Package ‘mbRes’

December 18, 2022

Type Package
Title Exploration of Multiple Biomarker Responses using Effect Size
Version 0.1.6
Description Summarize multiple biomarker responses of aquatic organisms to contaminants using Cliff’s delta, as described in Pham & Sokolova (2022) <doi:10.1002/ieam.4676>.
Depends R (>= 4.2.0)
Imports stats, ggplot2 (>= 3.4.0), cowplot (>= 1.1.1), magrittr (>= 2.0.3), tibble (>= 3.1.8), dplyr (>= 1.0.10), forcats (>= 0.5.2), tidyr (>= 1.2.1), purrr (>= 0.3.5), data.table (>= 1.14.6), scales (>= 1.2.1)
Suggests RProbSup (>= 3.0)
BugReports https://github.com/phamdn/mbRes/issues
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation no
Author Duy Nghia Pham [aut, cre] (<https://orcid.org/0000-0003-1349-1710>), Inna M. Sokolova [ths] (<https://orcid.org/0000-0002-2068-4302>)
Maintainer Duy Nghia Pham <nghiapham@yandex.com>
Repository CRAN
Date/Publication 2022-12-18 11:10:02 UTC

R topics documented:

mbRes-package ... 2
beliaeff2002 .. 3
blaise2002 ... 3
cliff ... 4
compare .. 5
mbRes-package

mbRes: Exploration of Multiple Biomarker Responses using Effect Size

Description

Summarize multiple biomarker responses of aquatic organisms to contaminants using Cliff’s delta, as described in Pham & Sokolova (2022) doi:10.1002/ieam.4676.

Guidelines

mbr and visual are the main functions to compute and visualize Cliff’s delta and S-value which are results of cliff and resampling. setpop, simul, and plotsam simulate and visualize a hypothetical dataset. compare compares the results of Cliff’s delta and two other integrated indices published earlier (i.e., RSI and IBR, see blaise2002 and beliaeff2002). The others (ggheat and ggdot) are helper functions and are not meant to be called directly by users.

Updates

mbr.cliff and mbr.glass simply compute and visualize Cliff’s delta and Glass’s delta.

Copyright

mbRes: Exploration of Multiple Biomarker Responses using Effect Size.
Copyright (C) 2021-2022 Duy Nghia Pham & Inna M. Sokolova

mbRes is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

mbRes is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with mbRes. If not, see https://www.gnu.org/licenses/.
beliaeff2002

Compute Integrated Biomarker Index

Author(s)
Duy Nghia Pham & Inna M. Sokolova

Description

beliaeff2002 calculates IBR in the hypothetical case study. This is not meant to be called directly.

Usage

beliaeff2002(sam_mean)

Arguments

* sam_mean a data frame, the third output of simul.

Value

beliaeff2002 returns a data frame of IBR.

References

blaise2002

Compute Rank Sum Biomarker Index

Description

blaise2002 calculates RSI in the hypothetical case study. This is not meant to be called directly.

Usage

blaise2002(sam, sam_mean)

Arguments

* sam a data frame, the first output of simul.
* sam_mean a data frame, the third output of simul.
cliff

Value

blaise2002 returns a data frame of RSI.

References

cliff

Compute Effect Size

Description

cliff calculates Cliff’s delta statistic using the rank sum method.

Usage

cliff(v1, v0)

Arguments

v1 a vector, biomarker values from the treatment group.
v0 a vector, biomarker values from the control group.

Value

cliff returns a numeric that is the Cliff’s delta of the treatment group.

References

See Also

CalcA1.
compare

Examples

```r
set.seed(1)
setting <- setpop()
temp <- simul(setting$pop_mean)
cliff(subset(temp$sam, Site == "S1", Bmk1, drop = TRUE),
      subset(temp$sam, Site == "S0", Bmk1, drop = TRUE))
```

Description

`compare` calculates RSI assigned values, IBR translated scores, and Cliff’s delta in the hypothetical case study.

Usage

```r
compare(sam, sam_mean)
```

Arguments

- `sam`: a data frame, the first output of `simul`.
- `sam_mean`: a data frame, the third output of `simul`.

Value

`compare` returns a list of length 5:

- `blaise`: RSI assigned values and final RSI.
- `beliaeff`: IBR translated scores and final IBR.
- `pham`: Cliff’s delta and the average of absolute Cliff’s delta.
- `fig1`: ggplot object of comparisons among RSI assigned values, IBR translated scores, and Cliff’s delta.
- `fig2`: ggplot object of comparison among RSI, IBR, and the average of absolute Cliff’s delta.

References

Examples

```r
cat.seed(1)
setting <- setpop()
temp <- simul(setting$pop_mean)
compare(temp$sam, temp$sam_mean)
#might take more than 5s in some machines
```

ggdot
Make Dot Plot

Description

`ggdot` creates dot plot of the average of absolute Cliff’s delta. This is not meant to be called directly.

Usage

```r
ggdot(dat, hax, vax)
```

Arguments

- `dat`: a data frame with at least two columns.
- `hax`: a character, name of the column to be used as the horizontal axis.
- `vax`: a character, name of the column to be used as the vertical axis.

Value

`ggdot` returns a ggplot object.

ggheat
Make Heatmap

Description

`ggheat` creates heatmaps of the Cliff’s delta and S-value. This is not meant to be called directly.
Usage

```r
ggheat(
  dat,
  hax,
  vax,
  cell,
  nm,
  lim,
  lo,
  hi,
  diverging = FALSE,
  env = parent.frame()
)
```

Arguments

- `dat` a data frame with at least three columns.
- `hax` a character, name of the column to be used as the horizontal axis.
- `vax` a character, name of the column to be used as the vertical axis.
- `cell` a character, name of the column to be used as the cells.
- `nm` a character, name of the heatmap.
- `lim` a numeric vector, limits of the color scale.
- `lo` a character, color of the color scale low end.
- `hi` a character, color of the color scale high end.
- `diverging` a logical, whether to use diverging color gradient.
- `env` an environment, to access outer scope variables.

Value

`ggheat` returns a ggplot object.

mbr

Compute Cliff’s delta and S-value

Description

`mbr` summarizes Cliff’s delta and S-value for multiple groups and multiple biomarkers.

Usage

`mbr(df)`
Arguments

df a data frame with the name of experimental groups or biomonitoring sites as the first column and the measurement of biomarkers as the remaining columns.

Details

The header of the first column can be any character, for example, ‘group’ or ‘site’. The first name appearing in the first column will determine the control group or the reference site. The other names will be treatment groups or test sites. The header of the remaining columns will define the list of biomarkers.

Value

mbr returns a list of length 3:

mess a list of length 3 confirms the information about df.
es a data frame with 9 columns:
test_site treatment groups or test sites.
ref_site control group or reference site.
t_size the sample size of treatment group or test sites.
r_size the sample size of control group or reference site.
biomarker individual biomarker.
delta the Cliff’s delta of treatment group or reference site.
delta.abs the absolute Cliff’s delta.
pval the P-Value.
sval the surprisal or S-Value.
idx a data frame summarizes delta.abs and their average.

Examples

set.seed(1)
setting <- setpop()
temp <- simul(setting$pop_mean)
mbr(temp$sam)
#might take more than 5s in some machines
mbr.cliff

Compute Cliff’s delta simplified

Description

mbr.cliff summarizes Cliff’s delta for multiple groups and multiple biomarkers.

Usage

```r
mbr.cliff(df)
```

Arguments

- `df`: a data frame with the name of experimental groups or biomonitoring sites as the first column and the measurement of biomarkers as the remaining columns.

Examples

```r
set.seed(1)
setting <- setpop()
temp <- simul(setting$pop_mean)
mbr.cliff(temp$sam)
#might take more than 5s in some machines
```

mbr.glass

Compute Glass’s delta simplified

Description

mbr.glass summarizes Glass’s delta for multiple groups and multiple biomarkers.

Usage

```r
mbr.glass(df)
```

Arguments

- `df`: a data frame with the name of experimental groups or biomonitoring sites as the first column and the measurement of biomarkers as the remaining columns.
Examples

```r
set.seed(1)
setting <- setpop()
temp <- simul(setting$pop_mean)
mbr.glass(temp$sam)
# might take more than 5s in some machines
```

plotsam

Visualize Hypothetical Samples

Description

plotsam plots the sample dataset of biomarker responses. This is used for the hypothetical case study.

Usage

```r
plotsam(pop_mean_long, pop_profile, sam_long)
```

Arguments

- `pop_mean_long`: a data frame, the second output of `setpop`.
- `pop_profile`: a data frame, the third output of `setpop`.
- `sam_long`: a data frame, the second output of `simul`.

Value

plotsam returns a ggplot object.

Examples

```r
set.seed(1)
setting <- setpop()
temp <- simul(setting$pop_mean)
plotsam(setting$pop_mean_long, setting$pop_profile, temp$sam_long)
```
Description

resampling performs randomization test to calculate P-value and S-value.

Usage

resampling(v1, v0, nrand = 1999, seed = 1)

Arguments

v1 a vector, biomarker values from the treatment group.
v0 a vector, biomarker values from the control group.
nrand an integer, the number of randomization samples. The default value is 1999.
seed an integer, the seed for random number generation. Setting a seed ensures the reproducibility of the result. See set.seed for more details.

Value

resampling returns a one-row data frame with 3 numerics:

delta the Cliff’s delta of the treatment group.
pval the observed P-value p under the null hypothesis.
sval the S-value s calculated from P-value p.

References

See Also

A1.
Examples

```r
set.seed(1)
setting <- setpop()
temp <- simul(setting$pop_mean)
resampling(subset(temp$sam, Site == "S1", Bmk1, drop = TRUE),
subset(temp$sam, Site == "S0", Bmk1, drop = TRUE))
```

setpop

Define Hypothetical Populations

Description

setpop sets the true means of biomarker responses in populations. This is used for the hypothetical case study.

Usage

```r
setpop()
```

Value

setpop returns a list of length 3:

- `pop_mean` true means of biomarker responses in populations.
- `pop_mean_long` true means of biomarker responses in long format.
- `pop_profile` profile of biomarkers.

simul

Generate Hypothetical Samples

Description

simul yields a sample dataset of biomarker responses. This is used for the hypothetical case study.

Usage

```r
simul(pop_mean, size = 75)
```

Arguments

- `pop_mean` a data frame, the first output of setpop.
- `size` an integer, the sample size.
Value

simul returns a list of length 3:

- `sam`: sample dataset.
- `sam_long`: sample dataset in long format.
- `sam_mean`: sample means of biomarker responses.

visual: Visualize Cliff’s delta and S-value

Description

visual plots Cliff’s delta and S-value for multiple groups and multiple biomarkers.

Usage

visual(rs, rotate = FALSE, display = TRUE)

Arguments

- `rs`: a list, output of `mbr`.
- `rotate`: a logical, whether to rotate the biomarker labels in figures.
- `display`: a logical, whether to display cell values in heatmaps.

Value

visual returns a list of ggplot objects:

- `fig.delta`: heatmap of Cliff’s delta.
- `fig.sval`: heatmap of S-value.
- `fig.avg`: dot plot of the average of absolute Cliff’s delta.
- `mbr_fig`: combined heatmaps of Cliff’s delta and S-value.

Examples

```r
set.seed(1)
setting <- setpop()
temp <- simul(setting$pop_mean)
mbr_result <- mbr(temp$sam)
visual(mbr_result)
# might take more than 5s in some machines
```
Index

A1, 11

beliaeff2002, 2, 3
blaise2002, 2, 3

CalcA1, 4
cliff, 2, 4
cmpare, 2, 5

ggdot, 2, 6
ggheat, 2, 6

mbr, 2, 7, 13
mbr.clliff, 2, 9
mbr.glass, 2, 9
mbRes-package, 2

plotsam, 2, 10

resampling, 2, 11

set.seed, 11
setpop, 2, 10, 12
simul, 2, 3, 5, 10, 12

visual, 2, 13