Package ‘matchingMarkets’

March 26, 2017

Version 0.3-3
Depends R (>= 3.0.2)
Imports Rcpp (>= 0.11.2), rJava, lpSolve, lattice, partitions, parallel, stats
SystemRequirements Java
LinkingTo Rcpp, RcppArmadillo, RcppProgress (>= 0.2)
Suggests knitr
VignetteBuilder knitr
Title Analysis of Stable Matchings
Author Thilo Klein
Maintainer Thilo Klein <thilo@klein.uk>
Description Implements structural estimators to correct for the sample selection bias from observed outcomes in matching markets. This includes one-sided matching of agents into groups as well as two-sided matching of students to schools. The package also contains algorithms to find stable matchings in the three most common matching problems: the stable roommates problem, the college admissions problem, and the house allocation problem.

BugReports https://github.com/thiloklein/matchingMarkets/issues
License GPL (>= 2) | file LICENSE
RoxygenNote 5.0.1
Repository CRAN
Repository/R-Forge/Project matchingmarkets
Repository/R-Forge/Revision 66
Repository/R-Forge/Date/TimeStamp 2017-03-26 12:32:46
Date/Publication 2017-03-26 16:12:12 UTC
NeedsCompilation yes
An R package for the analysis of stable matchings.

Description

The matchingMarkets package contains R, C++ and Java code for stable matching algorithms and the estimation of structural models that correct for the sample selection bias of observed outcomes in matching markets.

Matching is concerned with who transacts with whom, and how. For example, who works at which job, which students go to which school, who forms a workgroup with whom, and so on.

The empirical analysis of matching markets is naturally subject to sample selection problems. If agents match assortatively on characteristics unobserved to the analyst but correlated with both the exogenous variable and the outcome of interest, regression estimates will generally be biased.

The matchingMarkets package comprises

1. Bayes estimators. The estimators implemented in function `stabit` and `stabit2` correct for the selection bias from endogenous matching.

 The current package version provides solutions for two commonly observed matching processes: (i) the group formation problem with fixed group sizes and (ii) the college admissions problem. These processes determine which matches are observed – and which are not – and this is a sample selection problem.

2. Post-estimation tools. Setting `mfx=TRUE` in the `summary` function computes marginal effects from coefficients in binary outcome and selection equations and `khh` implements the Karlson-Holm-Breen test for confounding due to sample selection.
3. **Design matrix generation.** The estimators are based on independent variables for all feasible, i.e., observed and counterfactual, matches in the market. Generating the characteristics of all feasible matches from individual-level data is a combinatorial problem. The package returns design matrices based on pre-specified transformations to generate counterfactual matches.

4. **Algorithms.** The package also contains three matching algorithms that can be used to simulated matching data:
 - **hri:** A constraint model (Posser, 2014) for the stable marriage and college admissions problem, a.k.a. hospital/residents problem (see Gale and Shapley, 1962).
 - **sri:** A constraint model for the stable roommates problem (see Gusfield and Irving, 1989).
 - **ttc:** The top-trading-cycles algorithm for the housing market problem. These can be used to obtain stable matchings from simulated or real preference data (see Shapley and Scarf, 1974).

5. **Data.** In addition to the baac00 dataset from borrowing groups in Thailand’s largest agricultural lending program, the package provides functions stabsim and stabsim2 to simulate one’s own data from one-sided and two-sided matching markets.

Frequently Asked Questions

- **Why can I not use the classic Heckman correction?**
 Estimators such as the Heckman (1979) correction (in package sampleSelection) or double selection models are inappropriate for this class of selection problems. To see this, note that a simple first stage discrete choice model assumes that an observed match reveals match partners’ preferences over each other. In a matching market, however, agents can only choose from the set of partners who would be willing to form a match with them and we do not observe the players’ relevant choice sets.

- **Do I need an instrumental variable to estimate the model?**
 Short answer: No. Long answer: The characteristics of other agents in the market serve as the source of exogenous variation necessary to identify the model. The identifying exclusion restriction is that characteristics of all agents in the market affect the matching, i.e., who matches with whom, but it is only the characteristics of the match partners that affect the outcome of a particular match once it is formed. No additional instruments are required for identification (Sorensen, 2007).

- **What are the main assumptions underlying the estimator?**
 The approach has certain limitations rooted in its restrictive economic assumptions.
 1. The matching models are **complete information** models. That is, agents are assumed to have a complete knowledge of the qualities of other market participants.
 2. The models are **static equilibrium** models. This implies that (i) the observed matching must be an equilibrium, i.e., no two agents would prefer to leave their current partners in order to form a new match (definition of pairwise stability), and (ii) the equilibrium must be unique for the likelihood function of the model to be well defined (Bresnahan and Reiss, 1991).

 Uniqueness results can be obtained in two ways. First, as is common in the industrial organization literature, by imposing suitable **preference restrictions.** A suitable restriction on agents’ preferences that guarantees a unique equilibrium is alignment (Pycia, 2012).
 In a group formation model, (pairwise) preference alignment states that any two agents who belong to the same groups must prefer the same group over the other. Second, by choosing a market assignment based on matching algorithms that produce a unique stable matching, such as the well-studied Gale and Shapley (1962) deferred acceptance algorithm.
4. Finally, the models assume **bivariate normality** of the errors in selection and outcome equation. If that assumption fails, the estimator is generally inconsistent and can provide misleading inference in small samples.

How to cite this package

Whenever using this package, please cite as

Author(s)

Thilo Klein

References

See Also

`sampleSelection`

Description

The `baac00` data frame contains data of 292 borrowers from Thailand’s largest agricultural lending program. These data are collected as part of the Townsend Thai Project Bank for Agriculture and Agricultural Cooperatives (BAAC) Annual Resurvey (Townsend, 2000). The 292 borrowers are nested within 68 groups and 39 markets. This nestedness makes the dataset particularly relevant for matching applications. A more complete discussion of the data is found in Ahlin (2009), Section 3, and Klein (2015a).
Usage
data(baac00)

Format
This data frame contains the following columns:

- **g.id**: group identifier.
- **m.id**: market identifier.
- **R**: repayment outcome: BAAC never raised interest rate as a penalty for late repayment.
- **pi**: success probability: measure of group members’ project success probability.
- **wst**: worst year: indicator of economically worst year. 1: last year; 2: year before last year; 101-168: neither.
- **loan_size**: loan size: average loan size borrowed by the group.
- **loan_size2**: loan size squared.
- **lngroup_agei**: log group age: log of number of years group has existed.

Source

References

hri All stable matchings in the hospital/residents problem with incomplete lists

Description
Finds *all* stable matchings in either the hospital/residents problem (a.k.a. college admissions problem) or the related stable marriage problem. Dependent on the problem, the results comprise the student and college-optimal or the men and women-optimal matchings. The implementation allows for incomplete preference lists (some agents find certain agents unacceptable) and unbalanced instances (unequal number of agents on both sides). The function uses the Prosser (2014) constraint encoding based on either given or randomly generated preferences.
Usage

\[\text{hri(nStudents = ncol(s.prefs), nColleges = ncol(c.prefs), nSlots = rep(1, nColleges), s.prefs = NULL, c.prefs = NULL, seed = NULL, s.range = NULL, c.range = NULL, \ldots)} \]

Arguments

- **nStudents**: integer indicating the number of students (in the college admissions problem) or men (in the stable marriage problem) in the market. Defaults to `ncol(s.prefs)`.
- **nColleges**: integer indicating the number of colleges (in the college admissions problem) or women (in the stable marriage problem) in the market. Defaults to `ncol(c.prefs)`.
- **nSlots**: vector of length `nColleges` indicating the number of places (i.e. quota) of each college. Defaults to `rep(1, nColleges)` for the marriage problem.
- **s.prefs**: matrix of dimension `nColleges x nStudents` with the jth column containing student j's ranking over colleges in decreasing order of preference (i.e. most preferred first).
- **c.prefs**: matrix of dimension `nStudents x nColleges` with the ith column containing college i's ranking over students in decreasing order of preference (i.e. most preferred first).
- **seed**: integer setting the state for random number generation.
- **s.range**: range of two integers \(s.range = c(s.min, s.max) \), where \(s.min < s.max \). Produces incomplete preference lists with the length of each student's list randomly sampled from the range \([s.min, s.max]\). Note: interval is only correct if either c.range or s.range is used.
- **c.range**: range of two integers \(c.range = c(c.min, c.max) \), where \(c.min < c.max \). Produces incomplete preference lists with the length of each college's list randomly sampled from the range \([c.min, c.max]\). Note: interval is only correct if either c.range or s.range is used.

Value

\text{hri returns a list of the following elements.}

- **s.prefs.smi**: student-side preference matrix for the stable marriage problem with incomplete lists (SMI).
- **c.prefs.smi**: college-side preference matrix for the stable marriage problem with incomplete lists (SMI).
- **s.prefs.hri**: student-side preference matrix for the college admissions problem (a.k.a. hospital/residents problem) with incomplete lists (HRI).
- **c.prefs.hri**: college-side preference matrix for the college admissions problem (a.k.a. hospital/residents problem) with incomplete lists (HRI).
- **matchings**: edgelist of matched students and colleges, including the number of the match (matching) and two variables that indicate the student-optimal match (sOptimal) and college-optimal match (cOptimal).
Minimum required arguments

hrf requires the following combination of arguments, subject to the matching problem.

nStudents, nColleges Marriage problem with random preferences.
s.prefs, c.prefs Marriage problem with given preferences.
nStudents, nSlots College admissions problem with random preferences.
s.prefs, c.prefs, nSlots College admissions problem with given preferences.

Author(s)
Thilo Klein

References

Examples

```r
## ------------------------
## --- Marriage problem

## 3 men, 2 women, random preferences:
hrf(nStudents=7, nColleges=6, seed=4)

## 3 men, 2 women, given preferences:
s.prefs <- matrix(c(1,2,1,2,1,2,2,3)
c.prefs <- matrix(c(1,2,3,1,2,3,3,2)
hrf(s.prefs=s.prefs, c.prefs=c.prefs)

## ------------------------
## --- College admission problem

## 7 students, 2 colleges with 3 slots each, random preferences:
hrf(nStudents=7, nSlots=c(3,3), seed=21)

## 7 students, 2 colleges with 3 slots each, given preferences:
s.prefs <- matrix(c(1,2,1,2,1,NA,1,2,1,2,1,2,2,7)
c.prefs <- matrix(c(1,2,3,4,5,6,7,1,2,3,4,5,NA,NA), 7,2)
hrf(s.prefs=s.prefs, c.prefs=c.prefs, nSlots=c(3,3))

## 7 students, 3 colleges with 3 slots each, incomplete preferences:
hrf(nStudents=7, nSlots=c(3,3,3), seed=21, s.range=c(1,3))
```

--- Summary plots
Immediate Acceptance Algorithm (a.k.a. Boston mechanism) for two-sided matching markets

Description

Finds the optimal assignment of students to colleges in the college admissions problem based on the Boston mechanism. The option `acceptance="deferred"` instead uses the Gale-Shapley (1962) Deferred Acceptance Algorithm with male offer. The function works with either given or randomly generated preferences.

Usage

```r
iaa(nStudents = ncol(s.prefs), nColleges = ncol(c.prefs), nSlots = rep(1, nColleges), s.prefs = NULL, c.prefs = NULL, acceptance = "immediate")
```

Arguments

- **nStudents**: integer indicating the number of students (in the college admissions problem) or men (in the stable marriage problem) in the market. Defaults to `ncol(s.prefs)`.
- **nColleges**: integer indicating the number of colleges (in the college admissions problem) or women (in the stable marriage problem) in the market. Defaults to `ncol(c.prefs)`.
- **nSlots**: vector of length `nColleges` indicating the number of places (i.e. quota) of each college. Defaults to `rep(1, nColleges)` for the marriage problem.
- **s.prefs**: matrix of dimension `nColleges x nStudents` with the jth column containing student j’s ranking over colleges in decreasing order of preference (i.e. most preferred first).
- **c.prefs**: matrix of dimension `nStudents x nColleges` with the ith column containing college i’s ranking over students in decreasing order of preference (i.e. most preferred first).
- **acceptance**: if `acceptance="deferred"` returns the solution found by the student-proposing Gale-Shapley deferred acceptance algorithm; if `acceptance="immediate"` (the default) returns the solution found by the Boston mechanism.
Value

`iaa` returns a list with the following elements.
- `s.prefs`
 student-side preference matrix.
- `c.prefs`
 college-side preference matrix.
- `iterations`
 number of iterations required to find the stable matching.
- `matchings`
 edgelist of matches
- `singles`
 identifier of single (or unmatched) students/men.

Minimum required arguments

`iaa` requires the following combination of arguments, subject to the matching problem.

- `nstudents`, `ncolleges`
 Marriage problem with random preferences.
- `s.prefs`, `c.prefs`
 Marriage problem with given preferences.
- `nstudents`, `nslots`
 College admissions problem with random preferences.
- `s.prefs`, `c.prefs`, `nslots`
 College admissions problem with given preferences.

Author(s)

Thilo Klein

References

Examples

```r
## ----------------------------------
## ___ College admission problem

## Boston mechanism for 7 students, 2 colleges with 3 slots each
set.seed(123)
iaa(nStudents=7, nSlots=c(3,3))

## Gale-Shapley algorithm
set.seed(123)
iaa(nStudents=7, nSlots=c(3,3), acceptance="deferred")

## Same results for the Gale-Shapley algorithm with hri() function
set.seed(123)
hri(nStudents=7, nSlots=c(3,3))

## 7 students, 2 colleges with 3 slots each, given preferences:
s.prefs <- matrix(c(1,2, 1,2, 1,2, 1,2, 1,2, 1,2, 2,7), c.prefs <- matrix(c(1,2,3,4,5,6,7, 1,2,3,4,5,6,7), 7,2)
iaa(s.prefs=s.prefs, c.prefs=c.prefs, nSlots=c(3,3))
```
Description

Significance test for confounding; that is, the difference between regression coefficients from same-sample nested logit and probit models. The test procedure follows Karlson et al (2012), Section 3.4.

Usage

```
khb(X, y, z)
```

Arguments

- `X`: data frame comprising independent variables including confounding variable.
- `y`: vector of dependent variable.
- `z`: character string giving the name of the confounding variable in `X`.

Author(s)

Thilo Klein

References

Examples

```
## 1. load results from Klein (2015a)
data(klein15a)

## 2. apply KHB method
with(klein15a$variables, khb(X=X, y=Y, z="eta"))
```
MCMC results in Klein (2015a)

Description
MCMC results in Klein (2015a).

Usage
```
data(klein15a)
```

Format
A list containing the following elements:
- `model.list`
- `coefs`

References

Results of Monte Carlo Simulations in Klein (2015b)

Description
Results of Monte Carlo Simulations in Klein (2015b) for 40 two-group markets.

Usage
```
data(klein15b)
```

Format
A list containing the following elements:
- `exp.5.5.ols` Benchmark study, OLS: coefficient estimates for 40 markets with groups of 5. Data for all 5 group members is observed.
- `exp.5.5.ntu` Benchmark study, structural model.
- `exp.6.5.ols` Experiment 1, OLS: coefficient estimates for 40 markets with groups of 6. Only Data for 5 group members is observed.
- `exp.6.5.ntu` Experiment 1, structural model.
- `exp.6.6.ols` Experiment 2, OLS: coefficient estimates for 40 markets with groups of 6. Data for all 6 group members is observed but only a random sample of 250 of the 922 counterfactual groups is used in the analysis.
- `exp.6.6.ntu` Experiment 2, structural model.
References

Examples

```r
## Plot of posterior distributions
data(klein15b)

tpe <- c(rep("Benchmark",2), rep("Experiment 1",2), rep("Experiment 2",2))

for(i in seq(1,length(klein15b)-1,2)){
  ntu <- klein15b[[i]]
  ols <- klein15b[[i+1]]

  ntu <- ntu[,colnames(ntu) == "beta.wst.ieq"]
  ols <- ols[,colnames(ols) == "beta.wst.ieq"]

  if(i == 1){
    draws <- data.frame(Structural=ntu, OLS=ols, type=tpe[i]) #, stringsAsFactors=FALSE
  } else{
    draws <- rbind(draws, data.frame(Structural=ntu, OLS=ols, type=tpe[i]))
  }
}

library(lattice)
lattice.options(default.theme = standard.theme(color = FALSE))
keys <- list(text=c("Structural model","OLS"), space="top", columns=2, lines=TRUE)
densityplot(~ Structural + OLS | type, plot.points=FALSE, auto.key=keys,
  data = draws, xlab = "coefficient draws", ylab = "density", type = "l",
  panel = function(x,...) {
    panel.densityplot(x,...)
    panel.abline(v=-1, lty=3)
  })

## Not run:
## Modes of posterior distributions

## load data
data(klein15b)

## define function to obtain the mode
mode <- function(x){
  d <- density(x,bw="SJ")
  formatC(round(d$x[which.max(d$y)], 3), format='f', digits=3)
}

## Benchmark study
```
apply(klein15b$exp.5.5.ntu, 2, mode)
apply(klein15b$exp.5.5.ols, 2, mode)

Experiment 1
apply(klein15b$exp.6.5.ntu, 2, mode)
apply(klein15b$exp.6.5.ols, 2, mode)

Experiment 2
apply(klein15b$exp.6.6.ntu, 2, mode)
apply(klein15b$exp.6.6.ols, 2, mode)

End(Not run)

mce
MC Experiments

Description
MC Experiments

Usage
mce(seed, niter, N, n, m, type, method)

Arguments
- **seed**: seed value for Monte Carlo Experiment
- **niter**: number of draws in estimation
- **N**: group size (population)
- **n**: group size (sample)
- **m**: number of markets
- **type**: type of the MC Experiment. Either group.members for randomly sampled group members or counterfactual.groups for randomly sampled number of counterfactual (or feasible) groups in selection equation (capped at limit max.combs=250)
- **method**: either group.members or counterfactual.groups

Author(s)
Thilo Klein

Examples
Not run:
1. Set parameters
mciter <- 2 #500
niter <- 10 #400000
nodes <- 4
2. Setup parallel backend to use 4 processors

```r
library(foreach); library(doSNOW)
cl <- makeCluster(4); registerDoSNOW(cl)
```

3. Define foreach loop function

```r
mce.add <- function(mciter, niter, N, n, m, type, method) {
  h <- foreach(i=1:mciter) %dopar% {
    library(matchingMarkets)
    mce(seed=i, niter, N, n, m, type, method)
  }
  do.call(rbind, h)
}
```

4. Run simulations:

4-a. Benchmark study

```r
exp.5.5.ols <- mce.add(mciter=mciter, niter=niter, N=N, n=m, m=40,
                       type="group.members", method="outcome")
exp.5.5.ntu <- mce.add(mciter=mciter, niter=niter, N=N, n=m, m=40,
                       type="group.members", method="NTU")
```

4-b. Experiment 1: randomly sampled group members

```r
exp.6.5.ols <- mce.add(mciter=mciter, niter=niter, N=N, n=m, m=40,
                       type="group.members", method="outcome")
exp.6.5.ntu <- mce.add(mciter=mciter, niter=niter, N=N, n=m, m=40,
                       type="group.members", method="NTU")
```

4-c. Experiment 2: randomly sampled counterfactual groups

```r
exp.6.6.ols <- mce.add(mciter=mciter, niter=niter, N=N, n=m, m=40,
                       type="counterfactual.groups", method="outcome")
exp.6.6.ntu <- mce.add(mciter=mciter, niter=niter, N=N, n=m, m=40,
                       type="counterfactual.groups", method="NTU")
```

5. Stop parallel backend

```r
stopCluster(cl)
```

End(Not run)

plp

Partitioning Linear Programme for the stable roommates problem

Description

Usage

```r
plp(Y = NULL, N = NULL)
```
predict.stabit2

Arguments

V valuation matrix of dimension N\times N that gives row-players valuation over column players (or vice versa).

N integer (divisible by 2) that gives the number of players in the market.

Value

plp returns a list with the following items.

Valuation.matrix input values of V.

Assignment.matrix upper triangular matrix of dimension N\times N with entries of 1 for equilibrium pairs and 0 otherwise.

Equilibrium.groups matrix that gives the N/2 equilibrium pairs and equilibrium partners' mutual valuations.

Author(s)

Thilo Klein

References

Examples

Roommate problem with 10 players, transferable utility and random preferences:
plp(N=10)

Roommate problem with 10 players, transferable utility and given preferences:
V <- matrix(rep(1:10, 10), 10, 10)
plp(V=V)

predict.stabit2 Predict method for fitted matching models

Description

Calculate predicted values for matching models fitted with functions stabit and stabit2.

Usage

S3 method for class 'stabit2'
predict(object, newdata = NULL, ...)

Arguments

object a fitted object of class stabit
newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the fitted linear predictors or the fitted response values are returned.

Author(s)

Thilo Klein

References

Examples

```r
## load the results from Klein (2015) paper
data(klein15a)

## predict the latent outcome variable
predict(klein15a)
```

sri All stable matchings in the stable roommates problem with incomplete lists

Description

Finds all stable matchings (if one exists) in the stable roommates problem with incomplete lists using the Prosser (2014) constraint encoding based on either given or randomly generated preferences.

Usage

`sri(prefs = NULL, nAgents = NULL, seed = NULL, p.range = NULL)`

Arguments

prefs valuation matrix of dimension nAgents x nAgents that gives column-players’ ranking over other players in decreasing order of preference (i.e. most preferred first).
nAgents integer that gives the number of players in the market.
seed integer setting the state for random number generation.
p.range range of two integers p.range = c(p.min, p.max), where p.min < p.max. Produces incomplete preference lists with the length of each player’s list randomly sampled from the range [p.min, p.max]. Note: interval is always too small because non-permissible matches are automatically deleted.

Value

sri returns a list with the following items.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefs</td>
<td>agents’ preference list.</td>
</tr>
<tr>
<td>matching</td>
<td>edgelist of matched pairs, including the number of the match (matching).</td>
</tr>
</tbody>
</table>

Author(s)

Thilo Klein

References

Examples

```r
## Roommate problem with 10 players, given preferences:
prefs <- matrix(rep(1:10, 10), 10, 10)
sri(prefs=prefs)

## Roommate problem with 10 players, random preferences:
sri(nAgents=10, seed=1)

## Roommate problem with no equilibrium matching:
sri(nAgents=10, seed=2)

## Roommate problem with 3 equilibria:
sri(nAgents=10, seed=3)
```

stabit Matching model and selection correction for group formation
Description

The function provides a Gibbs sampler for a structural matching model that estimates preferences and corrects for sample selection bias when the selection process is a one-sided matching game; that is, group/coalition formation.

The input is individual-level data of all group members from one-sided matching markets; that is, from group/coalition formation games.

In a first step, the function generates a model matrix with characteristics of all feasible groups of the same size as the observed groups in the market.

For example, in the stable roommates problem with \(n = 4 \) students \(\{1, 2, 3, 4\} \) sorting into groups of 2, we have \(\binom{4}{2} = 6 \) feasible groups: \((1,2)(3,4)\), \((1,3)(2,4)\), \((1,4)(2,3)\).

In the group formation problem with \(n = 6 \) students \(\{1, 2, 3, 4, 5, 6\} \) sorting into groups of 3, we have \(\binom{6}{3} = 20 \) feasible groups. For the same students sorting into groups of sizes 2 and 4, we have \(\binom{6}{2} + \binom{6}{4} = 30 \) feasible groups.

The structural model consists of a selection and an outcome equation. The Selection Equation determines which matches are observed \((D = 1)\) and which are not \((D = 0)\).

\[
D = 1[V \in \Gamma] \\
V = W\alpha + \eta
\]

Here, \(V \) is a vector of latent valuations of all feasible matches, i.e., observed and unobserved, and \(1[.] \) is the Iverson bracket. A match is observed if its match valuation is in the set of valuations \(\Gamma \) that satisfy the equilibrium condition (see Klein, 2015a). This condition differs for matching games with transferable and non-transferable utility and can be specified using the method argument. The match valuation \(V \) is a linear function of \(W \), a matrix of characteristics for all feasible groups, and \(\eta \), a vector of random errors. \(\alpha \) is a parameter vector to be estimated.

The Outcome Equation determines the outcome for observed matches. The dependent variable can either be continuous or binary, dependent on the value of the binary argument. In the binary case, the dependent variable \(R \) is determined by a threshold rule for the latent variable \(Y \).

\[
R = 1[Y > c] \\
Y = X\beta + \epsilon
\]

Here, \(Y \) is a linear function of \(X \), a matrix of characteristics for observed matches, and \(\epsilon \), a vector of random errors. \(\beta \) is a parameter vector to be estimated.

The structural model imposes a linear relationship between the error terms of both equations as \(\epsilon = \delta \eta + \xi \), where \(\xi \) is a vector of random errors and \(\delta \) is the covariance parameter to be estimated. If \(\delta \) were zero, the marginal distributions of \(\epsilon \) and \(\eta \) would be independent and the selection problem would vanish. That is, the observed outcomes would be a random sample from the population of interest.

Usage

```r
stabit(x, m.id = "m.id", g.id = "g.id", R = "R", selection = NULL, 
outcome = NULL, simulation = "none", seed = 123, max.combs = Inf, 
method = "NTU", binary = FALSE, offsetOut = 0, offsetSel = 0, 
marketFE = FALSE, censored = 0, gPrior = FALSE, dropOnes = FALSE, 
interOut = 0, interSel = 0, standardize = 0, niter = 10, 
verbose = FALSE)
```
Arguments

x data frame with individual-level characteristics of all group members including market- and group-identifiers.
m.id character string giving the name of the market identifier variable. Defaults to "m.id".
g.id character string giving the name of the group identifier variable. Defaults to "g.id".
R dependent variable in outcome equation. Defaults to "R".
selection list containing variables and pertaining operators in the selection equation. The format is operation = "variable". See the Details and Examples sections.
outcome list containing variables and pertaining operators in the outcome equation. The format is operation = "variable". See the Details and Examples sections.
simulation should the values of dependent variables in selection and outcome equations be simulated? Options are "none" for no simulation, "NTU" for non-transferable utility matching, "TU" for transferable utility or "random" for random matching of individuals to groups. Simulation settings are (i) all model coefficients set to alpha/beta=1; (ii) covariance between error terms delta=0.5; (iii) error terms eta and xi are draws from a standard normal distribution.
seed integer setting the state for random number generation if simulation=TRUE.
max.combs integer (divisible by two) giving the maximum number of feasible groups to be used for generating group-level characteristics.
method estimation method to be used. Either "NTU" or "TU" for selection correction using non-transferable or transferable utility matching as selection rule; "outcome" for estimation of the outcome equation only; or "model.frame" for no estimation.
binary logical: if TRUE outcome variable is taken to be binary; if FALSE outcome variable is taken to be continuous.
offsetOut vector of integers indicating the indices of columns in X for which coefficients should be forced to 1. Use 0 for none.
offsetSel vector of integers indicating the indices of columns in W for which coefficients should be forced to 1. Use 0 for none.
marketFE logical: if TRUE market-level fixed effects are used in outcome equation; if FALSE no market fixed effects are used.
censored draws of the delta parameter that estimates the covariation between the error terms in selection and outcome equation are 0:not censored, 1:censored from below, 2:censored from above.
gPrior logical: if TRUE the g-prior (Zellner, 1986) is used for the variance-covariance matrix.
dropOnes logical: if TRUE one-group-markets are excluded from estimation.
interOut two-column matrix indicating the indices of columns in X that should be interacted in estimation. Use 0 for none.
interSel two-column matrix indicating the indices of columns in W that should be interacted in estimation. Use 0 for none.
standardize numeric: if standardize>0 the independent variables will be standardized by dividing by standardize times their standard deviation. Defaults to no standardization standardize=0.

niter number of iterations to use for the Gibbs sampler.

verbose .

Details

Operators for variable transformations in selection and outcome arguments.

add sum over all group members and divide by group size.

int sum over all possible two-way interactions $x \times y$ of group members and divide by the number of those, given by $\text{choose}(n, 2)$.

ieq sum over all possible two-way equality assertions $1|x = y|$ and divide by the number of those.

ive sum over all possible two-way interactions of vectors of variables of group members and divide by number of those.

inv ...

dst sum over all possible two-way distances between players and divide by number of those, where distance is defined as $e^{-|x-y|}$.

Author(s)

Thilo Klein

References

Examples

```r
## Not run:
## --- SIMULATED EXAMPLE ---

## 1. Simulate one-sided matching data for 200 markets (m=200) with 2 groups
## per market (gpm=2) and 5 individuals per group (ind=5). True parameters
## in selection equation is wst=1, in outcome equation wst=0.

## 1-a. Simulate individual-level, independent variables
idata <- stabsim(m=200, ind=5, seed=123, gpm=2)
head(idata)

## 1-b. Simulate group-level variables
mdata <- stabit(x=idata, simulation="NTU", method="model.frame",
selection = list(add="wst"), outcome = list(add="wst"), verbose=FALSE)
head(mdata$OUT)
head(mdata$SEL)
```
2. Bias from sorting

2-a. Naive OLS estimation

\[\text{lm}(R \sim \text{wst.add}, \text{data}=\text{mdata}\$\text{OUT})\$\text{coefficients} \]

2-b. \(\varepsilon \) is correlated with independent variables

\[\text{cor}(\varepsilon, \text{wst.add}) \]

2-c. but \(x_i \) is uncorrelated with independent variables

\[\text{cor}(x_i, \text{wst.add}) \]

3. Correction of sorting bias when valuations \(V \) are observed

3-a. 1st stage: obtain fitted value for \(\eta \)

\[\text{lm}.\text{sel} \leftarrow \text{lm}(V \sim -1 + \text{wst.add}, \text{data}=\text{mdata}\$\text{SEL}) \]

\[\text{lm}.\text{sel}\$\text{coefficients} \]

\[\eta \leftarrow \text{lm}.\text{sel}\$\text{resid(}\text{mdata}\$\text{SEL}\$\text{D==1})} \]

3-b. 2nd stage: control for \(\eta \)

\[\text{lm}(R \sim \text{wst.add} + \eta, \text{data}=\text{mdata}\$\text{OUT})\$\text{coefficients} \]

4. Run Gibbs sampler

\[\text{fit1} \leftarrow \text{stabit}(x=\text{idata}, \text{method}="\text{NTU}", \text{simulation}="\text{NTU}", \text{censored}=1, \]

\[\text{selection} = \text{list}((\text{add}="\text{wst}")), \text{outcome} = \text{list}((\text{add}="\text{wst}")), \]

\[\text{niter}=2000, \text{verbose}=\text{FALSE}) \]

5. Coefficient table

\[\text{summary(fit1)} \]

6. Plot MCMC draws for coefficients

\[\text{plot(fit1)} \]

--- REPLICATION, Klein (2015a) ---

1. Load data

\[\text{data(baac00); head(baac00)} \]

2. Run Gibbs sampler

\[\text{klein15a} \leftarrow \text{stabit}(x=\text{baac00}, \text{selection} = \text{list}((\text{inv}="\text{pi}", \text{ieq}="\text{wst}")), \]

\[\text{outcome} = \text{list}((\text{add}="\text{pi}", \text{inv}="\text{pi}", \text{ieq}="\text{wst}", \]

\[\text{add}=(\text{"loan_size","loan_size2","ln_group_age1"}), \text{offsetOut}=1, \]

\[\text{method}="\text{NTU}", \text{binary}=\text{TRUE}, \text{gPrior}=\text{TRUE}, \text{marketFE}=\text{TRUE}, \text{niter}=800000) \]

3. Marginal effects

\[\text{summary(klein15a, mfx=TRUE)} \]
Description

The function provides a Gibbs sampler for a structural matching model that estimates preferences and corrects for sample selection bias when the selection process is a two-sided matching game; i.e., a matching of students to colleges.

The structural model consists of a selection and an outcome equation. The Selection Equation determines which matches are observed ($D = 1$) and which are not ($D = 0$).

\[D = 1[V \in \Gamma] \]
\[V = W\beta + \eta \]

Here, V is a vector of latent valuations of all feasible matches, i.e., observed and unobserved, and $1[.]$ is the Iverson bracket. A match is observed if its match valuation is in the set of valuations Γ that satisfy the equilibrium condition (see Sorensen, 2007). The match valuation V is a linear function of W, a matrix of characteristics for all feasible matches, and η, a vector of random errors. β is a parameter vector to be estimated.

The Outcome Equation determines the outcome for observed matches. The dependent variable can either be continuous or binary, dependent on the value of the binary argument. In the binary case, the dependent variable R is determined by a threshold rule for the latent variable Y.

\[R = 1[Y > c] \]
\[Y = X\alpha + \epsilon \]

Here, Y is a linear function of X, a matrix of characteristics for observed matches, and ϵ, a vector of random errors. α is a parameter vector to be estimated.

The structural model imposes a linear relationship between the error terms of both equations as $\epsilon = \kappa\eta + \nu$, where ν is a vector of random errors and κ is the covariance parameter to be estimated. If κ were zero, the marginal distributions of ϵ and η would be independent and the selection problem would vanish. That is, the observed outcomes would be a random sample from the population of interest.

Usage

```r
stabit2(OUT = NULL, SEL = NULL, colleges = NULL, students = NULL, outcome = NULL, selection, binary = FALSE, niter, gPrior = FALSE, censored = 1, thin = 1, nCores = max(1, detectCores() - 1), ...)```

Arguments

OUT data frame with characteristics of all observed matches, including market identifier m.id, college identifier c.id and student identifier s.id.

SEL optional: data frame with characteristics of all observed and unobserved matches, including market identifier m.id, college identifier c.id and student identifier s.id.

colleges character vector of variable names for college characteristics. These variables carry the same value for any college.

students character vector of variable names for student characteristics. These variables carry the same value for any student.

outcome formula for match outcomes.

selection formula for match valuations.

binary logical: if TRUE outcome variable is taken to be binary; if FALSE outcome variable is taken to be continuous.

niter number of iterations to use for the Gibbs sampler.

gPrior logical: if TRUE the g-prior (Zellner, 1986) is used for the variance-covariance matrix. (Not yet implemented)

censored draws of the kappa parameter that estimates the covariation between the error terms in selection and outcome equation are 0:not censored, 1:censored from below, 2:censored from above.

thin integer indicating the level of thinning in the MCMC draws. The default thin=1 saves every draw, thin=2 every second, etc.

ncores number of cores to be used in parallel Gibbs sampling.

... .

Author(s)

Thilo Klein

References


Examples

```R
Not run:
--- SIMULATED EXAMPLE ---

1. Simulate two-sided matching data for 20 markets (m=20) with 100 students
(nStudents=100) per market and 20 colleges with quotas of 5 students, each
(nSlots=rep(5,20)). True parameters in selection and outcome equations are
all equal to 1.

xdata <- stabsim2(m=20, nStudents=100, nSlots=rep(5,20), verbose=FALSE,
 colleges = "c1", students = "s1",
```

```
outcome = c1:s1 + eta + nu,
selection = ~ -1 + c1:s1 + eta
)
head(xdata$OUT)

2. Correction for sorting bias when match valuations V are observed

2-a. Bias from sorting
lm1 <- lm(y ~ c1:s1, data=xdata$OUT)
summary(lm1)

2-b. Cause of the bias
with(xdata$OUT, cor(c1*s1, eta))

2-c. Correction for sorting bias
lm2a <- lm(V ~ -1 + c1:s1, data=xdata$SEL); summary(lm2a)
etahat <- lm2a$coefficients[1]

lm2b <- lm(y ~ c1:s1 + etahat, data=xdata$OUT)
summary(lm2b)

3. Correction for sorting bias when match valuations V are unobserved

3-a. Run Gibbs sampler (when SEL is given)
fit2 <- stabit2(OUT = xdata$OUT,
 SEL = xdata$SEL,
 outcome = y ~ c1:s1,
 selection = ~ -1 + c1:s1,
 niter=1000
)

3-b. Alternatively: Run Gibbs sampler (when SEL is not given)
fit2 <- stabit2(OUT = xdata$OUT,
 colleges = "c1",
 students = "s1",
 outcome = y ~ c1:s1,
 selection = ~ -1 + c1:s1,
 niter=1000
)

4. Implemented methods

4-a. Get coefficients
fit2

4-b. Coefficient table
summary(fit2)

4-c. Get marginal effects
summary(fit2, mfx=TRUE)
stabsim

Simulated data for group formation problem

Description
Simulate individual-level data for one-sided matching markets.

Usage
stabsim(m, ind, seed = 123, singles = NULL, gpm = 2)

Arguments

m
integer indicating the number of markets to be simulated.

ind
integer (or vector) indicating the number of individuals per group.

seed
integer setting the state for random number generation. Defaults to set.seed(123).

singles
integer giving the number of one-group markets.

gpm
integer giving the number of groups per market.

Value
stabsim returns a data frame with the randomly generated variables mimicking those in dataset baac00.

m.id
categorical: market identifier.

g.id
categorical: group identifier.

wst
binary: indicator taking the value 1 if last year was worse than the year before; 0 otherwise.

R
NA: group outcome is not simulated. It can be obtained using the simulation argument in function stabit.

Author(s)
Thilo Klein
Examples

```r
## Coalitions [gpm := 2 ;]
## Simulate one-sided matching data for 4 markets (m=4) with 2 groups
## per market (gpm=2) and 2 to 4 individuals per group (ind=2:4)
## idata <- stabsim(m=4, ind=2:4, seed=124, singles=2, gpm=2)

## Roommates [ind := 2 ;]
## Simulate one-sided matching data for 3 markets (m=3) with 3 groups
## per market (gpm=3) and 2 individuals per group (ind=2)
## idata <- stabsim(m=3, ind=2, seed=124, gpm=3)
```

`stabsim2`
Simulated data for college admissions problem

Description

Simulate data for two-sided matching markets. In the simulation for the Sorensen (2007) model with one selection equation, an equal sharing rule of $\lambda = 0.5$ is used.

Usage

```r
stabsim2(m, nStudents, nColleges = length(nSlots), nSlots, colleges, students, 
         outcome, selection, binary = FALSE, seed = 123, verbose = TRUE)
```

Arguments

- `m` integer indicating the number of markets to be simulated.
- `nStudents` integer indicating the number of students per market.
- `nColleges` integer indicating the number of colleges per market.
- `nSlots` vector of length `nColleges` indicating the number of places at each college, i.e. the college's quota.
- `colleges` character vector of variable names for college characteristics. These variables carry the same value for any college.
- `students` character vector of variable names for student characteristics. These variables carry the same value for any student.
- `outcome` formula for match outcomes.
- `selection` formula for match valuations.
- `binary` logical: if TRUE outcome variable is binary; if FALSE outcome variable is continuous.
- `seed` integer setting the state for random number generation. Defaults to set.seed(123).
- `verbose` .
Value

stabsim2 returns a list with the following items.

OUT
SEL
SELC
SELS

Author(s)

Thilo Klein

Examples

```r
## Simulate two-sided matching data for 2 markets (m=2) with 10 students
## (nStudents=10) per market and 3 colleges (nColleges=3) with quotas of
## 2, 3, and 5 students, respectively.

xdata <- stabsim2(m=2, nStudents=10, nSlots=c(2,3,5), verbose=FALSE,
colleges = "c1", students = "s1",
outcome = ~ c1:s1 + eta + nu,
selection = ~ -1 + c1:s1 + eta
)
head(xdata$OUT)
head(xdata$SEL)
```

ttc

Top-Trading-Cycles Algorithm for the house allocation problem

Description

Usage

```r
ttc(P = NULL, X = NULL)
```

Arguments

- **P**: matrix of individuals’ preference rankings (Rank Order Lists) over objects.
- **X**: 2-column-matrix of objects (obj) and their owners (ind).
Value

`ttc` returns a 2-column matrix of the matching solution for the housing market problem based on the Top-Trading-Cycles algorithm.

Author(s)

Thilo Klein

References

Examples

```r
## generate matrix of individuals' preference rankings over objects, a.k.a. Rank Order Lists (ROL)
P <- matrix(c(2, 5, 1, 4, 3,  # ROL of individual 1
              1, 5, 4, 3, 2,  # ind 2
               2, 1, 4, 3, 5,  # ind 3
               2, 4, 3,NA,NA,  # ind 4
               4, 3, 1, 2,NA), # ind 5
               byrow=FALSE, nrow=5); P

## generate 2-column-matrix of objects ('obj') and their owners ('ind')
X <- data.frame(ind=1:5, obj=5:1); X

## find assignment based on TTC algorithm
ttc(P=P, X=X)
```
Index

*Topic algorithms
 hri, 5
 iaa, 8
 plp, 14
 sri, 16
 ttc, 27

*Topic datasets
 baac00, 4
 klein15a, 11
 klein15b, 11

*Topic generate
 stabsim, 25
 stabsim2, 26

*Topic package
 matchingMarkets-package, 2

*Topic regression
 stabit, 2
 stabit2, 2
 stabit2Mat1 (stabit2), 22
 stabit2Sel1 (stabit2), 22
 stabit2Sel2 (stabit2), 22
 stabitSel2 (stabit), 17
 stabsim, 3
 stabsim2, 7
 ttc, 3

*Topic summary
 khb, 10
 predict.stabit2, 15

baac00, 3, 4, 25
hri, 3, 5
iaa, 8

khb, 2, 10
klein15a, 11
klein15b, 11

matchingMarkets
 (matchingMarkets-package), 2

mce, 13

plp, 14
predict.stabit2, 15

sri, 3, 16