Package ‘mcca’

February 5, 2019

Type Package

Title Multi-Category Classification Accuracy

Version 0.5.0

Author Ming Gao, Jialiang Li

Maintainer Ming Gao <gaoming@umich.edu>

Description It contains six common multi-category classification accuracy evaluation measures:
Hypervolume Under Manifold (HUM), described in
Correct Classification Percentage (CCP), Integrated Discrimination Improvement (IDI), Net Re-
classification Improvement (NRI), R-Squared Value (RSQ), described in
Polytomous Discrimination Index (PDI), described in
We described all these above measures and our mcca package in

License GPL

Encoding UTF-8

LazyData true

Imports nnet,rpart,e1071,MASS,stats,pROC,caret

URL https://github.com/gaoming96/mcca

BugReports https://github.com/gaoming96/mcca/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2019-02-05 08:40:03 UTC

R topics documented:
mcca-package ... 2
ccp ... 4
Description

Six common multi-category classification accuracy evaluation measures are included i.e., Correct Classification Percentage (CCP), Hypervolume Under Manifold (HUM), Integrated Discrimination Improvement (IDI), Net Reclassification Improvement (NRI), Polytomous Discrimination Index (PDI) and R-squared (RSQ). It allows users to fit many popular classification procedures, such as multinomial logistic regression, support vector machine, classification tree, and user computed risk values.

Details

Package: mcca
Type: Package
Version: 0.5
Date: 2019-02-04
License: GPL

Functions

ccp Calculate CCP Value
hum Calculate HUM Value
idi Calculate IDI Value
nri Calculate NRI Value
pdi Calculate PDI Value
rsq Calculate RSQ Value
pm Calculate Probability Matrix
estp Estimated Information for Paired Model Evaluation Value
ests Estimated Information for Single Model Evaluation Value
Installing and using

To install this package, make sure you are connected to the internet and issue the following command in the R prompt:

```
install.packages("mcca")
```

To load the package in R:

```
library(mcca)
```

Citation

Author(s)

Ming Gao, Jialiang Li

Maintainer: Ming Gao <gaoming@umich.edu>

References

See Also

CRAN packages HUM for HUM.

CRAN packages nnet, rpart, e1071, MASS employed in this package.
Examples

```r
rm(list=ls())
str(iris)
data <- iris[, 1:4]
label <- iris[, 5]
ccp(y = label, d = data, method = "multinom", k = 3, maxit = 1000, MaxWtss = 2000, trace=FALSE)
## [1] 0.9866667
ccp(y = label, d = data, method = "multinom", k = 3)
## [1] 0.9866667
ccp(y = label, d = data, method = "svm", k = 3)
## [1] 0.9733333
ccp(y = label, d = data, method = "svm", k = 3, kernel="sigmoid",cost=4,scale=TRUE,coef0=0.5)
## [1] 0.8333333
ccp(y = label, d = data, method = "tree", k = 3)
## [1] 0.96
p = as.numeric(label)
ccp(y = label, d = p, method = "label", k = 3)
## [1] 1
hum(y = label, d = data, method = "multinom", k = 3)
## [1] 0.9972
hum(y = label, d = data, method = "svm", k = 3)
## [1] 0.9964
hum(y = label, d = data, method = "svm", k = 3, kernel="linear", cost=4,scale=TRUE)
## [1] 0.9972
hum(y = label, d = data, method = "tree", k = 3)
## [1] 0.998
ests(y = label, d = data, acc="hum", level=0.95, method = "multinom", k = 3, trace=FALSE)
## $value
## [1] 0.9972
## $sd
## [1] 0.002051529
## $interval
## [1] 0.9935662 1.0000000
```

ccp

Calculate CCP Value

Description

compute the Correct Classification Percentage (CCP) value of two or three or four categories classifiers with an option to define the specific model or user-defined model.

Usage

```r
ccp(y, d, method="multinom", k=3, ...)
```
Arguments

y
The multinomial response vector with two, three or four categories. It can be factor or integer-valued.

d
The set of candidate markers, including one or more columns. Can be a data frame or a matrix; if the method is "label", then d should be the label vector.

method
Specifies what method is used to construct the classifier based on the marker set in d. Available option includes the following methods: "multinom": Multinomial Logistic Regression which is the default method, requiring R package nnet; "tree": Classification Tree method, requiring R package rpart; "svm": Support Vector Machine (C-classification and radial basis as default), requiring R package e1071; "lda": Linear Discriminant Analysis, requiring R package lda; "label": d is a label vector resulted from any external classification algorithm obtained by the user, should be encoded from 1; "prob": d is a probability matrix resulted from any external classification algorithm obtained by the user.

k
Number of the categories, can be 2 or 3 or 4.

... Additional arguments in the chosen method’s function.

Details

The function returns the CCP value for predictive markers based on a user-chosen machine learning method. Currently available methods include logistic regression (default), tree, lda, svm and user-computed risk values. This function is general since we can evaluate the accuracy for marker combinations resulted from complicated classification algorithms.

Value

The CCP value of the classification using a particular learning method on a set of marker(s).

Note

Users are advised to change the operating settings of various classifiers since it is well known that machine learning methods require extensive tuning. Currently only some common and intuitive options are set as default and they are by no means the optimal parameterization for a particular data analysis. Users can put machine learning methods’ parameters after tuning. A more flexible evaluation is to consider "method=label" in which case the input d should be a label vector.

Author(s)

Ming Gao: gaoming96@sjtu.edu.cn
Jialiang Li: stalj@nus.edu.sg

References

See Also
 pdi

Examples

```
rm(list=ls())
str(iris)
data <- iris[, 1:4]
label <- iris[, 5]
ccp(y = label, d = data, method = "multinom", k = 3, maxit = 1000, MaxNWts = 2000, trace=FALSE)
  ## [1] 0.9866667
ccp(y = label, d = data, method = "multinom", k = 3)
  ## [1] 0.9866667
ccp(y = label, d = data, method = "svm", k = 3)
  ## [1] 0.9733333
ccp(y = label, d = data, method = "svm", k = 3,kernel="sigmoid",cost=4,scale=TRUE,coef0=0.5)
  ## [1] 0.8333333
ccp(y = label, d = data, method = "tree", k = 3)
  ## [1] 0.96
p = as.numeric(label)
ccp(y = label, d = p, method = "label", k = 3)
  ## [1] 1
```

```
rm(list=ls())
table(mtcars$carb)
for (i in 1:length(mtcars$carb)) {
  if (mtcars$carb[i] == 3 | mtcars$carb[i] == 6 | mtcars$carb[i] == 8) {
    mtcars$carb[i] <- 9
  }
}
data <- data.matrix(mtcars[, c(1)])
mtcars$carb <- factor(mtcars$carb, labels = c(1, 2, 3, 4))
label <- as.numeric(mtcars$carb)
str(mtcars)
ccp(y = label, d = data, method = "svm", k = 4,kernel="radial",cost=1,scale=TRUE)
  ## [1] 0.3857143
```

estp

Inference for Accuracy Improvement Measures based on Bootstrap

Description

compute the bootstrap standard error and confidence interval for the classification accuracy improvement for a pair of nested models.

Usage

```
estp(y, m1, m2, acc="idi", level=0.95, method="multinom", k=3, B=250, balance=FALSE, ...)
```
Arguments

- **y**: The multinomial response vector with two, three or four categories. It can be factor or integer-valued.
- **m1**: The set of marker(s) included in the baseline model, can be a data frame or a matrix; if the method is "prob", then m1 should be the prediction probability matrix of the baseline model.
- **m2**: The set of additional marker(s) included in the improved model, can be a data frame or a matrix; if the method is "prob", then m2 should be the prediction probability matrix of the improved model.
- **acc**: Accuracy measure to be evaluated. Allow two choices: "idi", "nri".
- **level**: The confidence level. Default value is 0.95.
- **method**: Specifies what method is used to construct the classifier based on the marker set in m1 & m2. Available option includes the following methods: "multinom": Multinomial Logistic Regression which is the default method, requiring R package nnet; "tree": Classification Tree method, requiring R package rpart; "svm": Support Vector Machine (C-classification and radial basis as default), requiring R package e1071; "lda": Linear Discriminant Analysis, requiring R package lda; "prob": m1 & m2 are risk matrices resulted from any external classification algorithm obtained by the user.
- **k**: Number of the categories, can be 2, 3 or 4.
- **B**: Number of bootstrap resamples.
- **balance**: Logical, if TRUE, the class prevalence of the bootstrap sample is forced to be identical to the class prevalence of the original sample. Otherwise the prevalence of the bootstrap sample may be random.
- ...: Additional arguments in the chosen method’s function.

Details

The function returns the standard error and confidence interval for a paired model evaluation method. All the other arguments are the same as the function hum.

Value

- **value**: The specific value of the classification using a particular learning method on a set of marker(s).
- **se**: The standard error of the value.
- **interval**: The confidence interval of the value.

Note

Users are advised to change the operating settings of various classifiers since it is well known that machine learning methods require extensive tuning. Currently only some common and intuitive options are set as default and they are by no means the optimal parameterization for a particular data analysis. Users can put machine learning methods’ parameters after tuning. A more flexible evaluation is to consider "method=prob" in which case the input m1 & m2 should be a matrix of membership probabilities with k columns and each row of m1 & m2 should sum to one.
Author(s)

Ming Guo: gaoming96@sjtu.edu.cn
Jialiang Li: stalj@nus.edu.sg

See Also

ests

Examples

```r
rm(list=ls())
table(mtcars$carb)
for (i in 1:length(mtcars$carb)) {
  if (mtcars$carb[i] == 3 | mtcars$carb[i] == 6 | mtcars$carb[i] == 8) {
    mtcars$carb[i] <- 9
  }
}
data <- data.matrix(mtcars[, c(1, 5)])
mtcars$carb <- factor(mtcars$carb, labels = c(1, 2, 3, 4))
label <- as.numeric(mtcars$carb)
str(mtcars)
estp(y = label, m1 = data[, 1], m2 = data[, 2], acc="idi", method="lda", k=4,B=10)

# $value
# [1] 0.1235644

# $se
# [1] 0.07053541

# $interval
# [1] 0.5298885 0.21915088

estp(y = label, m1 = data[, 1], m2 = data[, 2], acc="nri", method="tree", k=4,B=5)

# $value
# [1] 0.05

# $se
# [1] 0.09249111

# $interval
# [1] 0.0000000 0.1458333
```

ests Inference for Accuracy Measures based on Bootstrap
Description
compute the bootstrap standard error and confidence interval for the classification accuracy for a single classification model.

Usage
ests(y, d, acc="hum", level=0.95, method="multinom", k=3, B=250, balance=FALSE, ...)

Arguments
y The multinomial response vector with two, three or four categories. It can be factor or integer-valued.
d The set of candidate markers, including one or more columns. Can be a data frame or a matrix; if the method is "prob", then d should be the probability matrix.
acc Accuracy measure to be evaluated. Allow four choices: "hum", "pdi", "ccp" and "rsq".
level The confidence level. Default value is 0.95.
method Specifies what method is used to construct the classifier based on the marker set in d. Available option includes the following methods: "multinom": Multinomial Logistic Regression which is the default method, requiring R package nnet; "tree": Classification Tree method, requiring R package rpart; "svm": Support Vector Machine (C-classification and radial basis as default), requiring R package e1071; "lda": Linear Discriminant Analysis, requiring R package lda; "label": d is a label vector resulted from any external classification algorithm obtained by the user, should be encoded from 1; "prob": d is a probability matrix resulted from any external classification algorithm obtained by the user.
k Number of the categories, can be 2, 3 or 4.
B Number of bootstrap resamples.
balance Logical, if TRUE, the class prevalence of the bootstrap sample is forced to be identical to the class prevalence of the original sample. Otherwise the prevalence of the bootstrap sample may be random.
... Additional arguments in the chosen method’s function.

Details
The function returns the standard error and confidence interval for a single model evaluation method. All the other arguments are the same as the function hum.

Value
value The specific value of the classification using a particular learning method on a set of marker(s).
se The standard error of the value.
interval The confidence interval of the value.
Note

Users are advised to change the operating settings of various classifiers since it is well known that machine learning methods require extensive tuning. Currently only some common and intuitive options are set as default and they are by no means the optimal parameterization for a particular data analysis. Users can put machine learning methods’ parameters after tuning. A more flexible evaluation is to consider "method=prob" in which case the input d should be a matrix of membership probabilities with k columns and each row of d should sum to one.

Author(s)

Ming Gao: gaoming96@sjtu.edu.cn
Jialiang Li: stalj@nus.edu.sg

See Also

estp

Examples

```r
rm(list=ls())
str(iris)
data <- iris[,1:4]
label <- iris[,5]
est(y = label, d = data, acc="hum", level=0.95, method = "multinom", k = 3, B=10, trace=FALSE)

## $value
## [1] 0.9972

## $se
## [1] 0.002051529

## $interval
## [1] 0.9935662 1.0000000

est(y = label, d = data, acc="pdi", level=0.85, method = "tree", k = 3, B=10)

## $value
## [1] 0.9213333

## $se
## [1] 0.02148812

## $interval
## [1] 0.9019608 0.9629630

rm(list=ls())
table(mtcars$carb)
for (i in 1:length(mtcars$carb)) {
  if (mtcars$carb[i] == 3 | mtcars$carb[i] == 6 | mtcars$carb[i] == 8) {
    mtcars$carb[i] <- 9
  }
}
```
Calculate HUM Value

Description

compute the Hypervolume Under Manifold (HUM) value of two or three or four categories classifiers with an option to define the specific model or user-defined model.

Usage

```r
hum(y, d, method="multinom", k=3, ...)
```

Arguments

- **y**: The multinomial response vector with two, three or four categories. It can be factor or integer-valued.
- **d**: The set of candidate markers, including one or more columns. Can be a data frame or a matrix; if the method is "prob", then d should be the probability matrix.
- **method**: Specifies what method is used to construct the classifier based on the marker set in d. Available option includes the following methods: "multinom": Multinomial Logistic Regression which is the default method, requiring R package nnet; "tree": Classification Tree method, requiring R package rpart; "svm": Support Vector Machine (C-classification and radial basis as default), requiring R package e1071; "lda": Linear Discriminant Analysis, requiring R package lda; "prob": d is a risk matrix resulted from any external classification algorithm obtained by the user.
- **k**: Number of the categories, can be 2 or 3 or 4.
- **...**: Additional arguments in the chosen method’s function.
Details

The function returns the HUM value for predictive markers based on a user-chosen machine learning method. Currently available methods include logistic regression (default), tree, lda, svm and user-computed risk values. For binary outcome, one can use AUC value (HUM reduces to AUC in such case). This function is more general than the package HUM, since we can evaluate the accuracy for marker combinations resulted from complicated classification algorithms.

Value

The HUM value of the classification using a particular learning method on a set of marker(s).

Note

Users are advised to change the operating settings of various classifiers since it is well known that machine learning methods require extensive tuning. Currently only some common and intuitive options are set as default and they are by no means the optimal parameterization for a particular data analysis. Users can put machine learning methods’ parameters after tuning. A more flexible evaluation is to consider “method=prob” in which case the input d should be a matrix of membership probabilities with k columns and each row of d should sum to one.

Author(s)

Ming Gao: gaoming96@sjtu.edu.cn
Jialiang Li: stalj@nus.edu.sg

References

See Also

pdi

Examples

```r
rm(list=ls())
str(iris)
data <- iris[, 1:4]
label <- iris[, 5]
hum(y = label, d = data, method = "multinom", k = 3)
## [1] 0.9972
hum(y = label, d = data, method = "svm", k = 3)
## [1] 0.9964
hum(y = label, d = data, method = "svm", k = 3, type="C", kernel="linear", cost=4, scale=TRUE)
## [1] 0.9972
hum(y = label, d = data, method = "tree", k = 3)
## [1] 0.998
```
data <- data.matrix(iris[, 1:4])
label <- as.numeric(iris[, 5])
multinomial
require(nnet)
model
fit <- multinom(label ~ data, maxit = 1000, MaxNWts = 2000)
predict.probs <- predict(fit, type = "probs")
pp <- data.frame(predict.probs)
extract the probability assessment vector
head(pp)
hum(y = label, d = pp, method = "prob", k = 3)
[1] 0.9972
rm(list=ls())
table(mtcars$carb)
for (i in 1:length(mtcars$carb)) {
 if (mtcars$carb[i] == 3 | mtcars$carb[i] == 6 | mtcars$carb[i] == 8) {
 mtcars$carb[i] <- 9
 }
}
data <- data.matrix(mtcars[, c(1:10)])
mtcars$carb <- factor(mtcars$carb, labels = c(1, 2, 3, 4))
label <- as.numeric(mtcars$carb)
str(mtcars)
hum(y = label, d = data, method = "tree", k = 4, control = rpart::rpart.control(minsplit = 5))
[1] 1
hum(y = label, d = data, method = "svm", k = 4, kernel = "linear", cost = 0.7, scale = TRUE)
[1] 1
hum(y = label, d = data, method = "svm", k = 4, kernel = "radial", cost = 0.7, scale = TRUE)
[1] 0.6217143

idi
Calculate IDI Value

Description

compute the integrated discrimination improvement (IDI) value of two or three or four categories classifiers with an option to define the specific model or user-defined model.

Usage

idi(y, m1, m2, method="multinom", k=3, ...)

Arguments

| y | The multinomial response vector with two, three or four categories. It can be factor or integer-valued. |
m1 The set of marker(s) included in the baseline model, can be a data frame or a matrix; if the method is "prob", then m1 should be the prediction probability matrix of the baseline model.

m2 The set of additional marker(s) included in the improved model, can be a data frame or a matrix; if the method is "prob", then m2 should be the prediction probability matrix of the improved model.

method Specifies what method is used to construct the classifier based on the marker set in m1 & m2. Available option includes the following methods: "multinom": Multinomial Logistic Regression which is the default method, requiring R package nnet; "tree": Classification Tree method, requiring R package rpart; "svm": Support Vector Machine (C-classification and radial basis as default), requiring R package e1071; "lda": Linear Discriminant Analysis, requiring R package lda; "prob": m1 & m2 are risk matrices resulted from any external classification algorithm obtained by the user.

k Number of the categories, can be 2 or 3 or 4.

... Additional arguments in the chosen method’s function.

Details

The function returns the IDI value for predictive markers based on a user-chosen machine learning method. Currently available methods include logistic regression (default), tree, lda, svm and user-computed risk values. This function is general since we can evaluate the accuracy for marker combinations resulted from complicated classification algorithms.

Value

The IDI value of the classification using a particular learning method on a set of marker(s).

Note

Users are advised to change the operating settings of various classifiers since it is well known that machine learning methods require extensive tuning. Currently only some common and intuitive options are set as default and they are by no means the optimal parameterization for a particular data analysis. Users can put machine learning methods’ parameters after tuning. A more flexible evaluation is to consider "method=prob" in which case the input m1 & m2 should be a matrix of membership probabilities with k columns and each row of m1 & m2 should sum to one.

Author(s)

Ming Gao: gaoming96@sjtu.edu.cn
Jialiang Li: stalj@nus.edu.sg

References

nri

See Also

nri

Examples

```r
rm(list=ls())
table(mtcars$carb)
for (i in {1:length(mtcars$carb)}) {
  if (mtcars$carb[i] == 3 | mtcars$carb[i] == 6 | mtcars$carb[i] == 8) {
    mtcars$carb[i] <- 9
  }
}
data <- data.matrix(mtcars[, c(1, 5)])
mtcars$carb <- factor(mtcars$carb, labels = c(1, 2, 3, 4))
label <- as.numeric(mtcars$carb)
str(mtcars)
idi(y = label, m1 = data[, 1], m2 = data[, 2], "tree", 4)
## [1] 0.09979413
idi(y = label, m1 = data[, 1], m2 = data[, 2], "tree", 4, control=rpart::rpart.control(minsplit=4))
## [1] 0.2216707
```

nri

Calculate NRI Value

Description

compute the net reclassification improvement (NRI) value of two or three or four categories classifiers with an option to define the specific model or user-defined model.

Usage

```r
nri(y, m1, m2, method="multinom", k=3, ...)
```

Arguments

- `y`
The multinomial response vector with two, three or four categories. It can be factor or integer-valued.
- `m1`
The set of marker(s) included in the baseline model, can be a data frame or a matrix; if the method is "prob", then m1 should be the prediction probability matrix of the baseline model.
- `m2`
The set of additional marker(s) included in the improved model, can be a data frame or a matrix; if the method is "prob", then m2 should be the prediction probability matrix of the improved model.
- `method`
Specifies what method is used to construct the classifier based on the marker set in m1 & m2. Available option includes the following methods:"multinom": Multinomial Logistic Regression which is the default method, requiring R package nnet;"tree": Classification Tree method, requiring R package rpart;"svm": S
Support Vector Machine (C-classification and radial basis as default), requiring R package e1071; "lda": Linear Discriminant Analysis, requiring R package lda; "label": m1 & m2 are label vectors resulted from any external classification algorithm obtained by the user; "prob": m1 & m2 are probability matrices resulted from any external classification algorithm obtained by the user.

k
Number of the categories, can be 2 or 3 or 4.

... Additional arguments in the chosen method’s function.

Details
The function returns the NRI value for predictive markers based on a user-chosen machine learning method. Currently available methods include logistic regression (default), tree, lda, svm and user-computed risk values. This function is general since we can evaluate the accuracy for marker combinations resulted from complicated classification algorithms.

Value
The NRI value of the classification using a particular learning method on a set of marker(s).

Note
Users are advised to change the operating settings of various classifiers since it is well known that machine learning methods require extensive tuning. Currently only some common and intuitive options are set as default and they are by no means the optimal parameterization for a particular data analysis. Users can put machine learning methods’ parameters after tuning. A more flexible evaluation is to consider "method=prob" in which case the input m1 & m2 should be a matrix of membership probabilities with k columns and each row of m1 & m2 should sum to one.

Author(s)
Ming Gao: gaoming96@sjtu.edu.cn
Jialiang Li: stalj@nus.edu.sg

References

See Also
idi

Examples
rm(list=ls())
table(mtcars$carb)
for (i in (1:length(mtcars$carb))) {
 if (mtcars$carb[i] == 3 | mtcars$carb[i] == 6 | mtcars$carb[i] == 8) {
\begin{verbatim}
mtcars$carb[i] <- 9
}
data <- data.matrix(mtcars[, c(1, 5)])
mtcars$carb <- factor(mtcars$carb, labels = c(1, 2, 3, 4))
label <- as.numeric(mtcars$carb)
str(mtcars)
nri(y = label, m1 = data[, 1], m2 = data[, 2], "lda", 4)
[1] 0.1
nri(y = label, m1 = data[, 1], m2 = data[, 2], "tree", 4)
[1] 0.05
nri(y = label, m1 = data[, 1], m2 = data[, 2], "tree", 4, control= rpart:: rpart.control(minsplit=4))
[1] 0.1357143
\end{verbatim}

pdi

Calculate PDI Value

Description

compute the Polytomous Discrimination Index (PDI) value of two or three or four categories classifiers with an option to define the specific model or user-defined model.

Usage

\[pdi(y, d, method="multinom", k=3, \ldots)\]

Arguments

- **y**
The multinomial response vector with two, three or four categories. It can be factor or integer-valued.

- **d**
The set of candidate markers, including one or more columns. Can be a data frame or a matrix; if the method is "prob", then d should be the probability matrix.

- **method**
Specifies what method is used to construct the classifier based on the marker set in d. Available option includes the following methods:"multinom": Multinomial Logistic Regression which is the default method, requiring R package nnet;"tree": Classification Tree method, requiring R package rpart;"svm": Support Vector Machine (C-classification and radial basis as default), requiring R package e1071;"lda": Linear Discriminant Analysis, requiring R package lda;"prob": d is a risk matrix resulted from any external classification algorithm obtained by the user.

- **k**
Number of the categories, can be 2 or 3 or 4.

- **\ldots**
Additional arguments in the chosen method’s function.
Details

The function returns the PDI value for predictive markers based on a user-chosen machine learning method. Currently available methods include logistic regression (default), tree, lda, svm and user-computed risk values. This function is general since we can evaluate the accuracy for marker combinations resulted from complicated classification algorithms.

Value

The PDI value of the classification using a particular learning method on a set of marker(s).

Note

Users are advised to change the operating settings of various classifiers since it is well known that machine learning methods require extensive tuning. Currently only some common and intuitive options are set as default and they are by no means the optimal parameterization for a particular data analysis. Users can put machine learning methods’ parameters after tuning. A more flexible evaluation is to consider "method=prob" in which case the input d should be a matrix of membership probabilities with k columns and each row of d should sum to one.

Author(s)

Ming Gao: gaoming96@sjtu.edu.cn
Jialiang Li: stalj@nus.edu.sg

References

See Also

hum

Examples

```r
rm(list=ls())
str(iris)
data <- iris[, 3]
label <- iris[, 5]
pdi(y = label, d = data,method = "multinom", k = 3)
## [1] 0.9845333
pdi(y = label, d = data,method = "tree", k = 3)
## [1] 0.9082667
pdi(y = label, d = data,method = "tree", k = 3,control = rpart::rpart.control(minsplit = 200))
## [1] 0

data <- data.matrix(iris[, 3])
```
```
label <- as.numeric(iris[, 5])
# multinomial
require(nnet)
# model
fit <- multinom(label ~ data, maxit = 1000, MaxNWts = 2000)
predict.probs <- predict(fit, type = "probs")
pp <- data.frame(predict.probs)
# extract the probability assessment vector
head(pp)
pdi(y = label, d = pp, method = "prob", k = 3)
## [1] 0.9845333
```

pm
Calculate Probability Matrix

Description

compute the probability matrix of two or three or four categories classifiers with an option to define the specific model or user-defined model.

Usage

```r
pm(y, d, method="multinom", k=3, ...)
```

Arguments

- **y**
The multinomial response vector with two, three or four categories. It can be factor or integer-valued.

- **d**
The set of candidate markers, including one or more columns. Can be a data frame or a matrix.

- **method**
Specifies what method is used to construct the classifier based on the marker set in d. Available option includes the following methods: "multinom": Multinomial Logistic Regression which is the default method, requiring R package nnet;"tree": Classification Tree method, requiring R package rpart;"svm": Support Vector Machine (C-classification and radial basis as default), requiring R package e1071;"lda": Linear Discriminant Analysis, requiring R package lda.

- **k**
Number of the categories, can be 2 or 3 or 4.

- **...**
Additional arguments in the chosen method’s function.

Details

The function returns the probability matrix for predictive markers based on a user-chosen machine learning method. Currently available methods include logistic regression (default), tree, lda, svm and user-computed risk values.

Value

The probability matrix of the classification using a particular learning method on a set of marker(s).
rsq

Calculate RSQ Value

Description

compute the R-squared (RSQ) value of two or three or four categories classifiers with an option to define the specific model or user-defined model.

Usage

rsq(y, d, method="multinom", k=3, ...)

Arguments

y The multinomial response vector with two, three or four categories. It can be factor or integer-valued.
d The set of candidate markers, including one or more columns. Can be a data frame or a matrix; if the method is "prob", then d should be the probability matrix.
method Specifies what method is used to construct the classifier based on the marker set in d. Available option includes the following methods: "multinom": Multinomial Logistic Regression which is the default method, requiring R package nnet; "tree": Classification Tree method, requiring R package rpart; "svm": Support Vector Machine (C-classification and radial basis as default), requiring R package e1071; "lda": Linear Discriminant Analysis, requiring R package lda; "prob": d is a risk matrix resulted from any external classification algorithm obtained by the user.

k Number of the categories, can be 2 or 3 or 4.

... Additional arguments in the chosen method’s function.

Details

The function returns the RSQ value for predictive markers based on a user-chosen machine learning method. Currently available methods include logistic regression (default), tree, lda, svm and user-computed risk values. This function is general since we can evaluate the accuracy for marker combinations resulted from complicated classification algorithms.

Value

The RSQ value of the classification using a particular learning method on a set of marker(s).

Note

Users are advised to change the operating settings of various classifiers since it is well known that machine learning methods require extensive tuning. Currently only some common and intuitive options are set as default and they are by no means the optimal parameterization for a particular data analysis. Users can put machine learning methods’ parameters after tuning. A more flexible evaluation is to consider “method=prob” in which case the input d should be a matrix of membership probabilities with k columns and each row of d should sum to one.

Author(s)

Ming Gao: gaoming96@sjtu.edu.cn
Jialiang Li: stalj@nus.edu.sg

References

See Also

ccp
Examples

```R
rm(list=ls())
str(iris)
data <- iris[, 1:4]
label <- iris[, 5]
rsq(y = label, d = data, method = "multinom", k = 3)
   # [1] 0.9638708
rsq(y = label, d = data, method = "tree", k = 3)
   # [1] 0.889694

data <- data.matrix(iris[, 1:4])
label <- as.numeric(iris[, 5])
   # multinomial
require(nnet)
   # model
fit <- multinom(label ~ data, maxit = 1000, MaxNWts = 2000)
predict.probs <- predict(fit, type = "probs")
pp <- data.frame(predict.probs)
   # extract the probability assessment vector
head(pp)
rsq(y = label, d = pp, method = "prob", k = 3)
   # [1] 0.9638708

rm(list=ls())
table(mtcars$carb)
for (i in (1:length(mtcars$carb))) {
   if (mtcars$carb[i] == 3 | mtcars$carb[i] == 6 | mtcars$carb[i] == 8) {
      mtcars$carb[i] <- 9
   }
}
data <- data.matrix(mtcars[, c(1)])
mtcars$carb <- factor(mtcars$carb, labels = c(1, 2, 3, 4))
label <- as.numeric(mtcars$carb)
str(mtcars)
rsq(y = label, d = data, method = "tree", k = 4)
   # [1] 0.1899336
rsq(y = label, d = data, method = "lda", k = 4)
   # [1] 0.1456539
rsq(y = label, d = data, method = "lda", k = 4, prior = c(100, 1, 1, 1)/103)
   # [1] 0.0431966
```
Index

*Topic CCP
 ccp, 4
 mcca-package, 2
*Topic CCR
 ests, 8
*Topic HUM
 hum, 11
 mcca-package, 2
*Topic IDI
 estp, 6
 idi, 13
 mcca-package, 2
*Topic NRI
 nri, 15
*Topic PDI
 pdi, 17
*Topic PM
 pm, 19
*Topic RSQ
 rsq, 20

ccp, 2, 4, 21
ests, 2, 6, 10
ests, 2, 8, 8
hum, 2, 7, 9, 11, 18
idi, 2, 13, 16
mcca (mcca-package), 2
mcca-package, 2
nri, 2, 15, 15
pdi, 2, 6, 12, 17, 20
pm, 2, 19
rsq, 2, 20