Package ‘mcStats’

October 13, 2022

Title Visualize Results of Statistical Hypothesis Tests
Version 0.1.2
Maintainer Michael Czekanski <mczekanski@middlebury.edu>
Description Provides functionality to produce graphs of sampling distributions of test statistics from a variety of common statistical tests. With only a few keystrokes, the user can conduct a hypothesis test and visualize the test statistic and corresponding p-value through the shading of its sampling distribution. Initially created for statistics at Middlebury College.
Depends R (>= 3.4.0)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Imports dplyr, ggplot2, ggthemes, gridExtra, magrittr, rlang, stats, tidyr
Suggests testthat
NeedsCompilation no
Author Michael Czekanski [aut, cre], Alex Lyford [aut]
Repository CRAN
Date/Publication 2020-02-26 06:50:02 UTC

R topics documented:

- bootstrap ... 2
- hello ... 3
- labelBootResults ... 3
- labelPDFDis .. 4
- mcDChiSq ... 4
- mcDF ... 5
- mcDNorm ... 5
- mcDT ... 6
bootstrap

Description

Bootstrap using given data and statistic

Usage

bootstrap(fun, data, h0, nreps, conf.level = 0.95, verbose = 1)

Arguments

fun function to calculate on each sample. This can be a user-defined function that
takes in data as a vector and returns a statistic.
data data to use for bootstrapping. Should be a representative sample
h0 null hypothesis value
nreps number of times to bootstrap
conf.level confidence value
verbose default is 1 which will create a graph. To turn this off use verbose = 0.

Value

results from bootstrapping. A vector of length @param nreps containing each statistic calculated

Examples

x <- rnorm(100)
bootstrap(mean, x, 0.5, 1000, verbose = 0)
bootstrap(mean, x, 0.5, 1000)
Description

print "hello world!"

Usage

```r
hello()
```

Examples

```r
hello()
```

labelBootResults
Label Bootstrapped Results

Description

labels bootstrapped results. We use this to create colored histograms.

Usage

```r
labelBootResults(results, lBound, uBound)
```

Arguments

- `results`: a vector, data from bootstrapping
- `lBound`: lower bound of confidence interval
- `uBound`: upper bound of confidence interval

Value

vector of labels corresponding to result values

Examples

```r
x <- rnorm(100)
labelBootResults(x, -1, 1)
```
labelPDFDis
Label discrete PDF

Description
labels a discrete pdf

Usage
labelPDFDis(x, obsVal, expVal)

Arguments
- x
x value
- obsVal
observed event
- expVal
expected value

Value
vector of labels for x value in relation to observed event

Examples
labelPDFDis(0:10, 3, 5)

mcDChiSq
Density of Chi-Square distribution

Description
Density of Chi-Square distribution

Usage
mcDChiSq(x, degFree, ...)

Arguments
- x
x value
- degFree
degrees of freedom
- ...
optional additional parameters which are ignored

Value
density of given Chi-Square dist. at x
mcDF

Density of F-distribution

Description
Density of F-distribution

Usage
mcDF(x, degFree1, degFree2, ...)

Arguments
x x value
degFree1 degrees of freedom 1
degFree2 degrees of freedom 2
... optional additional parameters which are ignored

Value
density of given F-dist. at x

mcDNorm
dnorm but with more arguments

Description
compute density of normal distribution while allowing for more arguments which are ignored

Usage
mcDNorm(x, mean = 0, sd = 1, log = FALSE, ...)

Arguments
x x value
mean mean of normal distribution
sd std. dev. of normal distribution
log logical; if TRUE probabilities are given as log(p). See stats::dnorm
... extra parameters which are ignored

Value
density of normal distribution
mcDT

Density of t-distribution

Description

Density of t-distribution

Usage

mcDT(x, degFree, ...)

Arguments

- **x**: x value
- **degFree**: degrees of freedom
- **...**: optional additional parameters which are ignored

Value

density of given t-dist. at x

shadePDFCts

Used to shade in a PDF

Description

Returns density with extreme event region having NAs

Usage

shadePDFCts(x, fun, testStat, ...)

Arguments

- **x**: x value
- **fun**: density function to use
- **testStat**: test statistic value
- **...**: optional parameters passed to density function

Value

density if outside of extreme event region
showANOVA

Show results of ANOVA

Description

Visualization of distributional results of ANOVA. Please see aov for more information on parameters.

Usage

showANOVA(formula, data = NULL, verbose = 1, ...)

Arguments

formula formula specifying a model.
data data on which to perform ANOVA
verbose if verbose > 0 the resulting graph is printed
... Arguments passed to lm. See aov for more detail

Value

output of call to aov

Examples

showANOVA(yield ~ N + P + K, npk)

showChiSq.Test

Show Chi-Square Test

Description

show results of a chi-square test visually using chisq.test

Usage

showChiSq.Test(
 x,
y = NULL,
p = rep(1/length(x), length(x)),
simulate.p.value = FALSE,
nreps = 2000,
verbose = 1
)

Argument
- \(x\): a numeric vector or matrix. \(x\) and can also be factors.
- \(y\): a numeric vector.
- \(p\): a vector of probabilities the same length as \(x\). Used for goodness-of-fit tests. Must be a valid distribution.
- \(simulate_p_value\): a boolean, if TRUE use simulation to estimate p-value.
- \(nreps\): if \(simulate_p_value = \text{TRUE}\) number of simulations to complete.
- \(verbose\): level of visual output, 0 = silent.

Value
- results of \(\text{chisq.test}\) call.

Examples
- \(\text{showChiSq.Test}(x = c(1,2,1), y = c(1,2,2))\)

Description
- relevant parameters are passed to \(\text{mcnemar.test}\).

Usage
- \(\text{showMcNemarTest}(x, y = \text{NULL}, correct = \text{TRUE}, verbose = 1)\)

Arguments
- \(x\): two dimensional contingency table as a matrix or a factor object.
- \(y\): factor object, ignored if \(x\) is a matrix.
- \(correct\): logical indicating whether or not to perform continuity correction.
- \(verbose\): if \(verbose > 0\) the resulting graph is printed.

Value
- results of call to \(\text{mcnemar.test}\).
showMosaicPlot

Mosaic Plot

Description
Mosaic Plot

Usage

```r
showMosaicPlot(x)
```

Arguments

- `x` must be a matrix with each row and column labelled

Value
mosaic plot showing observed proportions, colored by residuals from chi-sq. test

Examples

```r
x <- matrix(runif(9,5,100), ncol = 3, dimnames = list(c("Yes1", "No1", "Maybe1"), c("Yes2", "No2", "Maybe2")))
showMosaicPlot(x)
```

showOLS

Show hypothesis tests from OLS

Description
Show hypothesis tests from OLS

Usage

```r
showOLS(formula, data, verbose = 1)
```

Arguments

- `formula` formula for regression. Passed to `lm`
- `data` data for regression. Passed to `lm`
- `verbose` if verbose > 0 the resulting graph is printed

Value
model object resulting from the regression
Examples

```r
showOLS(mpg ~ cyl + disp, mtcars)
```

Description

Show results of proportion test using `binom.test`

Usage

```r
showProp.Test(x, n, p = 0.5)
```

Arguments

- `x`: x value
- `n`: number of repetitions
- `p`: probability of success in one Bernoulli trial

Value

Output of call to `binom.test`

Examples

```r
showProp.Test(3, 10)
```

showT.Test

Description

Conduct z-test

Usage

```r
showT.Test(group1, group2 = NULL, mu = 0, paired = FALSE, verbose = 1)
```

Arguments

- `group1`: continuous data to test
- `group2`: optional; second group to include for two sample t-test
- `mu`: optional; mean to test against for one-sample t-test
- `paired`: boolean, if TRUE perform matched pairs t-test
- `verbose`: default is 1 which will create a graph. To turn this off use verbose = 0.
Value

results of call to t.test

Examples

x <- rnorm(100)
showT.Test(x, verbose = 0)
showT.Test(x)

showXtremeEventsCts Highlight extreme events

Description

Make graph highlighting events more extreme than observed sample

Usage

showXtremeEventsCts(
 testID, testStat, densFun,
 degFree = NULL, degFree1 = NULL, degFree2 = NULL, xlims,
 verbose = 1,
 ...
)

Arguments

testID name of hypothesis test
testStat test statistic
densFun function that computes appropriate density
degFree degrees of freedom when only one is needed. This gets passed into densFun
degFree1 first degrees of freedom parameter when more than one is needed
degFree2 second degrees of freedom parameter when more than one is needed
xlims x limits of the graph to be used. This is passed to ggplot
verbose if verbose > 0 the resulting graph is printed
... extra arguments passed to density function

Value

results of call testFun
showXtremeEventsDis

Show Extreme Events from a Discrete Distribution

Examples

```r
x <- rnorm(100)
showT.Test(x, verbose = 0)
showT.Test(x)
```

showXtremeEventsDis

Show Extreme Events from a Discrete Distribution

Usage

```r
showXtremeEventsDis(testID, obsVal, expVal, xVals, probFun, ...)
```

Arguments

- `testID` name of test being performed. This is used to title the graph
- `obsVal` observed x value
- `expVal` expected x value
- `xVals` domain of x (possible values)
- `probFun` probability mass function for the given distribution
- `...` addition arguments passed to `probFun`

Value

graph coloring events by how extreme they are under the null hypothesis

Examples

```r
showXtremeEventsDis("Prop. Test", 3, 5, 0:10, probFun = dbinom, size = 10, prob = 0.5)
```
Index

aov, 7
binom.test, 10
bootstrap, 2
chisq.test, 7, 8
hello, 3
labelBootResults, 3
labelPDFDis, 4
lm, 9
mcDChiSq, 4
mcDF, 5
mcDNorm, 5
mcDT, 6
mcnemar.test, 8
shadePDFCts, 6
showANOVA, 7
showChiSq.Test, 7
showMcNemarTest, 8
showMosaicPlot, 9
showOLS, 9
showProp.Test, 10
showT.Test, 10
showXtremeEventsCts, 11
showXtremeEventsDis, 12