Package ‘mbclusterwise’

November 22, 2016

Type Package
Title Clusterwise Multiblock Analyses
Version 1.0
Date 2016-11-22
Author Stephanie Bougeard
Maintainer Stephanie Bougeard <stephanie.bougeard@anses.fr>
Description Perform clusterwise multiblock analyses (clusterwise multiblock Partial Least Squares, clusterwise multiblock Redundancy Analysis or a regularized method between the two latter ones) associated with a F-fold cross-validation procedure to select the optimal number of clusters and dimensions.
License GPL (>= 2.0)
Depends ade4, doParallel, foreach, kknn, parallel
NeedsCompilation no
Repository CRAN
Date/Publication 2016-11-22 17:08:03

R topics documented:

 mbclusterwise-package .. 2
cw.multiblock .. 3
cw.predict ... 5
cw.tenfold ... 6
mbpcaiv.fast .. 8
mbpls.fast ... 10
mbregular ... 11
simdata.red ... 12

Index 14
Description

Perform clusterwise multiblock analyses (clusterwise multiblock Partial Least Squares, clusterwise multiblock Redundancy Analysis or a regularized method between the two latter ones) associated with a F-fold cross-validation procedure to select the optimal number of clusters and dimensions.

Details

The DESCRIPTION file:

Package: mbclusterwise
Type: Package
Title: Clusterwise Multiblock Analyses
Version: 1.0
Date: 2016-11-22
Author: Stephanie Bougeard
Maintainer: Stephanie Bougeard <stephanie.bougeard@anses.fr>
Description: Perform clusterwise multiblock analyses (clusterwise multiblock Partial Least Squares, clusterwise multiblock Redundancy Analysis or a regularized method between the two latter ones) associated with a F-fold cross-validation procedure to select the optimal number of clusters and dimensions.
License: GPL(>=2.0)
Depends: ade4, doParallel, foreach, kknn, parallel

Index of help topics:

cw_multiblock Clusterwise multiblock analyses
cw_predict Prediction procedure for clusterwise multiblock analyses
cw_tenfold F-Fold cross-validation for clusterwise multiblock analyses
mbclusterwise-package Clusterwise Multiblock Analyses
mbpcaiv.fast Multiblock principal component analysis with instrumental variables (also called multiblock Redundancy Analysis)
mbpls.fast Multiblock partial least squares
mbregular Regularized multiblock regression
simdata.red Simulated toy data with two groups to test the mbclusterwise package

Author(s)

Stephanie Bougeard
Maintainer: Stephanie Bougeard <stephanie.bougeard@anses.fr>
References
Bougeard, S., Abdi, H., Saporta, G., Niang, N., Submitted, Clusterwise analysis for multiblock component methods.

See Also
adeT

Examples
data(simdata.red)
Data.X <- simdata.red[,c(1:10, 21:30), 1:10]
Data.Y <- simdata.red[,c(1:10, 21:30), 11:13]
Note that the options (INIT=2) and (parallel.level = "low") are chosen to quickly
illustrate the function.
For real data, instead choose (INIT=20) to avoid local optima and (parallel.level = "high")
to improve the computing speed.
res.cw <- cw.multiblock(Y = Data.Y, X = Data.X, blo = c(5, 5), option = "none", G = 2, H = 1,
INIT = 2, method = "mbpls", Gamma = NULL, parallel.level = "low")

Description
Function to perform a clusterwise multiblock analyses (clusterwise multiblock Partial Least Squares, clusterwise multiblock Redundancy Analysis or clusterwise regularized multiblock regression) of several explanatory blocks \((X_1, \ldots, X_K)\) to explain a dependent dataset \(Y\).

Usage
cw.multiblock(Y, X, blo, option = c("none", "uniform"), G, H, INIT = 20,
method = c("mbpls", "mbpcaiv", "mbregular"), Gamma = NULL,
parallel.level = c("high", "low"))

Arguments
Y a matrix or data frame containing the dependent variable(s)
X a matrix or data frame containing the explanatory variables
blo a vector of the numbers of variables in each explanatory dataset
option an option for the block weighting (by default, the first option is chosen):
'none' the block weight is equal to the block inertia
'uniform' the block weight is equal to \(1/K\) for \((X_1, \ldots, X_K)\) and to 1 for \(X\) and \(Y\)
G an integer giving the expected number of clusters
H an integer giving the expected number of dimensions of the component-based model
INIT

an integer giving the number of initializations required for the clusterwise analysis (20 by default)

method

an option for the multiblock method to be applied (by default, the first option is chosen):
’mbpls’ multiblock Partial Least Squares is applied
’mbpcaiv’ multiblock Redundancy Analysis is applied
’mbregular’ multiblock regularized regression is applied

Gamma

a numeric value of the regularization parameter for the multiblock regularized regression comprised between 0 and 1 (NULL by default). The value (Gamma=0) leads to multiblock Redundancy Analysis and (Gamma=1) to multiblock PLS

parallel.level

Level of parallel computing, i.e. initializations are carried out simultaneously (high by default)
‘high’ includes all the processing units of your computer
‘low’ includes only two processing units of your computer

Value

A list containing the following components is returned:

call

the matching call

error

a vector containing the value of the criterion to be minimized (overall prediction error) ; this error is performed on the centered and scaled data

beta.cr

a list of array that contain the intercept and the regression coefficients associated with the centered and scaled data for each of the G clusters

beta.raw

a list of array that contain the intercept and the regression coefficients associated with the raw data for each of the G clusters

hopt

the real number of dimensions of the component-based model (hopt is sometimes lower than the expected h)

Ypred.cr

a list of matrices that contain the predicted dependent values associated with the centered and scaled data for each of the G clusters

Ypred.raw

a list of matrices that contain the predicted dependent values associated with the raw data for each of the G clusters

cluster

a vector containing the observation assignation to the G expected clusters (when $G>1$ only)

Author(s)

Stephanie Bougeard (<stephanie.bougeard@anses.fr>)

References

Bougeard, S., Abdi, H., Saporta, G., Niang, N., Submitted, Clusterwise analysis for multiblock component methods.

See Also

cw.tenfold, cw.predict
Examples

data(simdata.red)
Data.X <- simdata.red[c(1:10, 21:30), 1:10]
Data.Y <- simdata.red[c(1:10, 21:30), 11:13]
Note that the options (INIT=2) and (parallel.level = "low") are chosen to quickly
illustrate the function.
For real data, instead choose (INIT=20) to avoid local optima and (parallel.level = "high")
to improve the computing speed.
res.cw <- cw.multiblock(Y = Data.Y, X = Data.X, blo = c(5, 5), option = "none", G = 2,
H = 1, INIT = 2, method = "mbpcaiv", Gamma = NULL, parallel.level = "low")

cw.predict
Prediction procedure for clusterwise multiblock analyses

Description

Function to perform the prediction of new observations by means of clusterwise multiblock analysis

Usage

cw.predict(Xnew, res.cw)

Arguments

- **Xnew**: a data frame containing new observation values for the explanatory variables
- **res.cw**: a list of results created by the function `cw.multiblock`

Value

A list containing the following components is returned:

- **clusternew**: a vector containing the new observation assignation to the \(G\) expected clusters (when \(G>1\) only)
- **Ypred.cr**: a matrix that contain the predicted dependent values associated with the centered and scaled data for each of the \(G\) clusters
- **Ypred.raw**: a matrix that contain the predicted dependent values associated with the raw data for each of the \(G\) clusters

Author(s)

Stephanie Bougeard (<stephanie.bougeard@anses.fr>)

References

Bougeard, S., Abdi, H., Saporta, G., Niang, N., Submitted, Clusterwise analysis for multiblock component methods.
See Also
cw.multiblock, cw.tenfold

Examples

data(simdata.red)
Data.X <- simdata.red[c(1:10, 21:30), 1:10]
Data.Y <- simdata.red[c(1:10, 21:30), 11:13]
Data.X.test <- simdata.red[c(16:20, 36:40), 1:10]
Note that the options (INIT=2) and (parallel.level = "low") are chosen to quickly
illustrate the function.
For real data, instead choose (INIT=20) to avoid local optima and (parallel.level = "high")
to improve the computing speed.
res.cw <- cw.multiblock(Y = Data.Y, X = Data.X, blo = c(5, 5), option = "none", G = 2,
 H = 1, INIT = 2, method = "mbpls", Gamma = NULL, parallel.level = "low")
rescw.pred <- cw.predict(Data.X.test, res.cw)

F-Fold cross-validation for clusterwise multiblock analyses

Description
Function to perform a F-fold cross-validation applied to clusterwise multiblock analyses. This
function is usually applied to various numbers of clusters and of dimensions to select their optimal
values.

Usage

```r
cw.tenfold(Y, X, blo, option = c("none", "uniform"), G, H, FOLD = 10, INIT = 20,
            method = c("mbpls", "mbpcaiv", "mbregular"), Gamma = NULL,
            parallel.level = c("high", "low"))
```

Arguments

- **Y**: a matrix or data frame containing the dependent variable(s)
- **X**: a matrix or data frame containing the explanatory variables
- **blo**: vector of the numbers of variables in each explanatory dataset
- **option**: an option for the block weighting (by default, the first option is chosen):
 - 'none' the block weight is equal to the block inertia
 - 'uniform' the block weight is equal to 1/K for (X₁,...,X_K) and to 1 for X and Y
- **G**: an integer giving the number of clusters
- **H**: an integer giving the number of dimensions of the component-based model
- **FOLD**: an integer giving the number of folds of the F-Fold cross-validation procedure
 comprised between 2 and 10 (10 by default)
INIT an integer giving the number of initializations required for the clusterwise analysis (20 by default)

method an option for the multiblock method to be applied (by default, the first option is chosen):
- `mbpls` multiblock Partial Least Squares is applied
- `mbpcaiv` multiblock Redundancy Analysis is applied
- `mbregular` multiblock regularized regression is applied

Gamma a numeric value of the regularization parameter for the multiblock regularized regression comprised between 0 and 1 (NULL by default). The value (Gamma=0) leads to multiblock Redundancy Analysis and (Gamma=1) to multiblock PLS

parallel.level Level of parallel computing, i.e. initializations are carried out simultaneously
- `high` includes all the processing units of your computer
- `low` includes only two processing units of your computer

Value

A list containing the following components is returned:

- call the matching call
- sqrmse.cal the squared Root Mean Squared Error from the F calibration datasets
- sqrmse.val the squared Root Mean Squared Error from the F prediction datasets

Author(s)

Stephanie Bougeard (<stephanie.bougeard@anses.fr>)

References

Bougeard, S., Abdi, H., Saporta, G., Niang, N., Submitted, Clusterwise analysis for multiblock component methods.

See Also

cw.multiblock, cw.predict

Examples

data(simdata.red)
Data.X <- simdata.red[c(1:8, 21:28), 1:10]
Data.Y <- simdata.red[c(1:8, 21:28), 11:13]
res1 <- list()
res2 <- list()

Note that the options (INIT=2) and (parallel.level = "low") are chosen to quickly
illustrate the function.
For real data, instead choose (INIT=20) to avoid local optima and (parallel.level = "high")
to improve the computing speed.
for (H in c(1:2)){
 print(paste("H=", H, sep="\""))
 res1[[H]] <- cw.tenfold(Y = Data.Y, X = Data.X, blo = c(5, 5), option = "none", G = 1, H, FOLD = 2, INIT = 2, method = "mbpls", Gamma = NULL, parallel.level = "low")
 res2[[H]] <- cw.tenfold(Y = Data.Y, X = Data.X, blo = c(5, 5), option = "none", G = 2, H, FOLD = 2, INIT = 2, method = "mbpls", Gamma = NULL, parallel.level = "low")
}

res1.cal <- unlist(lapply(1:2, function(x) mean(sqrt(res1[[x]]$sqrmsescal), na.rm=TRUE)))
res1.val <- unlist(lapply(1:2, function(x) mean(sqrt(res1[[x]]$sqrmsesval), na.rm=TRUE)))
res2.cal <- unlist(lapply(1:2, function(x) mean(sqrt(res2[[x]]$sqrmsescal), na.rm=TRUE)))
res2.val <- unlist(lapply(1:2, function(x) mean(sqrt(res2[[x]]$sqrmsesval), na.rm=TRUE)))

rmse.cal <- rbind(res1.cal, res2.cal)
rmse.val <- rbind(res1.val, res2.val)
rownames(rmse.cal) <- rownames(rmse.val) <- paste("G", 1:2, sep = "\"")
colnames(rmse.cal) <- colnames(rmse.val) <- paste("H", 1:2, sep = "\"")

par(mfrow=c(1,2))
matplot(t(rmse.cal), type = "o", ylab = "RMSE of calibration", xlab = "Model dimension (H)", main = "Calibration", col = c("steelblue", "darkorange"), pch = c(0, 5), lwd = c(3, 3))
legend("center", inset = .05, legend = rownames(rmse.cal), pch = c(0, 5), lwd = c(3, 3), col = c("steelblue", "darkorange"), horiz = TRUE, title = "Cluster number (G)")
matplot(t(rmse.val), type = "o", ylab = "RMSE of prediction", xlab = "Model dimension (H)", main = "Prediction", col = c("steelblue", "darkorange"), pch = c(0, 5), lwd = c(3, 3))
legend("center", inset = .05, legend = rownames(rmse.val), pch = c(0, 5), lwd = c(3, 3), col = c("steelblue", "darkorange"), horiz = TRUE, title = "Cluster number (G)"

mbpcaiv.fast

Multiblock principal component analysis with instrumental variables
(also called multiblock Redundancy Analysis)

Description

Function to perform a multiblock Redundancy Analysis of several explanatory blocks \((X_1, \ldots, X_K) \),
defined as an object of class ktab (from ade4), to explain a dependent dataset \(Y \), defined as an object of class dudi (from ade4). This function is based on the same code and gives the same results
as the mbpcaiv function from the ade4 package with additional ones developed for the clusterwise procedure.

Usage

mbpcaiv.fast(dudiY, ktabX, scale = FALSE, option = c("none", "uniform"), H)

Arguments

dudiY an object of class dudi (from ade4) containing the dependent variable(s)
ktabX an object of class ktab (from ade4) containing the blocks of explanatory variables
scale a logical value indicating whether the explanatory variables should be standardized

option an option for the block weighting (by default, the first option is chosen):
 'none' the block weight is equal to the block inertia
 'uniform' the block weight is equal to $1/K$ for (X_1, \ldots, X_K) and to 1 for X and Y

H an integer giving the number of dimensions

Value
A list containing the following components is returned:

crit.reg the regression error
1X a matrix of the global components associated with the whole explanatory dataset
 (scores of the individuals)
XYcoef a list of matrices of the regression coefficients of the whole explanatory dataset
 onto the dependent dataset
intercept a list of matrices of the regression intercepts of the whole explanatory dataset
 onto the dependent dataset
fitted a list of matrices which contain the predicted dependent values

Author(s)
Stephanie Bougeard (<stephanie.bougeard@anses.fr>)

References
 to multiblock redundancy analysis. A continuum approach. Informatica, 22(1), 11-26

See Also
 cw.multiblock, cw.tenfold, cw.predict.mbcpaiv

Examples
 data(simdata.red)
 Data.X <- simdata.red[c(1:15, 21:35), 1:10]
 Data.Y <- simdata.red[c(1:15, 21:35), 11:13]
 library(ade4)
 dudiy <- dudi.pca(df = Data.Y, center = FALSE, scale = FALSE, scannf = FALSE)
 ktabx <- ktab.data.frame(df = data.frame(Data.X), blocks = c(5,5), tabnames = paste("Tab", c(1:2), sep = "."))
 res <- mbpcaiv.fast(dudiy, ktabx, scale = FALSE, option = "none", H = 2)
mbpls.fast

Multiblock partial least squares

Description

Function to perform a multiblock Partial Least Squares (PLS) of several explanatory blocks \((X_1, \ldots, X_K)\) defined as an object of class `ktab` (from ade4), to explain a dependent dataset \(Y\) defined as an object of class `dudi` (from ade4). This function is based on the same code and gives the same results as the `mbpls` function from the ade4 package with additional ones developed for the clusterwise procedure.

Usage

```r
mbpls.fast(dudiY, ktabX, scale = FALSE, option = c('none', 'uniform'), H)
```

Arguments

- `dudiY` an object of class `dudi` (from ade4) containing the dependent variable(s)
- `ktabX` an object of class `ktab` (from ade4) containing the blocks of explanatory variables
- `scale` a logical value indicating whether the explanatory variables should be standardized
- `option` an option for the block weighting (by default, the first option is chosen):
 - 'none' the block weight is equal to the block inertia
 - 'uniform' the block weight is equal to \(1/K\) for \((X_1, \ldots, X_K)\) and to 1 for \(X\) and \(Y\)
- `H` an integer giving the number of dimensions

Value

A list containing the following components is returned:

- `crit.reg` the regression error
- `lx` a matrix of the global components associated with the whole explanatory dataset (scores of the individuals)
- `XYcoef` a list of matrices of the regression coefficients of the whole explanatory dataset onto the dependent dataset
- `intercept` a list of matrices of the regression intercepts of the whole explanatory dataset onto the dependent dataset
- `fitted` a list of matrices which contain the predicted dependent values

Author(s)

Stephanie Bougeard (<stephanie.bougeard@anses.fr>)
mbregular

References

See Also
cw.multiblock, cw.tenfold, cw.predict, mbpls

Examples

data(simdata.red)
Data.X <- simdata.red[c(1:15, 21:35), 1:10]
Data.Y <- simdata.red[c(1:15, 21:35), 11:13]
library(ade4)
dudiy <- dudi.pca(df = Data.Y, center = FALSE, scale = FALSE, scannf = FALSE)
ktabx <- ktab.data.frame(df = data.frame(Data.X), blocks = c(5,5),
 tabnames = paste("Tab", c(1:2), sep = ":"))
res <- mbpls.fast(dudiy, ktabx, scale = FALSE, option = "none", H = 2)

mbregular

Regularized multiblock regression

Description

Function to perform the regularized multiblock regression which gives results comprised the ones from multiblock Redundancy Analysis (\(\gamma P\)) and multiblock PLS (\(\gamma 1\)). This method is applied to several explanatory blocks \((X_1, \ldots, X_K)\) defined as an object of class ktab (from ade4), to explain a dependent dataset \(Y\) defined as an object of class dudi (from ade4).

Usage

mbregular(dudiY, ktabX, scale = FALSE, option = c("none", "uniform"), H, gamma)

Arguments

dudiY an object of class dudi (from ade4) containing the dependent variable(s)

ktabX an object of class ktab (from ade4) containing the blocks of explanatory variables

scale a logical value indicating whether the explanatory variables should be standardized

option an option for the block weighting (by default, the first option is chosen):
 ‘none’ the block weight is equal to the block inertia
 ‘uniform’ the block weight is equal to \(1/K\) for \((X_1, \ldots, X_K)\) and to 1 for \(X\) and \(Y\)

H an integer giving the number of dimensions

gamma a numeric value of the regularization parameter comprised between 0 and 1. The value (gamma=0) leads to multiblock Redundancy Analysis and (gamma=1) to multiblock PLS
Value

A list containing the following components is returned:

- `crit.reg`: the regression error
- `lx`: a matrix of the global components associated with the whole explanatory dataset (scores of the individuals)
- `xycoef`: a list of matrices of the regression coefficients of the whole explanatory dataset onto the dependent dataset
- `intercept`: a list of matrices of the regression intercepts of the whole explanatory dataset onto the dependent dataset
- `fitted`: a list of matrices which contain the predicted dependent values

Author(s)

Stephanie Bougeard (<stephanie.bougeard@anses.fr>)

References

See Also

cw.multiblock, cw.tenfold, cw.predict.mbcaiv, mbpls

Examples

data(simdata.red)
Data.X <- simdata.red[c(1:15, 21:35), 1:10]
Data.Y <- simdata.red[c(1:15, 21:35), 11:13]
library(ade4)
dudiy <- dudi.pca(df = Data.Y, center = FALSE, scale = FALSE, scannf = FALSE)
dt <- ktab.data.frame(df = data.frame(Data.X), blocks = c(5,5),
tabnames = paste("Tab", c(1:2), sep = "."))
res <- mbregular(dudiy, dt, scale = FALSE, option = "none", H = 2, gamma = 0.8)

Description

This data frame is a toy example with a limited number of observations extracted from the data simdata given in the plspm package. These are simulated data organized in two clusters showing two different local regression models.

Usage

data(simdata.red)
Format

A data frame of simulated data with 40 observations on the following 14 variables.

- `mv1` first variable of the block Price Fairness (X_1)
- `mv2` second variable of the block Price Fairness (X_1)
- `mv3` third variable of the block Price Fairness (X_1)
- `mv4` fourth variable of the block Price Fairness (X_1)
- `mv5` fifth variable of the block Price Fairness (X_1)
- `mv6` first variable of the block Quality (X_2)
- `mv7` second variable of the block Quality (X_2)
- `mv8` third variable of the block Quality (X_2)
- `mv9` fourth variable of the block Quality (X_2)
- `mv10` fifth variable of the block Quality (X_2)
- `mv11` first variable of the block Customer Satisfaction (Y)
- `mv12` second variable of the block Customer Satisfaction (Y)
- `mv13` third variable of the block Customer Satisfaction (Y)

References

Examples

data(simdata.red)
simdata.red
Data.X <- simdata.red[c(1:15, 21:35), 1:10]
Data.Y <- simdata.red[c(1:15, 21:35), 11:13]
Index

*Topic cluster
 cw.multiblock, 3
 cw.predict, 5
 cw.tenfold, 6
 mbclusterwise-package, 2
 simdata.red, 12

*Topic datasets
 simdata.red, 12

*Topic multivariate
 cw.multiblock, 3
 cw.predict, 5
 cw.tenfold, 6
 mbclusterwise-package, 2
 mbpcaiv.fast, 8
 mbpls.fast, 10
 mbregular, 11
 simdata.red, 12

ade4, 3

cw.multiblock, 3, 5–7, 9, 11, 12
 cw.predict, 4, 5, 7, 9, 11, 12
 cw.tenfold, 4, 6, 6, 9, 11, 12

mbclusterwise(mbclusterwise-package), 2
 mbclusterwise-package, 2
 mbpcaiv, 9, 12
 mbpcaiv.fast, 8
 mbpls, 11, 12
 mbpls.fast, 10
 mbregular, 11

 simdata.red, 12