Package ‘mbsts’

January 9, 2020

Type Package
Title Multivariate Bayesian Structural Time Series
Version 1.0
Author Jinwen Qiu <qjwsnow_ctw@hotmail.com>
Maintainer Jinwen Qiu <qjwsnow_ctw@hotmail.com>
License LGPL-2.1

R topics documented:

exdata ... 1
mbsts ... 2
mbsts.forecast .. 5
tsc.setting .. 7

Index

exdata Example Data

Description

Data generated by dynamic linear model including 2 target series (one with linear trend and seasonality; another with generalized trend and cycle) and 16 contemporaneous predictors.
Usage

data(exdata)

Format

A data frame with 500 observations on the following 18 variables. First two variables are 2 target series. The next 8 variables are candidate predictors for 1st target series, while the rest of them are candidate predictors for 2nd target series.

Source

Examples

data(exdata)
ts.plot(exdata[,1:2])

Description

Uses MCMC to sample from the posterior distribution of a Multivariate Bayesian structural time series model. This function can be used either with or without contemporaneous predictor variables (in a time series regression).

If predictor variables are present, the regression coefficients are fixed. The predictors and response in the formula are contemporaneous, so if you want lags and differences you need to put them in the predictor matrix yourself. If no predictor variables are used, then the model is an ordinary state space time series model.

The model allows for several useful extensions beyond standard Bayesian dynamic linear models. A spike-and-slab prior is used for the (static) regression component of models that include predictor variables. This is especially useful with large numbers of regressor series.

The model in state space form can be written as:

\[y_t = \mu_t + \tau_t + \omega_t + \beta \ast X_t + \text{rnorm}(0, \Sigma_t) \]

where \(\mu, \tau \) and \(\omega \) denotes trend, seasonal and cycle component, respectively.

Usage

mbsts(Y,
X.star = NULL,
STmodel = NULL,
ki = NULL,
pii = NULL,
b = NULL,
mbsts

kapp = 0.1,
R2 = 0.8,
v0 = NULL,
v = 0.01,
ss = 0.01,
mc = 500,
burn = 50)

Arguments

Y An n by m matrix contains multiple target series. The n and m is the number of observations and target series, respectively.

X.star An n by K matrix contains all candidate predictor series for each target series. The K=∑ kᵢ is the number of all candidate predictors for all target series. The first k₁ variables make up the set of candidate predictors for 1st target series, and the next k₂ variables are candidate predictors for 2nd target series, etc. One variable can appear in the X.star several times, since different target series can contain same candidate predictors.

STmodel A state space model of SSmodel object returned by tsc.setting.

ki A vector of integer values, denoting the location of last candidate predictor for each target series, such as c(k₁, k₁ + k₂, ..., K)

pii A column matrix with length equal to K, describing the prior inclusion probability of each candidate predictor.

b A column matrix, describing the prior means for regression coefficients.

kapp A scalar value, describing the number of observations worth of weight on the prior mean vector.

R2 A numerical value from 0 to 1, describing the expected percent of variation of Y to be explained by model.

v0 A numerical value, describing the degree of freedom for prior Inverse Wishart distribution (Σᵣ).

v A numerical value, describing the prior sample size of Inverse Gama distribution (Σₘ, Σ₉, Σ₉, Σᵦ).

ss A numerical value, describing the prior sum of squares of Inverse Gama distribution (Σₘ, Σ₉, Σ₉, Σᵦ).

mc A positive integer giving the desired number of MCMC draws.

burn A positive integer giving the initial number of MCMC draws to be discarded.

Details

Value

An object of class mbsts which is a list with the following components:
Ind One K by mc-burn matrix, containing MCMC draws of indicator variable (gama). If the X.star is null, it will not be returned.

beta.hat One K by mc-burn matrix, containing MCMC draws of regression coefficients (beta). If the X.star is null, it will not be returned.

B.hat This is beta.hat in matrix form. If the X.star is null, it will not be returned.

ob.sig2 An array with dimension (m*m*(mc-burn)), containing MCMC draws of variance and covariance matrix for residuals.

States An array with dimension (n*m1*(mc-burn)), containing MCMC draws of all time series components. The m1 is the number of all time series components, respectively. If the STmodel is null, it will not be returned.

st.sig2 One K by mc-burn matrix, containing MCMC draws of variance for time series components. If the STmodel is null, it will not be returned.

Author(s)

Jinwen Qiu <jqiu@pstat.ucsb.edu>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University Press.

Scott and Varian (2014) "Predicting the present with Bayesian structural time series", International Journal of Mathematical Modelling and Numerical Optimisation, 5 (1-2), 4-23.

See Also

tsc.setting

Examples

data(exdata)

#Two target series
Y<-as.matrix(exdata[,1:2])

#Sixteen candidate predictors
X.star<-as.matrix(exdata[,3:18])

#split dataset into training set and test set
n=dim(Y)[1]
ntrain=n-5
Ytrain<-Y[1:ntrain]
Xtrain<-X.star[1:ntrain,]
Ytest<-Y[(ntrain+1):n,]
Xtest<-X.star[(ntrain+1):n,]

#Specify time series components
STmodel<-tsc.setting(Ytrain, mu=c(1,1), rho=c(0.6,1), S=c(4,0),
 vrho=c(0,0.5), lambda=c(0,pi/10))

#prior parameters setting
#gama
ki<- c(8,dim(Xtrain)[2])
pii<- matrix(rep(0.5,dim(Xtrain)[2]),nrow=dim(Xtrain)[2])

#beta
b<-matrix(0,dim(Xtrain)[2])
kapp<-0.01

#v0 and V0 for obs Sigma
R2<-0.8
v0<-5

#State component Sigma
v<-0.01
ss<-0.01

#train a mbsts model
mbsts.model<-mbsts(Ytrain,Xtrain,STmodel,ki,pii,b,kapp,R2,v0,v,ss,mc=15,burn=5)

mbsts.forecast

Multi-steps ahead Forecast by Multivariate Bayesian Structural Time Series Model

Description

Generated draws from the posterior predictive distribution of a mbsts object.

Usage

`mbsts.forecast(mbsts, STmodel = NULL, newdata = NULL, steps = 1)`

Arguments

- **mbsts**: An object of class mbsts created by a call to the function mbsts.
- **STmodel**: An object of class SSModel created by a call to the function tsc.setting.
- **newdata**: a vector or matrix containing the predictor variables to use in making the prediction. This is only required if object contains a regression component.
- **steps**: An integer value, describing the number of time steps ahead to be forecasted. If it is greater than the number of new observations in the newdata, the zero values will fill in missing new observations.
mbsts.forecast

Details

Samples from the posterior distribution of a Bayesian structural time series model. This function can be used either with or without contemporaneous predictor variables (in a time series regression).

If predictor variables are present, the regression coefficients are fixed. The predictors and response in the formula are contemporaneous, so if you want lags and differences you need to put them in the predictor matrix yourself.

If no predictor variables are used, then the model is an ordinary state space time series model.

Value

An object of predicted values by mbsts which is a list with the following components:

pred.distribution
 An array of draws from the posterior predictive distribution. The first dimension in the array represents time, the second dimension denotes each target series, and the third dimension indicates each MCMC draw.

pred.mean
 A matrix giving the posterior mean of the prediction for each target series.

Author(s)

Jinwen Qiu <jqiu@pstat.ucsb.edu>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University Press.

Scott and Varian (2014) "Predicting the present with Bayesian structural time series", International Journal of Mathematical Modelling and Numerical Optimisation, 5 (1-2), 4-23.

See Also

mbsts

Examples

data(exdata)

#Two target series
Y<-as.matrix(exdata[,1:2])
#Sixteen candidate predictors
X.star<-as.matrix(exdata[,3:18])

#split dataset into training set and test set
n=dim(Y)[1]
ntrain=n-5
Ytrain<-Y[1:ntrain,]
Xtrain<-X.star[1:ntrain,]
Ytest<-Y[(ntrain+1):n,]
Xtest<-X.star[(ntrain+1):n,]

#Specify time series components
STmodel<-tsc.setting(Ytrain,mu=c(1,1),rho=c(0.6,1),s=c(4,0),
 vrho=c(0,0.5),lambda=c(0,pi/10))

#prior parameters setting
#gamma
ki<- c(8,dim(Xtrain)[2])
pii<- matrix(rep(0.5,dim(Xtrain)[2]),nrow=dim(Xtrain)[2])

#beta
b<-matrix(0,dim(Xtrain)[2])
kapp<-0.01

#v0 and V0 for obs Sigma
R2<-0.8
v0<-5

#State component Sigma
vc<-0.01
ss<-0.01

#train a mbsts model
mbsts.model<-mbsts(Ytrain,Xtrain,STmodel,ki,pii,b,kapp,R2,v0,v,ss,mc=15,burn=5)

#make a 5-steps prediction
output<-mbsts.forecast(mbsts.model,STmodel,newdata=Xtest,steps=3)
#error<-abs(output$pred.mean-Ytest)
#error

tsc.setting

Specification of time series components

Description

Specify three time series components for MBSTS model (generalized linear trend, seasonality and cycle). A generalization of the local linear trend model where the slope exhibits stationarity instead of obeying a random walk, is expressed in the form as:

\[
\mu_{t+1} = \mu_t + \delta_t + \text{rnorm}(0, \Sigma_\mu)
\]

\[
\delta_{t+1} = D + \rho(\delta_t - D) + \text{rnorm}(0, \Sigma_\delta)
\]

The seasonal model in the time domain is:

\[
\tau^{(i)}_{t+1} = - \sum_{k=0}^{S_i-2} \tau^{(i)}_{t-k} + \text{rnorm}(0, \Sigma_\tau)
\]
The cycle component is postulated as:

\[
\omega_{t+1} = \nu \varrho \cos(\lambda) \omega_t + \nu \varrho \sin(\lambda) \omega_t + \text{rnorm}(0, \Sigma_\omega)
\]

\[
\omega_{t+1} = -\nu \varrho \sin(\lambda) \omega_t + \nu \varrho \cos(\lambda) \omega_t + \text{rnorm}(0, \Sigma_\omega)
\]

Usage

```r
  tsc.setting(Y, mu = NULL, rho = NULL, S = NULL, vrho = NULL, lambda = NULL)
```

Arguments

- **Y**: The multivariate time series to be modeled, as a numeric matrix convertible to xts. This state model assumes Y contain daily data.
- **mu**: A vector of logic values, indicating whether to include a local trend for each target series.
- **rho**: A vector of numerical values, all of which are between 0 and 1, describing the learning rates at which the local trend is updated for each target series. The value 0 in jth entry indicates that jth target series does not include slope of trend.
- **S**: A vector of integer values, representing the number of seasons to be modeled for each target series. The value 0 in jth entry indicates that jth target series does not include seasonal component.
- **vrho**: A vector of numerical values between 0 and 1, describing a damping factor for each target series. The value 0 in jth entry indicates that jth target series does not include cycle component.
- **lambda**: A vector of numerical values, each of them is equal to \(2\pi/q\), describing the frequency with q being a period such that \(0 < \lambda < \pi\).

Details

The function allows users to include different combination of time series components for each target series.

Value

Returns a customizered State Space model, which is an object of class SSModel.

Author(s)

Jinwen Qiu <jqiu@pstat.ucsb.edu>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University Press.

tsc.setting

See Also

SSModel

Examples

data(exdata)
Y<-as.matrix(exdata[,1:2])
STmodel<-tsc.setting(Y,mu=c(1,1),rho=c(0.6,1),S=c(4,0),
vrho=c(0,0.5),lambda=c(0,pi/10))
Index

*Topic **datasets**
 exdata, 1
*Topic **forecast**
 mbsts.forecast, 5
*Topic **model**
 mbsts, 2
*Topic **state components**
 tsc.setting, 7

exdata, 1

mbsts, 2, 6
mbsts.forecast, 5

SSModel, 9

tsc.setting, 4, 7