Package ‘matchMulti’

May 17, 2018

Type Package
Title Optimal Multilevel Matching using a Network Algorithm
Version 1.1.7
Date 2019-05-08
Author Luke Keele, Sam Pimentel, and Paul Rosenbaum
Maintainer Sam Pimentel <spi@berkeley.edu>
Description Performs multilevel matches for data with cluster-level treatments and individual-level outcomes using a network optimization algorithm. Functions for checking balance at the cluster and individual levels are also provided, as are methods for permutation-inference-based outcome analysis. Details in Pimentel et al. (2017+), forthcoming in the Annals of Applied Statistics.
Depends R (>= 3.2.3)
Imports rcbsubset (>= 1.1.4), plyr, coin, weights, mvtnorm, MASS, Hmisc
Suggests optmatch, testthat, knitr
License MIT + file LICENSE
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-17 04:57:51 UTC

R topics documented:

matchMulti-package .. 2
balanceMulti .. 3
buildCaliper .. 4
catholic_schools ... 6
matchMulti ... 7
matchMultioutcome ... 10
matchMultisens .. 11
pairmatchelastic .. 13
rematchSchools .. 14

Index 16
matchMulti-package

Optimal Multilevel Matching using a Network Algorithm

Description

matchMulti provides an easy to use set of functions to do matching with multilevel data. It is designed for use with grouped data such as students in schools, where the user wishes to match a set of treated groups to control groups to make the two groups more comparable.

Details

This package will match treated groups to control groups, but allows for trimming of both units and groups to increase balance. There are also functions for assessing balance after matching, estimating treatment effects and performing sensitivity analysis for hidden confounders.

Author(s)

Luke Keele, Sam Pimentel, and Paul Rosenbaum
Maintainer: Sam Pimentel <spi@berkeley.edu>

See Also

See also matchMulti, matchMultisens, balanceMulti, matchMultioutcome, rematchSchools

Examples

Not run:
Load Catholic school data
data(catholic_schools)

student.cov <- c('minority', 'female', 'ses', 'mathach')

Check balance student balance before matching
balanceTable(catholic_schools[c(student.cov, 'sector')], treatment = 'sector')

Match schools but not students within schools
match.simple <- matchMulti(catholic_schools, treatment = 'sector',
school.id = 'school', match.students = FALSE)

Check balance after matching - this checks both student and school balance
balanceMulti(match.simple, student.cov = student.cov)

Estimate treatment effect
output <- matchMultioutcome(match.simple, out.name = "mathach",
schl_id_name = "school", treat.name = "sector")

Perform sensitivity analysis using Rosenbaum bound -- increase Gamma to increase effect of
possible hidden confounder
balanceMulti

```r
matchMultisens(match.simple, out.name = "mathach",
               schl_id_name = "school",
               treat.name = "sector", Gamma=1.3)

# Now match both schools and students within schools
match.out <- matchMulti(catholic_schools, treatment = 'sector',
                        school.id = 'school', match.students = TRUE, student.vars = student.cov)

# Check balance again
bal.tab <- balanceMulti(match.out, student.cov = student.cov)

# Now match with fine balance constraints on whether the school is large
# or has a high percentage of minority students
match.fb <- matchMulti(catholic_schools, treatment = 'sector', school.id = 'school',
                        match.students = TRUE, student.vars = student.cov,
                        school.fb = list(c('size_large'),c('size_large','minority_mean_large')))

# Estimate treatment effects
matchMultioutcome(match.fb, out.name = "mathach", schl_id_name = "school", treat.name = "sector")

# Check Balance
balanceMulti(match.fb, student.cov = student.cov)

## End(Not run)
```

balanceMulti
Performs balance checking after multilevel matching.

Description
This function checks balance after multilevel balance. It checks balance on both level-one (student) and level-two (school) covariates. It reports results from both the t-test and nonparametric tests including Fisher’s exact test and Wilcoxon signed rank test.

Usage

```r
balanceMulti(match.obj, student.cov = NULL, school.cov = NULL)
```

Arguments

- `match.obj` A multilevel match object
- `student.cov` Names of student level covariates that you want to check balance
- `school.cov` Names of school level covariates for which you want to check balance, if any.

Details
This function returns a list which include balance checks for before and after matching for both level-one and level-two covariates. Balance statistics include treated and control means, standardized differences, which is the difference in means divided by the pooled standard deviation before matching, and p-values from parametric and nonparametric tests.
Value

- students: Balance table for student level covariates
- schools: Balance table for school level covariates

Author(s)

Luke Keele, Penn State University, <ljk20@psu.edu>
Sam Pimentel, University of Pennsylvania, <spi@wharton.upenn.edu>

See Also

See also `matchMulti, matchMultisens, matchMultioutcome, rematchSchools`

Examples

```r
## Not run:
# Load Catholic school data
data(catholic_schools)

student.cov <- c('minority', 'female', 'ses', 'mathach')

# Check balance student balance before matching
balanceTable(catholic_schools[c(student.cov, 'sector')], treatment = 'sector')

# Match schools but not students within schools
match.simple <- matchMulti(catholic_schools, treatment = 'sector', school.id = 'school', match.students = FALSE)

# Check balance after matching - this checks both student and school balance
balanceMulti(match.simple, student.cov = student.cov)

## End(Not run)
```

buildCaliper

Construct propensity score caliper

Description

Fits a propensity score for an individual-level or group-level treatment, computes a caliper for the propensity score (based on a fractional number of standard deviations provided by the user), and creates a matrix containing information about which treated-control pairings are excluded by the caliper.

Usage

```r
buildCaliper(data, treatment, ps.vars, group.id = NULL, caliper = 0.2)
```
Arguments

- **data**: A data frame containing the treatment variable, the variables to be used in fitting the propensity score and (if treatment is at the group level) a group ID.
- **treatment**: Name of the treatment indicator.
- **ps.vars**: Vector of names of variables to use in fitting the propensity score.
- **group.id**: Name of group ID variable, if applicable.
- **caliper**: Desired size of caliper, in number of standard deviations of the fitted propensity score.

Details

The treatment variable should be binary with 1 indicating treated units and 0 indicating controls. When `group.id` is NULL, treatment is assumed to be at the individual level and the propensity score is fitted using the matrix `data`. When a group ID is specified, data frame `data` is first aggregated into groups, with variables in `ps.vars` replaced by their within-group means, and the propensity score is fitted on the group matrix.

Value

A matrix with `nrow` equal to the number of treated individuals or groups and `ncol` equal to the number of control individuals, with 0 entries indicating pairings permitted by the caliper and `Inf` entries indicating forbidden pairings.

Author(s)

Luke Keele, Penn State University, <ljk20@psu.edu>
Sam Pimentel, University of Pennsylvania, <spi@wharton.upenn.edu>

Examples

```r
# Not run:
# Load Catholic school data
data(catholic_schools)

student.cov <- c('minority','female','ses','mathach')

# Check balance student balance before matching
balanceTable(catholic_schools[c(student.cov,'sector')], treatment = 'sector')

# fit a propensity score caliper on mean values of student covariates within schools
school.caliper <- buildCaliper(data = catholic_schools, treatment = 'sector', ps.vars = student.cov, group.id = 'school')

# Match schools but not students within schools
match.simple <- matchMulti(catholic_schools, treatment = 'sector', school.caliper = school.caliper, school.id = 'school', match.students = FALSE)

# Check balance after matching - this checks both student and school balance
balanceMulti(match.simple, student.cov = student.cov)
```
catholic_schools 1980 and 1982 High School and Beyond Data

Description
These data are a subset of the data used in Raudenbush and Bryk (1999) for multilevel modeling.

Usage
catholic_schools

Format
A data.frame with 1595 observations on the following variables.
school: unique school level identifier ses: student level socio-economic status scale ranges from approx. -3.578 to 2.692 mathach: senior year mathematics test score, outcome measure female: student level indicator for sex minority: student level indicator for minority minority_mean: school level measure of percentage of student body that is minority female_mean: school level measure of percentage of student body that is female ses_mean: school level measure of average level of student socio-economic status sector: treatment indicator 1 if catholic 0 if public size: school level measure of total number of enrolled students acad: school level measure of the percentage of students on the academic track discrm: school level measure of disciplinary climate ranges from approx. -2.4 to 2.7 size_large: school level indicator for schools with more than 1000 students minority_mean_large: school level indicator for schools with more than ten percent minority

Source

References
matchMulti

A function that performs multilevel matching.

Description

This is the workhorse function in the package which matches groups and units within groups. For example, it will match both schools and students in schools, where the goal is to make units more comparable to estimate treatment effects.

Usage

matchMulti(data, treatment, school.id, match.students = TRUE, student.vars = NULL, school.caliper = NULL, school.fb = NULL, verbose = FALSE, keep.target = NULL, student.penalty.qtile = 0.05, min.keep.pctg = 0.8, school.penalty = NULL, save.first.stage = TRUE, tol = 1e-3)

Arguments

data A data frame for use in matching.
treatment Name of covariate that defines treated and control groups.
school.id Identifier for groups (for example schools)
match.students Logical flag for whether units within groups should also be matched. If set to FALSE, all units will be retained in both groups.
student.vars Names of student level covariates on which to measure balance. School-level distances will be penalized when student matches are imbalanced on these variables. In addition, when match.students is TRUE, students are matched on a distance computed from these covariates.
school.caliper matrix with one row for each treated school and one column for each control school, containing zeroes for pairings allowed by the caliper and Inf values for forbidden pairings. When NULL no caliper is imposed.
school.fb A list of discrete group-level covariates on which to enforce fine balance, i.e., ensure marginal distributions are balanced.
verbose Logical flag for whether to give detailed output.
keep.target an optional numeric value specifying the number of treated schools desired in the final match.
student.penalty.qtile This helps exclude students if they are difficult to match. Default is 0.05, which implies that in the match we would prefer to exclude students rather than match them at distances larger than this quantile of the overall student-student robust Mahalanobis distance distribution
min.keep.pctg Minimum percentage of students (from smaller school) to keep when matching students in each school pair.
school.penalty A penalty to remove groups (schools) in the group (school) match
save.first.stage
Should first stage matches be saved.

tol
a numeric tolerance value for comparing distances. It may need to be raised
above the default when matching with many levels of refined balance.

Details
matchMulti first matches students (or other individual units) within each pairwise combination of
schools (or other groups); based on these matches a distance matrix is generated for the schools.
Then schools are matched on this distance matrix and the student matches for the selected school
pairs are combined into a single matched sample. School covariates are not used to compute the
distance matrix for schools (since it is generated from the student match). Instead imbalances
school covariates should be addressed through the school.fb argument, which encodes a refined
covariate balance constraint. School covariates in school.fb should be given in order of priority
for balance, since the matching algorithm optimally balances the interaction of the variables in the
first list element, then attempts to further balance the interaction in the second element, and so on.

Value
raw The unmatched data before matching.
matched The matched dataset of both units and groups. Outcome analysis and balance
checks are performed on this item.
school.match Object with two parts. The first lists which treated groups (schools) are matched
to which control groups. The second lists the population of groups used in the
match.
school.id Name of school identifier
treatment Name of treatment variable

Author(s)
Luke Keele, Penn State University, <ljk20@psu.edu>
Sam Pimentel, University of Pennsylvania, <spi@wharton.upenn.edu>

See Also
See also matchMulti, matchMultisens, balanceMulti, matchMultioutcome, rematchSchools

Examples

toy example with short runtime
library(matchMulti)

Load Catholic school data
data(catholic_schools)

Trim data to speed up example
catholic_schools <- catholic_schools[catholic_schools$female_mean > .45 &
catholic_schools$female_mean < .60,]
#match on a single covariate
student.cov <- c('minority')

match.simple <- matchMulti(catholic_schools, treatment = 'sector',
 school.id = 'school', match.students = FALSE,
 student.vars = student.cov, verbose=TRUE, tol=.01)

#Check balance after matching - this checks both student and school balance
balanceMulti(match.simple, student.cov = student.cov)

Not run:
#larger example
data(catholic_schools)

student.cov <- c('minority','female','ses')

Check balance student balance before matching
balanceTable(catholic_schools[,c(student.cov,'sector')], treatment = 'sector')

#Match schools but not students within schools
match.simple <- matchMulti(catholic_schools, treatment = 'sector',
 school.id = 'school', match.students = FALSE)

#Check balance after matching - this checks both student and school balance
balanceMulti(match.simple, student.cov = student.cov)

#Estimate treatment effect
output <- matchMultioutcome(match.simple, out.name = "mathach",
 schl_id_name = "school", treat.name = "sector")

Perform sensitivity analysis using Rosenbaum bound -- increase Gamma to increase effect of
possible hidden confounder
matchMultisens(match.simple, out.name = "mathach",
 schl_id_name = "school",
 treat.name = "sector", Gamma = 1.3)

Now match both schools and students within schools
match.out <- matchMulti(catholic_schools, treatment = 'sector',
 school.id = 'school', match.students = TRUE, student.vars = student.cov)

Check balance again
bal.tab <- balanceMulti(match.out, student.cov = student.cov)

Now match with fine balance constraints on whether the school is large
or has a high percentage of minority students
match.fb <- matchMulti(catholic_schools, treatment = 'sector', school.id = 'school',
 match.students = TRUE, student.vars = student.cov,
 school.fb = list(c('size_large'),c('size_large','minority_mean_large')))

Estimate treatment effects
matchMultioutcome(match.fb, out.name = "mathach", schl_id_name = "school", treat.name = "sector")
#Check Balance
balanceMulti(match.fb, student.cov = student.cov)

End(Not run)

matchMultioutcome Performs an outcome analysis after multilevel matching.

Description

This function returns a point estimate, 95% confidence interval, and p-values for the matched multilevel data. All results are based on randomization inference.

Usage

matchMultioutcome(obj, out.name = NULL, schl_id_name = NULL, treat.name = NULL, end.1 = -1000, end.2 = 1000)

Arguments

- **obj**: A multilevel match object.
- **out.name**: Outcome variable name
- **schl_id_name**: Level 2 ID variable name. This variable identifies the clusters in the data that you want to match.
- **treat.name**: Treatment variable name, must be zero or one.
- **end.1**: Lower bound for point estimate search, default is -1000.
- **end.2**: Upper bound for point estimate search, default is 1000.

Details

It may be necessary to adjust the lower and upper bounds if one expects the treatment effect confidence interval to be outside the range of -1000 or 1000.

Value

- **pval.c**: One-sided approximate p-value for test of the sharp null.
- **pval.p**: One-sided approximate p-value for test of the sharp null assuming treatment effects vary with cluster size
- **ci1**: Lower bound for 95% confidence interval.
- **ci2**: Upper bound for 95% confidence interval.
- **p.est**: Point estimate for the group level treatment effect.
matchMultisens

Author(s)
Luke Keele, Penn State University, ljk20@psu.edu
Sam Pimentel, University of Pennsylvania, <spi@wharton.upenn.edu>

References

See Also
See Also as matchMulti.matchMultisens

Examples
```r
## Not run:
# Load Catholic school data
data(catholic_schools)

student.cov <- c('minority','female','ses','mathach')

# Check balance student balance before matching
balanceTable(catholic_schools[c(student.cov,'sector')], treatment = 'sector')

#Match schools but not students within schools
match.simple <- matchMulti(catholic_schools, treatment = 'sector', school.id = 'school', match.students = FALSE)

#Check balance after matching - this checks both student and school balance
balanceMulti(match.simple, student.cov = student.cov)

#Estimate treatment effect
output <- matchMultioutcome(match.simple, out.name = "mathach", schl_id_name = "school", treat.name = "sector")

## End(Not run)
```

matchMultisens

Rosenbaum Bounds after Multilevel Matching

Description
Function to calculate Rosenbaum bounds for continuous outcomes after multilevel matching.

Usage
```
matchMultisens(obj, out.name = NULL, schl_id_name = NULL, treat.name = NULL, Gamma = 1)
```
Arguments

obj A multilevel match object
out.name Outcome variable name
schl_id.name Level 2 ID variable name, that is this variable identifies clusters matched in the data.
treat.name Treatment indicator name
Gamma Sensitivity analysis parameter value. Default is one.

Details

This function returns a single p-value, but actually conducts two tests. The first assumes that the treatment effect does not vary with cluster size. The second allows the treatment effect to vary with cluster size. The function returns a single p-value that is corrected for multiple testing. This p-value is the upper bound for a single Gamma value.

Value

pval Upper bound on one-sided approximate p-value for test of the sharp null.

Author(s)

Luke Keele, Penn State University, ljk20@psu.edu
Sam Pimentel, University of Pennsylvania, <spi@wharton.upenn.edu>

References

See Also

See Also as `matchMulti`, `matchMultioutcome`

Examples

```r
## Not run:
# Load Catholic school data
data(catholic_schools)

student.cov <- c('minority', 'female', 'ses', 'mathach')

# Check balance student balance before matching
balanceTable(catholic_schools[c(student.cov, 'sector')], treatment = 'sector')

# Match schools but not students within schools
match.simple <- matchMulti(catholic_schools, treatment = 'sector', school.id = 'school', match.students = FALSE)

# Check balance after matching - this checks both student and school balance
balanceMulti(match.simple, student.cov = student.cov)
```
pairmatchelastic

Description

Conducts optimal subset matching as described in the reference.

Usage

```r
pairmatchelastic(mdist, n = 0, val = 0)
elastic(mdist, n = 0, val = 0)
```

Arguments

- `mdist` distance matrix with rows corresponding to treated units and columns corresponding to controls.
- `n` maximum number of treated units that can be excluded.
- `val` cost of excluding a treated unit (i.e. we prefer to exclude a treated unit if it increases the total matched distance by more than `val`).

Details

`pairmatchelastic` is the main function, which conducts an entire match. `elastic` is a helper function which augments the original distance matrix as described in the reference. The original versions of these functions were written by Paul Rosenbaum and distributed in the supplemental material to the reference.

Value

`elastic` returns an augmented version of the input matrix `mdist`. `pairmatchelastic` returns a matrix of 1 column whose values are the column numbers of matched controls and whose rownames are the row numbers of matched treated units.
rematchSchools

Author(s)
Paul R. Rosenbaum (original forms), modifications by Luke Keele and Sam Pimentel

References

rematchSchools Repeat School Match Only

Description
After matchMulti has been called, repeats the school match (with possibly different parameters) without repeating the more computationally intensive student match.

Usage
rematchSchools(match.out, students, school.fb = NULL, verbose = FALSE, keep.target = NULL, school.penalty = NULL, tol = 1e-3)

Arguments
match.out an object returned by a call to matchMulti.
students a dataframe containing student and school covariates, with a different row for each student.
school.fb an optional list of character vectors, each containing a subset of the column names of students. Each element of the list should contain all the names in previous elements (producing a nested structure).
verbose a logical value indicating whether detailed output should be printed.
keep.target an optional numeric value specifying the number of treated schools desired in the final match.
school.penalty an optional numeric value, treated as the cost (to the objective function in the underlying optimization problem) of excluding a treated school. If it is set lower, more schools will be excluded.
tol a numeric tolerance value for comparing distances. It may need to be raised above the default when matching with many levels of refined balance.

Details
The school.fb argument encodes a refined covariate balance constraint: the matching algorithm optimally balances the interaction of the variables in the first list element, then attempts to further balance the interaction in the second element, and so on. As such variables should be added in order of priority for balance.
The keep.target and school.penalty parameters allow optimal subset matching within the school match. When the keep.target argument is specified, the school match is repeated for different values of the school.penalty parameter in a form of binary search until an optimal match is obtained with the desired number of treated schools or a stopping rule is reached. The tol parameter controls the stopping rule; smaller values provide a stronger guarantee of obtaining the exact number of treated schools desired but may lead to greater computational costs.

It is not recommended that users specify the school.penalty parameter directly in most cases. Instead the keep.target parameter provides an easier way to consider excluding schools.

Author(s)

Luke Keele, Penn State University, <ljk20@psu.edu>
Sam Pimentel, University of Pennsylvania, <spi@wharton.upenn.edu>

References

See Also

matchMulti.

Examples

```r
## Not run:
# Load Catholic school data
data(catholic_schools)

student_cov <- c('minority', 'female', 'ses')
school_cov <- c('minority_mean', 'female_mean', 'ses_mean', 'size', 'acad')

# Match schools but not students within schools
match.simple <- matchMulti(catholic_schools, treatment = 'sector',
                             school.id = 'school', match.students = FALSE)

# Check balance after matching - this checks both student and school balance
balanceMulti(match.simple, student_cov = student_cov, school_cov = school_cov)

# Now rematch excluding 2 schools
matchtrimmed <- rematchSchools(match.simple, catholic_schools, keep.target = 13)

## End(Not run)
```
Index

*Topic balance
 balanceMulti, 3
 buildCaliper, 4
*Topic datasets
 catholic_schools, 6
*Topic matchMulti
 matchMulti-package, 2
*Topic outcomes
 matchMultioutcome, 10
balanceMulti, 2, 3, 8
buildCaliper, 4
catholic_schools, 6
elastic (pairmatchelastic), 13
matchMulti, 2, 4, 7, 8, 11, 12, 15
matchMulti-package, 2
matchMultioutcome, 2, 4, 8, 10, 12
matchMultisens, 2, 4, 8, 11, 11
pairmatchelastic, 13
rematchSchools, 2, 4, 8, 14