tmA, states = c("a", "b", "c"), name = "MarkovChain A") # create the DTMC
dtmcA

## MarkovChain A
##  A 3 - dimensional discrete Markov Chain defined by the
##  a, b, c
##  The transition matrix (by rows) is defined as follows:
##  a  b  c
##  a 0.0 0.5 0.5
##  b 0.5 0.0 0.5
##  c 0.5 0.5 0.0
```
Otherwise, it can also be created directly coercing a matrix.

dtmcA2 <- as(tmA, "markovchain") # using coerce from matrix
states(dtmcA2) # note default names assigned to states

[1] "s1" "s2" "s3"
It is also possible to display a DTMC, using igraph package (Csardi and Nepusz 2006) capabilities.

```r
plot(dtmcA)
```
Probabilistic analysis

The basic

- It is possible to access transition probabilities and to perform basic operations.
- Similarly, it is possible to access the conditional distribution of states, $Pr(X_{t+1}|X_t = s)$

```r
dtmcA[2,3] #using [ method

## [1] 0.5
```

```r
transitionProbability(dtmcA,
                      "b","c") #using specific S4 method

## [1] 0.5
```

```r
conditionalDistribution(dtmcA,"b")

## a  b  c
## 0.5 0.0 0.5
```
It is possible to simulate states distribution after n-steps

```r
initialState <- c(0, 1, 0)
steps <- 4
finalState <- initialState * dtmcA^steps  # using power operator
finalState
```

```
# a    b    c
[1,] 0.3125 0.375 0.3125
```
As well as steady states distribution

```r
steadyStates(dtmcA) #S4 method
```

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3333</td>
<td>0.3333</td>
<td>0.3333</td>
</tr>
</tbody>
</table>
Advanced

- We use an example found on Mathematica Web page, (Wolfram Research 2013)

```r
E <- matrix(0, nrow = 4, ncol = 4)
E[1, 2] <- 1; E[2, 1] <- 1/3; E[2, 3] <- 2/3
mcMathematica <- new("markovchain", states = c("a", "b", "c"),
transitionMatrix = E, name = "Mathematica")
```
The summary method shows the properties of the DTCM

```
summary(mcMathematica)
```

Mathematica Markov chain that is composed by:

Closed classes:
```
a b c d
```

Recurrent classes:
```
{a,b,c,d}
```

Transient classes:
```
NONE
```

The Markov chain is irreducible

The absorbing states are: NONE
The package permits to fit a DTMC estimating the transition matrix from a sequence of data. - createSequenceMatrix returns a function showing previous vs actual states from the pairs in a given sequence.
#using Alofi rainfall dataset

data(rain)

mysequence <- rain$rain

createSequenceMatrix(mysequence)

0 1-5 6+
0 362 126 60
1-5 136 90 68
6+ 50 79 124
markovchainFit function allows to obtain the estimated transition matrix and the confidence levels (using elliptic MLE hypothesis).

```r
myFit <- markovchainFit(data = mysequence, confidencelevel = .9)
```

```r
myFit
```

```r
## $estimate
## MLE Fit
## A 3 - dimensional discrete Markov Chain defined by the 
## 0, 1-5, 6+
## The transition matrix (by rows) is defined as follows:
##
## 0 1-5 6+
## 0 0.6605839 0.2299270 0.1094891
## 1-5 0.4625850 0.3061224 0.2312925
## 6+ 0.1976285 0.3122530 0.4901186
##
##
## $standardError
## 0 1-5 6+
## 0 0.03471952 0.02048353 0.01413498
```
See the vignettes for further fitting methods as well as for functionalities targeted on non-homogeneous Markov chains.

```r
alofiMc <- myFit$estimate
alofiMc
```

```r
## MLE Fit
## A 3-dimensional discrete Markov Chain defined by the 0, 1-5, 6+
## The transition matrix (by rows) is defined as follows:
##
##      0     1-5    6+
## 0 0.6605839 0.2299270 0.1094891
## 1-5 0.4625850 0.3061224 0.2312925
## 6+ 0.1976285 0.3122530 0.4901186
```


