Package ‘mazeinda’

January 16, 2018

Title Monotonic Association on Zero-Inflated Data

Version 0.0.1

Author Alice Albasi [aut, cre]

Maintainer Alice Albasi <albasialice@gmail.com>

Description Methods for calculating and testing the significance of pairwise monotonic association from and based on the work of Pimentel (2009) <doi:10.4135/9781412985291.n2>. Computation of association of vectors from one or multiple sets can be performed in parallel thanks to the packages 'foreach' and 'doMC'.

Depends R (>= 3.3.0)

Imports foreach

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Suggests doMC, gamlss.dist, knitr, testthat, R.rsp, rmarkdown

VignetteBuilder R.rsp, knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2018-01-16 09:42:00 UTC

R topics documented:

associate ... 2
combine .. 3
test_associations .. 4

Index 6
associate

Associate pairwise vectors form one or two sets

Description

Given two matrices \(m_1 \) and \(m_2 \), computes all pairwise correlations of each vector in \(m_1 \) with each vector in \(m_2 \). Thanks to the package foreach, computation can be done in parallel using the desired number of cores.

Usage

\[
\text{associate}(m_1, m_2, \text{parallel = FALSE, n_cor = 1, estimator = "values", d1, d2, p11 = 0, p01 = 0, p10 = 0})
\]

Arguments

- **m1, m2**: matrices whose columns are to be correlated. If no estimation calculations are needed, default is NA.
- **parallel**: should the computations for associating the matrices be done in parallel? Default is FALSE
- **n_cor**: number of cores to be used if the computation is run in parallel. Default is 1
- **estimator**: string indicating how the parameters \(p_{11}, p_{01}, p_{10}, p_{00} \) are to be estimated. The default is 'values', which indicates that they are estimated based on the entries of \(x \) and \(y \). If estimates='mean', each \(p_{ij} \) is estimated as the mean of all pairs of column vectors in \(m_1 \), and of \(m_2 \) if needed. If estimates='own', the \(p_{ij} \)'s must be given as arguments.
- **d1, d2**: sets of vectors used to estimate \(p_{ij} \) parameters. If just one set is needed set \(d_1=d_2 \).
- **p11**: probability that a bivariate observation is of the type \((m,n) \), where \(m,n>0 \).
- **p01**: probability that a bivariate observation is of the type \((0,n) \), where \(n>0 \).
- **p10**: probability that a bivariate observation is of the type \((n,0) \), where \(n>0 \).

Details

To find pairwise monotonic associations of vectors within one set \(m \), run \(\text{associate}(m,m) \). Note that the values on the diagonal will not be necessarily 1 if the vectors contain 0’s, as it can be seen by the formula \(p_{11}^2 t_{11} + 2 * (p_{00}p_{11} - p_{01}p_{10}) \)

Value

matrix of correlation values.
Examples

v1=c(0,0,10,0,0,12,2,1,0,0,0,0,1)
v2=c(0,1,0,0,0,1,64,3,4,2,32,0)
associate(v1,v2)
m1=matrix(c(0,0,10,0,0,0,0,0,0,1,64,3,4,2,32,0,0,0,3),6)
associate(m1)
m2=matrix(c(0,1,0,0,0,1,64,3,4,2,32,0,0,0,3,20,10,0,0,12,2,1,0,0),6)
associate(m1,m2)

Description

Designed to combine the matrix of correlation values with the matrix of p-values so that in the cases
when the null hypothesis cannot be rejected with a level of confidence indicated by the significance,
the correlation is set to zero. Thanks to the package foreach, computation can be done in parallel
using the desired number of cores.

Usage

combine(m1, m2, sl = 0.05, parallel = FALSE, n_cor = 1,
estimator = "values", d1, d2, p11 = 0, p01 = 0, p10 = 0)

Arguments

m1, m2 matrices whose columns are to be correlated. If no estimation calculations are
needed, default is NA.
sl level of significance for testing the null hypothesis. Default is 0.05.
parallel should the computations for associating the matrices be done in parallel? Default
is FALSE
n_cor number of cores to be used if the computation is run in parallel. Default is 1
estimator string indicating how the parameters $p_{11}, p_{01}, p_{10}, p_{00}$ are to be estimated. The
default is 'values', which indicates that they are estimated based on the entries
of x and y. If estimates=='mean', each p_{ij} is estimated as the mean of all pairs
of column vectors in m_1, and of m_2 if needed. If estimates=='own', the p_{ij}'s
must be given as arguments.
d1, d2 sets of vectors used to estimate p_{ij} parameters. If just one set is needed set
d1=d2.
p11 probability that a bivariate observation is of the type (m,n), where m,n>0.
p01 probability that a bivariate observation is of the type (0,n), where n>0.
p10 probability that a bivariate observation is of the type (n,0), where n>0.
Details

To test pairwise monotonic associations of vectors within one set \(m \), run `combine(m, m)`. Note that the values on the diagonal will not be necessarily significant if the vectors contain 0’s, as it can be seen by the formula \(p_{11}^2 t_{11} + 2 \times (p_{00}p_{11} - p_{01}p_{10}) \). The formula for the variance of the estimator proposed by Pimentel(2009) does not apply in case \(p_{11}, p_{01}, p_{10}, p_{00} \) attain the values 0 or 1. In these cases the R function `cor.test` is used. Note that while independence implies that the estimator is 0, if the estimator is 0, it does not imply that the vectors are independent.

Value

matrix of combined association values and p-values.

Usage

```r
test_associations(m1L m2L parallel = FALSE, n_cor = 1L,
estimator = "values"L d1L d2L p11 = 0L, p01 = 0L, p10 = 0L)
```

Arguments

- **m1**, **m2**: matrices whose columns are used to estimate the \(p_{ij} \) parameters. If no estimation calculations are needed, default is NA. Both are necessary if cross-correlating pairwise the vectors from two datasets.
- **parallel**: should the computations for combining the matrices be done in parallel? Default is FALSE.
- **n_cor**: number of cores to be used if the computation is run in parallel. Default is 1.
- **estimator**: string indicating how the parameters \(p_{11}, p_{01}, p_{10}, p_{00} \) are to be estimated. The default is ‘values’, which indicates that they are estimated based on the entries of \(x \) and \(y \). If estimates==’mean’, each \(p_{ij} \) is estimated as the mean of all pairs of column vectors in \(m_1 \), and of \(m_2 \) if needed. If estimates==’own’, the \(p_{ij} \)’s must be given as arguments.
- **d1**, **d2**: sets of vectors used to estimate \(p_{ij} \) parameters. If just one set is needed set \(d_1 = d_2 \).
- **p11**: probability that a bivariate observation is of the type \((m,n)\), where \(m,n > 0 \)
- **p01**: probability that a bivariate observation is of the type \((0,n)\), where \(n > 0 \).
- **p10**: probability that a bivariate observation is of the type \((n,0)\), where \(n > 0 \).
Details

Given two matrices m_1 and m_2, computes all pairwise correlations of each vector in m_1 with each vector in m_2. Thanks to the package foreach, computation can be done in parallel using the desired number of cores.

Value

matrix of p-values of association.

Examples

```r
v1=c(0,0,10,0,0,12,2,1,0,0,0,0,0,0,0,1)
v2=c(0,1,0,0,1,64,3,4,2,32,0)
test_associations(v1,v2)
m1=matrix(c(0,0,10,0,0,12,2,1,0,0,0,0,1,64,3,4,2,32,0,0,43,54,3,0,0,3,20,1,6))
test_associations(m1,m1)
m2=matrix(c(0,1,0,0,1,64,3,4,2,32,0,0,43,54,3,0,0,3,20,1,0,0,12,2,1,0,0,6))
test_associations(m1,m2)
m3= matrix(abs(rnorm(36)),6)
m4= matrix(abs(rnorm(36)),6)
test_associations(m3,m4)
```
Index

associate, 2
combine, 3
test_associations, 4