matrixStats: Functions that Apply to Rows and Columns of Matrices (and to Vectors)

High-performing functions operating on rows and columns of matrices, e.g. col / rowMedians(), col / rowRanks(), and col / rowSds(). Functions optimized per data type and for subsetted calculations such that both memory usage and processing time is minimized. There are also optimized vector-based methods, e.g. binMeans(), madDiff() and weightedMedian().

Version: 0.52.2
Depends: R (≥ 2.12.0)
Suggests: base64enc, ggplot2, knitr, microbenchmark, R.devices, R.rsp
Published: 2017-04-14
Author: Henrik Bengtsson [aut, cre, cph], Hector Corrada Bravo [ctb], Robert Gentleman [ctb], Ola Hossjer [ctb], Harris Jaffee [ctb], Dongcan Jiang [ctb], Peter Langfelder [ctb]
Maintainer: Henrik Bengtsson <henrikb at>
License: Artistic-2.0
NeedsCompilation: yes
Materials: NEWS
CRAN checks: matrixStats results


Reference manual: matrixStats.pdf
Vignettes: matrixStats: Summary of functions
Package source: matrixStats_0.52.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: matrixStats_0.52.2.tgz
OS X Mavericks binaries: r-oldrel: matrixStats_0.52.2.tgz
Old sources: matrixStats archive

Reverse dependencies:

Reverse depends: aSPU, DAMOCLES, DisHet, FastHCS, FastPCS, FastRCS, GAD, InfiniumPurify, localgauss, LS2Wstat, NSA, r2dRue, RAC, samr, StructFDR, ttScreening, visualFields
Reverse imports: ACNE, anomalyDetection, aroma.affymetrix,, aroma.core, bdynsys, bigstep, bingat, brms, calmate, carx, cellWise, cointmonitoR, cointReg, DGCA, dplR, expss, FADA, filesstrings, fslr, GPrank, haploReconstruct, IMIFA, kernDeepStackNet, loo, ltmle, Luminescence, MFHD, mmtfa, mrfDepth, neurobase, peakPick, PSCBS, randomizationInference, RTransProb, SemiParBIVProbit, SemiParSampleSel, SGP, sizeMat, statar, stm, summarytools, WGCNA
Reverse suggests: dtree, LSAmitR, MetaQC, MPAgenomics, MultiBD, tmlenet


Please use the canonical form to link to this page.