Package ‘materialmodifier’

May 19, 2023

Title Apply Photo Editing Effects
Version 1.2.0
Description
You can apply image processing effects that modifies the perceived material properties of objects in photos, such as gloss, smoothness, and blemishes. This is an implementation of the algorithm proposed by Boyadzhiev et al. (2015) ‘Band-Sifting Decomposition for Image Based Material Editing’. Documentation and practical tips of the package is available at <https://github.com/tsuda16k/materialmodifier>.

URL https://github.com/tsuda16k/materialmodifier
BugReports https://github.com/tsuda16k/materialmodifier/issues/
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports jpeg, magrittr, methods, png, readbitmap, stringr, downloader, imager, moments
Depends R (>= 2.10)
NeedsCompilation no
Author Hiroyuki Tsuda [aut, cre] (<https://orcid.org/0000-0001-9396-5327>)
Maintainer Hiroyuki Tsuda <tsuda16k@gmail.com>
Repository CRAN
Date/Publication 2023-05-19 07:10:08 UTC

R topics documented:
cimg2nimg .. 2
face .. 2
gf_decompose ... 3
get_BS_energy ... 3
cimg2nimg

Description

cimg to nimg conversion

Usage

cimg2nimg(im)

Arguments

- **im**: a cimg object

Value

- an nimg object

face

Description

A photograph obtained from a free stock photos site. pexels.com/photo/fashion-woman-cute-shoes-5704849/

Usage

face

Format

An array with 500 x 500 x 3 dimensions. Each dimension represents y-coordinate, x-coordinate, and color channel.
get_BS_energy

Examples
plot(face)

gf_decompose

Description
Scale-space decomposition by the guided filter

Usage
gf_decompose(
 im, mask = NA, logspace = TRUE
)

Arguments

im An image.

mask (optional) If set, only the area of white pixels in the mask image will be included in the calculation.

logspace If TRUE (default), image processing is done in the log space. If FALSE, computation is performed without log transformation.

Value
a data frame

Examples
Not run:
data = get_BS_energy(face)
End(Not run)
Usage

gf_decompose(
 im,
 mask = NA,
 log_epsilon = 1e-04,
 filter_epsilon = 0.01,
 logspace = TRUE
)

Arguments

 im an image
 mask If set, only the area of white pixels in the mask image will be edited.
 log_epsilon offset for log transformation
 filter_epsilon epsilon parameter
 logspace If TRUE (default), image processing is done in the log space. If FALSE, computation is performed without log transformation.

Value

 a list of images

gf_decompose_parts Scale-space decomposition

Description

 Scale-space decomposition

Usage

 gf_decompose_parts(dec, mask = NA)

Arguments

 dec output of gf_decompose_scale function
 mask If set, only the area of white pixels in the mask image will be edited.

Value

 a list of images
gf_decompose_scale	Scale-space decomposition by the guided filter

Description
Scale-space decomposition by the guided filter

Usage
gf_decompose_scale(
im,
depth = NULL,
log_epsilon = 1e-04,
filter_epsilon = 0.01,
logspace = TRUE
)

Arguments
- **im**: a grayscale image
- **depth**: scale depth
- **log_epsilon**: offset for log transformation
- **filter_epsilon**: epsilon parameter
- **logspace**: If TRUE (default), image processing is done in the log space. If FALSE, computation is performed without log transformation.

Value
a list of images

gf_reconstruct	Reconstruct the original image from decomposed data

Description
Reconstruct the original image from decomposed data

Usage
gf_reconstruct(dec, scales, ind, include.residual = TRUE, logspace = TRUE)
Arguments

dec decomposed data
scales which spatial scales to use for reconstruction
ind a numeric vector
include.residual either TRUE (default) or FALSE
logspace If TRUE (default), image processing is done in the log space. If FALSE, computation is performed without log transformation.

Value

an image

im_load
Load image from file or URL

Description

Load image from file or URL

Usage

im_load(file, name)

Arguments

file path to file or URL
name a string for name attribute. if missing, inferred from the file argument.

Value

an array of image data

Examples

```r
## Not run:
# load an image from disk
im = im_load("path/to/your/image.jpg")
plot(im)

## End(Not run)
# load an image from URL
im = im_load("http://placeholder.jp/150x150.png")
```
im_save

Description

Save an image to disk

Usage

im_save(im, name, path, format = "png", quality = 0.95)

Arguments

- **im**: An image.
- **name**: Name of the image file.
- **path**: The image is saved in this directory. For example, path = getwd().
- **format**: Image format. Either "jpg", "png", "tiff", or "bmp". Default is "png".
- **quality**: (jpg only) default is 0.95. Higher quality means less compression.

Value

No return value, called for side effects.

Examples

```r
## Not run:
# face.png is saved to a path (if a path is specified)
im_save( face, path = "yourpath" )
# img.png is saved to a path (if a path is specified)
im_save( face, name = "img", path = "yourpath" )
# myimage.jpg is saved to a path (if a path is specified)
im_save( face, name = "myimage", path = "yourpath", format = "jpg" )
## End(Not run)
```

modif

Apply material editing effect

Description

This function is the core function of this package. It edits the input image by specifying the name of the editing effect (BS feature or its alias) and the strength parameter.
Usage

```r
modif(
im,
  effect,
  strength,
  mask = NA,
  max_size = 1280,
  log_epsilon = 1e-04,
  filter_epsilon = 0.01,
  logspace = TRUE)
```

Arguments

- **im**: An input image.
- **effect**: A string naming the effect to apply. Either "gloss", "shine", "spots", "blemish", "rough", "stain", "shadow", or "aging".
- **strength**: A numeric, which controls the strength of the effect. Strength values between 0 and 1 will reduce a feature, while strength values larger than 1 will boost a feature. A strength value of 1 does nothing. Negative values are allowed, which will invert a feature.
- **mask**: If set, only the area of white pixels in the mask image will be edited.
- **max_size**: If the shorter side of the input image is larger than this value (the default is 1280), input image is resized before applying effects. Because the `modif()` function is very slow for large-resolution images, it is useful to limit the image resolution to speed-up the image processing. If you do not want to change the resolution of the input image, you can enter a large value for `max_size`, or set `max_size = NA`.
- **log_epsilon**: Offset for log transformation (default is 0.0001). Need not to change this value in most cases.
- **filter_epsilon**: Epsilon parameter of the Guided filter (default is 0.01). Need not to change this value in most cases.
- **logspace**: If TRUE (default), image processing is done in the log space. If FALSE, computation is performed without log transformation.

Value

an output image

Examples

```r
plot(modif(face, effect = "shine", strength = 2.5)) # Apply the "shine" effect (make objects shiny)
plot(modif(face, effect = "shine", strength = 0.2)) # Less shiny effect with a parameter less than 1
plot(modif(face, effect = c("shine", "stain"), strength = c(0.2, 3))) # Less shiny and more stain
```
modif2

Apply material editing effect (For advanced users)

Description

This function allows you to specify which image components to edit in more detail than the modif function. Please refer to the information on the package's Github page for detailed usage and theoretical background.

Usage

```r
modif2(
im,  
params,  
mask = NA,  
max_size = 1280,  
log_epsilon = 1e-04,  
filter_epsilon = 0.01,  
logspace = TRUE
)
```

Arguments

- `im` An input image.
- `params` A list of parameter values. Parameter names are freq, amp, sign, and strength.
- `mask` If set, only the area of white pixels in the mask image will be edited.
- `max_size` If the shorter side of the input image is larger than this value (the default is 1280), input image is resized. The modif function is very slow for large-resolution images.
- `log_epsilon` Offset for log transformation (default is 0.0001). Need not to change this value in most cases.
- `filter_epsilon` Epsilon parameter of the Guided filter (default is 0.01). Need not to change this value in most cases.
- `logspace` If TRUE (default), image processing is done in the log space. If FALSE, computation is performed without log transformation.

Value

an output image

Examples

```r
# shine effect
shine = list(freq = "H", amp = "H", sign = "P", strength = 2)
plot(modif2(face, params = shine))
```
shine effect (equivalent to the above)
shine2 = list(freq = 1:4, amp = "H", sign = "P", strength = 2)
plot(modif2(face, params = shine2))

you can specify a feature name directly, instead of specifying freq/amp/sign separately
plot(modif2(face, params = list(feature = "HHA", strength = 2)))
plot(modif2(face, params = list(feature = "1HP", strength = 3)))

apply multiple effects at the same time
blemish = list(feature = "HLA", strength = 0.1) # less blemish
smooth = list(feature = "HHN", strength = 0.2) # smoother
plot(modif2(face, params = list(blemish, smooth)))

modif_dim

modif_dim is a function that checks the scale information of an image.

Description

Check the scale information of an image.

Usage

```r
modif_dim(im)
```

Arguments

- `im`: An image.

Value

A list of depth (number of scale subband images), indexes of high amplitude subbands, and indexes of low amplitude subbands.

Examples

```r
modif_dim(face)
```
nimg2cimg

nimg to cimg conversion

Description

nimg to cimg conversion

Usage

nimg2cimg(im)

Arguments

- **im** an nimg object

Value

a cimg object

plot.nimg

Display an image

Description

Display an image

Usage

```r
## S3 method for class 'nimg'
plot(x, rescale = FALSE, ...)
```

Arguments

- **x** an image
- **rescale** logical. if true, then pixel value is rescaled to range between 0 and 1.
- **...** other parameters to be passed to plot.default

Value

No return value, called for side effects.

Examples

```r
plot(face)
```
Index

* datasets
 face, 2

cimg2nim, 2

face, 2

gf_decompose, 3
gf_decompose_parts, 4
gf_decompose_scale, 5
gf_reconstruct, 5

im_load, 6
im_save, 7

modif, 7
modif2, 9
modif_dim, 10

nimg2cimg, 11

plot.nimg, 11