Package ‘matrixStrucTest’

July 18, 2019

Version 1.0.0
Date 2019-07-14
Title Tests of Matrix Structure for Construct Validation
Description Tests for block-diagonal structure in symmetric matrices (e.g. correlation matrices) under the null hypothesis of exchangeable off-diagonal elements. As described in Segal et al. (2019), these tests can be useful for construct validation either by themselves or as a complement to confirmatory factor analysis. Monte Carlo methods are used to approximate the permutation p-value with Hubert's Gamma (Hubert, 1976) and a t-statistic. This package also implements the chi-squared statistic described by Steiger (1980). Please see Segal, et al. (2019) <doi:10.1007/s11336-018-9647-4> for more information.

Depends R (>= 3.1)
Suggests ggplot2, reshape2
Author Brian D. Segal [aut, cre]
Maintainer Brian D. Segal <bdsegal@umich.edu>
License GPL (>= 3)
URL https://github.com/bdsegal/matrixStrucTest
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-07-18 06:35:48 UTC

R topics documented:

- big5 ... 2
- deltaSub .. 4
- makeGroupList 4
- matrixStrucTest 5
- matrixStrucTestSub 7
- multiSub 8
- prepBoxPlots 8
big5
Big Five personality questionnaire

Description
A dataset containing answers to a Big Five Personality Test conducted by http://personality-testing.info. These data were collected (c. 2012) through an interactive online personality test. The test was constructed with items from the International Personality Item Pool. Participants were informed that their responses would be recorded and used for research at the beginning of the test and asked to confirm their consent at the end of the test. The items were rated on a five point scale where 1=Disagree, 3=Neutral, 5=Agree. All were presented on one page in the order E1, N1, A1, C1, O1, E2,...

Usage

big5

Format
A data frame with 19,719 rows of 57 variables:

race 1=Mixed Race, 2=Arctic (Siberian, Eskimo), 3=Caucasian (European), 4=Caucasian (Indian), 5=Caucasian (Middle East), 6=Caucasian (North African, Other), 7=Indigenous Australian, 8=Native American, 9=North East Asian (Mongol, Tibetan, Korean Japanese, etc), 10=Pacific (Polynesian, Micronesian, etc), 11=South East Asian (Chinese, Thai, Malay, Filipino, etc), 12=West African, Bushmen, Ethiopian, 13=Other

age Entered as text (individuals reporting age < 13 were not recorded)

engnat Response to "is English your native language?". 1=yes, 2=no

gender 1=Male, 2=Female, 3=Other

hand "What hand do you use to write with?". 1=Right, 2=Left, 3=Both

country The participant’s technical location. ISO country code

source How the participant came to the test. Based on HTTP Referer. 1=from another page on the test website, 2=from google, 3=from facebook, 4=from any url with ".edu" in its domain name, 6=other source, or HTTP Referer not provided

E1 I am the life of the party.
E2 I don’t talk a lot.
E3 I feel comfortable around people.
E4 I keep in the background.
E5 I start conversations.
E6 I have little to say.
E7 I talk to a lot of different people at parties.
E8 I don’t like to draw attention to myself.
E9 I don’t mind being the center of attention.
E10 I am quiet around strangers.
N1 I get stressed out easily.
N2 I am relaxed most of the time.
N3 I worry about things.
N4 I seldom feel blue.
N5 I am easily disturbed.
N6 I get upset easily.
N7 I change my mood a lot.
N8 I have frequent mood swings.
N9 I get irritated easily.
N10 I often feel blue.
A1 I feel little concern for others.
A2 I am interested in people.
A3 I insult people.
A4 I sympathize with others’ feelings.
A5 I am not interested in other people’s problems.
A6 I have a soft heart.
A7 I am not really interested in others.
A8 I take time out for others.
A9 I feel others’ emotions.
A10 I make people feel at ease.
C1 I am always prepared.
C2 I leave my belongings around.
C3 I pay attention to details.
C4 I make a mess of things.
C5 I get chores done right away.
C6 I often forget to put things back in their proper place.
C7 I like order.
C8 I shirk my duties.
C9 I follow a schedule.
C10 I am exacting in my work.
O1 I have a rich vocabulary.
O2 I have difficulty understanding abstract ideas.
O3 I have a vivid imagination.
O4 I am not interested in abstract ideas.
O5 I have excellent ideas.
O6 I do not have a good imagination.
O7 I am quick to understand things.
O8 I use difficult words.
O9 I spend time reflecting on things.
O10 I am full of ideas.

Details
This dataset is for demonstration purposes only. Please see http://personality-testing.info/privacypolicy.html and http://personality-testing.info/about for more information.

Source
http://personality-testing.info/_rawdata/

deltaSub

Sub-routine to create Delta matrix

Description
This sub-routine outputs 1 if i and j are in at least one group together, and 0 otherwise, and is called by matrixStrucTest and prepBoxPlots.

Usage
deltaSub(i, j, group_list)

Arguments
i First index
j Second index
group_list List of indices for each block
makeGroupList

Convert character string in lavaan syntax into a list of indices

Description

This sub-routine is called by `matrixStrucTest` and `prepBoxPlots`.

Usage

```
makeGroupList(groups, A)
```

Arguments

- `groups` Character string in lavaan syntax specifying groups
- `A` A Distance or similarity matrix. Must have column names

Value

- `group_list` List of column indices of A corresponding to each group

matrixStrucTest

Permutation p-values for Gamma and t-statistics

Description

This function computes permutation p-values for Hubert’s Gamma and t-statistics for both overall and block-specific tests.

Usage

```
matrixStrucTest(A, group_list = NULL, groups = NULL, B = 1000, absolute = TRUE)
```

Arguments

- `A` Distance or similarity matrix, e.g. correlation
- `group_list` List of column indices of A for each group. Either `groups` or `group_list` but not both must be supplied.
- `groups` CFA model in lavaan syntax. Either `groups` or `group_list` but not both must be supplied.
- `B` Number of Monte Carlo resamples (defaults to B=1000)
- `absolute` Use the absolute values of A (defaults to TRUE)
Value

- `pt_overall_one_sided`: Overall one-sided p-value using t statistic
- `pt_overall_two_sided`: Overall two-sided p-value using t statistic
- `pt_multi_one_sided`: Block-specific one-sided p-values using t statistic
- `pt_multi_two_sided`: Block-specific two-sided p-values using t statistic
- `t0`: Observed overall t statistic
- `t0k`: Observed block-specific t statistic
- `t_overall`: Vector of overall t statistics from permuted A
- `t_max_one_sided`: Vector of max t statistics from permuted A (one-sided)
- `t_max_two_sided`: Vector of max t statistics from permuted A (two-sided)
- `pG_overall_one_sided`: Overall one-sided p-value using Hubert’s Gamma
- `pG_overall_two_sided`: Overall two-sided p-value using Hubert’s Gamma
- `pG_multi_one_sided`: Block-specific one-sided p-values using Hubert’s Gamma
- `pG_multi_two_sided`: Block-specific two-sided p-values using Hubert’s Gamma
- `Gamma0`: Observed overall Hubert’s Gamma
- `Gamma0k`: Observed block-specific Hubert’s Gamma
- `Gamma_overall`: Vector of Hubert’s Gamma statistics from permuted A
- `Gamma_max_one_sided`: Vector of max Hubert’s Gamma statistics from permuted A (one-sided)
- `Gamma_max_two_sided`: Vector of max Hubert’s Gamma statistics from permuted A (two-sided)
- `B`: number of Monte Carlo resamples
- `group_list`: List of column/row indices corresponding to each group

Examples

```r
# example for matrixStrucTest package
library(matrixStrucTest)
data("big5")

# get column numbers for questionnaire items
items <- grep("[0-9]", colnames(big5))

# compute Spearman's correlation matrix
A <- cor(big5[, items], use = "complete.obs", method = "spearman")

# specify the groups
groups <- "extrovert ~ E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + E10
neurotic ~ N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + N10
agreeable ~ A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10
conscientious ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10
open ~ O1 + O2 + O3 + O4 + O5 + O6 + O7 + O8 + O9 + O10"

# compute permutation p-values
result <- matrixStrucTest(A = A, groups = groups, B = 100, absolute = TRUE)
```
Note: two-sided p-values from Hubert's Gamma printed by default
other results available by directing accessing them from the
returned object
result

Alternative approach for specifying the groups as a list of column/row indices
extrovert <- grep("E", colnames(A))
neurotic <- grep("N", colnames(A))
agreeable <- grep("A", colnames(A))
conscientious <- grep("C", colnames(A))
open <- grep("O", colnames(A))

put blocks/groups in list
group_list <- list(extrovert = extrovert,
 neurotic = neurotic,
 agreeable = agreeable,
 conscientious = conscientious,
 open = open)

Note: Using small B for fast checking on CRAN. Set B >= 1000 in practice.
result <- matrixStrucTest(A = A, group_list = group_list, B = 100, absolute = TRUE)

Note: two-sided p-values from Hubert's Gamma printed by default
other results available by directing accessing them from the
returned object
result

Visualize groups
library(ggplot2)
library(reshape2)

ord <- unlist(result$group_list)
diag(A) <- NA # remove diagonals from color scale
Am <- melt(A[ord, ord])
names(Am) <- c("x", "y", "value")
Am$y <- factor(Am$y, levels = rev(levels(Am$y)))
ggplot(aes(x = x, y = y, fill = abs(value)), data = Am)+
 geom_tile()+
 theme_bw(18)+
 scale_fill_gradient2(space="Lab", name="abs(Cor)", lim = c(0, 1))+
 labs(x =
 theme(axis.text.x = element_text(angle = 90, vjust = .35,hjust=1))

matrixStrucTestSub Compute Gamma and t-statistics for a single permutation

Description

This sub-routine is called by matrixStrucTest and prepBoxPlots.
Usage

```matlab
multiSub(i, j, group)
```

Arguments

- **i**: First index
- **j**: Second index
- **group**: Indices for items in group

multiSub is a sub-routine to create a Delta matrix for block-specific tests. It outputs TRUE if either `i` or `j` are in `group`, FALSE otherwise, and is called by `matrixStrucTest` and `prepBoxPlots`.

multiSub
Sub-routine to create Delta matrix for block-specific tests

Description

This sub-routine outputs TRUE if either `i` or `j` are in `group`, FALSE otherwise, and is called by `matrixStrucTest` and `prepBoxPlots`.

Usage

```matlab
multiSub(i, j, group)
```

Arguments

- **i**: First index
- **j**: Second index
- **group**: Indices for items in group
prepBoxPlots Prepare data for box plots

Description

This function prepares the data for making box plots.

Usage

prepBoxPlots(A, groups = NULL, group_list = NULL, absolute = TRUE)

Arguments

A Distance or similarity matrix, e.g. correlation

groups CFA model in lavaan syntax. Either groups or group_list but not both must be supplied.

group_list List of groupings. Either groups or group_list but not both must be supplied.

absolute Use the absolute values of A (defaults to TRUE)

Value

multi: data frame for making box plots for block-specific tests

overall: data frame for making box plots for overall test

Examples

library(matrixStrucTest)
library(ggplot2)
data("big5")

get column numbers for questionnaire items
items <- grep("[0-9]", colnames(big5))

compute Spearman's correlation matrix
A <- cor(big5[, items], use = "complete.obs", method = "spearman")

groups <- "extrovert ~ E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + E10
neurotic ~ N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + N10
agreeable ~ A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10
conscientious ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10
open ~ O1 + O2 + O3 + O4 + O5 + O6 + O7 + O8 + O9 + O10"

Make box plots contrasting within and between group correlations
box <- prepBoxPlots(A = A, groups = groups, absolute = TRUE)

ggplot(aes(x = as.factor(delta), y = a), data = box$overall)+
```
geom_boxplot() +
theme_bw(22) +
labs(x = expression(Delta), y = "|a|")

dev.new(width = 12, height = 5)
ggplot(aes(x = as.factor(delta), y = a), data = box$multi) +
  geom_boxplot() +
  facet_grid(~block) +
  theme_bw(22) +
  labs(x = expression(Delta), y = "|a|")
```

print.mst
Print results from `matrixStrucTest`

Description

This function prints results from an object returned by `matrixStrucTest`.

Usage

```r
## S3 method for class 'mst'
print(x, ...)
```

Arguments

- `x`
 Output from `matrixStrucTest`
- `...`
 Further arguments passed to `print`

sigmaRhoFun
Sub-routine to compute OLS estimates of covariance between correlations

Description

This sub-routine is called by `X2fun`.

Usage

```r
sigmaRhoFun(j, k, h, m, A)
```

Arguments

- `j`
 First index
- `k`
 Second index
- `h`
 Third index
- `m`
 Fourth index
- `A`
 Correlation matrix
sigmaZFun

Description

This sub-routine is called by X2fun.

Usage

```r
sigmaZFun(s, t, index, A, Sigma)
```

Arguments

- `s`: First index
- `t`: Second index
- `index`: Matrix with two columns with index pairs given by rows
- `A`: Correlation matrix
- `Sigma`: Variance-covariances of correlation matrix A

X2Fun

Description

Goodness-of-fit chi-squared statistic described by Steiger (1980).

Usage

```r
X2Fun(data, group_list, corMethod = "spearman")
```

Arguments

- `data`: Data frame
- `group_list`: List of column indices of A for each group
- `corMethod`: Type of correlations; passed to cor()