Package ‘mclust’

March 13, 2017

Version 5.2.3
Date 2017-03-05
Title Gaussian Mixture Modelling for Model-Based Clustering,
Classification, and Density Estimation
Description Gaussian finite mixture models fitted via EM algorithm for model-based clustering, clas-
sification, and density estimation, including Bayesian regularization, dimension reduction for vi-
sualisation, and resampling-based inference.
Depends R (>= 3.0)
Imports stats, utils, graphics, grDevices
Suggests knitr (>= 1.12), rmarkdown (>= 0.9), mix (>= 1.0)
License GPL (>= 2)
URL http://www.stat.washington.edu/mclust/
VignetteBuilder knitr
Repository CRAN
ByteCompile true
LazyLoad yes
NeedsCompilation yes
Author Chris Fraley [aut],
Adrian E. Raftery [aut],
Luca Scrucca [aut, cre],
Thomas Brendan Murphy [ctb],
Michael Fop [ctb]
Maintainer Luca Scrucca <luca.scrucca@unipg.it>
Date/Publication 2017-03-13 13:18:28

R topics documented:
mclust-package ... 4
acidity ... 5
adjustedRandIndex .. 5
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>banknote</td>
</tr>
<tr>
<td>Baudry_etal_2010_JCGS_examples</td>
</tr>
<tr>
<td>bic</td>
</tr>
<tr>
<td>cdens</td>
</tr>
<tr>
<td>cdensE</td>
</tr>
<tr>
<td>cdMclust</td>
</tr>
<tr>
<td>chevron</td>
</tr>
<tr>
<td>classError</td>
</tr>
<tr>
<td>clPairs</td>
</tr>
<tr>
<td>clustCombi</td>
</tr>
<tr>
<td>combiPlot</td>
</tr>
<tr>
<td>combMat</td>
</tr>
<tr>
<td>coordProj</td>
</tr>
<tr>
<td>covw</td>
</tr>
<tr>
<td>cross</td>
</tr>
<tr>
<td>cvMclustDA</td>
</tr>
<tr>
<td>decomp2sigma</td>
</tr>
<tr>
<td>defaultPrior</td>
</tr>
<tr>
<td>dens</td>
</tr>
<tr>
<td>densityMclust</td>
</tr>
<tr>
<td>densityMclust.diagnostic</td>
</tr>
<tr>
<td>diabetes</td>
</tr>
<tr>
<td>em</td>
</tr>
<tr>
<td>emControl</td>
</tr>
<tr>
<td>emE</td>
</tr>
<tr>
<td>entPlot</td>
</tr>
<tr>
<td>errorBars</td>
</tr>
<tr>
<td>estep</td>
</tr>
<tr>
<td>estepE</td>
</tr>
<tr>
<td>GvHD</td>
</tr>
<tr>
<td>hc</td>
</tr>
<tr>
<td>hcE</td>
</tr>
<tr>
<td>hclass</td>
</tr>
<tr>
<td>hypvol</td>
</tr>
<tr>
<td>icl</td>
</tr>
<tr>
<td>imputeData</td>
</tr>
<tr>
<td>imputePairs</td>
</tr>
<tr>
<td>logLik.Mclust</td>
</tr>
<tr>
<td>logLik.MclustDA</td>
</tr>
<tr>
<td>map</td>
</tr>
<tr>
<td>mapClass</td>
</tr>
<tr>
<td>Mclust</td>
</tr>
<tr>
<td>mclust-deprecated</td>
</tr>
<tr>
<td>mclust.options</td>
</tr>
<tr>
<td>mclust1Dplot</td>
</tr>
<tr>
<td>mclust2Dplot</td>
</tr>
<tr>
<td>mclustBIC</td>
</tr>
<tr>
<td>MclustBootstrap</td>
</tr>
</tbody>
</table>
mclustBootstrapLRT .. 76
MclustDA .. 78
MclustDR .. 81
mclustICL .. 84
mclustModel ... 86
mclustModelNames .. 88
mclustVariances ... 89
me ... 91
me.weighted .. 93
meE ... 95
mstep ... 97
mstepE .. 98
mvn ... 100
mvnX .. 102
nMclustParams ... 104
nVarParams .. 105
partconv .. 106
partuniq ... 107
plot.clustCombi ... 108
plot.densityMclust ... 109
plot.Mclust .. 111
plot.mclustBIC .. 113
plot.MclustBootstrap ... 115
plot.MclustDA ... 116
plot.MclustDR ... 118
plot.mclustICL ... 121
predict.densityMclust ... 122
predict.Mclust .. 123
predict.MclustDA .. 124
predict.MclustDR .. 126
print.clustCombi ... 127
priorControl .. 128
randomPairs .. 129
randProj ... 130
sigma2decomp ... 132
sim ... 134
simE .. 136
summary.Mclust ... 138
summary.mclustBIC .. 139
summary.MclustBootstrap ... 141
summary.MclustDA ... 142
summary.MclustDR ... 143
surfacePlot ... 144
thyroid ... 146
uncerPlot ... 147
unmap ... 148
wreath ... 149

Index ... 150
mclust-package

Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation

Description

Finite Gaussian mixture modeling fitted via EM algorithm for model-based clustering, classification, and density estimation, including Bayesian regularization and dimension reduction.

Details

For a quick introduction to mclust see the vignette A quick tour of mclust.

References

Author(s)

Chris Fraley, Adrian Raftery and Luca Scrucca.

Maintainer: Luca Scrucca <luca@stat.unipg.it>

Examples

Clustering
mod1 = Mclust(iris[,1:4])
summary(mod1)
plot(mod1, what = c("BIC", "classification"))

Classification
data(banknote)
mod2 = MclustDA(banknote[,2:7], banknote$Status)
summary(mod2)
plot(mod2)

Density estimation
mod3 = densityMclust(faithful$waiting)
summary(mod3)
plot(mod3, faithful$waiting)
Acidity data

Description
Acidity index measured in a sample of 155 lakes in the Northeastern United States. The data are on the log scale, as analysed by Crawford et al. (1992, 1994). The data were also used to fit mixture of gaussian distributions by Richardson and Green (1997), and by McLachlan and Peel (2000, Sec. 6.6.2).

Usage
data(acidity)

Source
http://www.stats.bris.ac.uk/~peter/mixdata

References

Adjusted Rand Index

Description
Computes the adjusted Rand index comparing two classifications.

Usage
adjustedRandIndex(x, y)

Arguments
x A numeric or character vector of class labels.
y A numeric or character vector of class labels. The length of y should be the same as that of x.
Value

The adjusted Rand index comparing the two partitions (a scalar). This index has zero expected value in the case of random partition, and it is bounded above by 1 in the case of perfect agreement between two partitions.

References

See Also

`classError`, `mapClass`, `table`

Examples

```r
a <- rep(1:3, 3)
b <- rep(c("A", "B", "C"), 3)
adjustedRandIndex(a, b)

a <- sample(1:3, 9, replace = TRUE)
b <- sample(c("A", "B", "C"), 9, replace = TRUE)
adjustedRandIndex(a, b)

a <- rep(1:3, 4)
b <- rep(c("A", "B", "C", "D"), 3)
adjustedRandIndex(a, b)

irisHCVvv <- hc(modelName = "VVV", data = iris[,-5])
classifier <- hclass(irisHCVvv, 3)
adjustedRandIndex(classifier, iris[,5])

irisBIC <- mclustBIC(iris[,-5])
adjustedRandIndex(summary(irisBIC,iris[,-5])$classification,iris[,5])
adjustedRandIndex(summary(irisBIC,iris[,-5],G=3)$classification,iris[,5])
```

banknote | Swiss banknotes data

Description

The data set contains six measurements made on 100 genuine and 100 counterfeit old-Swiss 1000-franc bank notes.
Usage
data(banknote)

Format
A data frame with the following variables:

- **Status** the status of the banknote: genuine or counterfeit
- **Length** Length of bill (mm)
- **Left** Width of left edge (mm)
- **Right** Width of right edge (mm)
- **Bottom** Bottom margin width (mm)
- **Top** Top margin width (mm)
- **Diagonal** Length of diagonal (mm)

Source

Description
Simulated datasets used in Baudry et al. (2010) to illustrate the proposed mixture components combining method for clustering.

Please see the cited article for a detailed presentation of these datasets. The data frame with name `exN.M` is presented in Section N.M in the paper.

Test1D (not in the article) has been simulated from a Gaussian mixture distribution in R.

ex4.1 and ex4.2 have been simulated from a Gaussian mixture distribution in R^2.

ex4.3 has been simulated from a mixture of a uniform distribution on a square and a spherical Gaussian distribution in R^2.

ex4.4.1 has been simulated from a Gaussian mixture model in R^2
ex4.4.2 has been simulated from a mixture of two uniform distributions in R^3.

Usage
data(Baudry_etal_2010_JCGS_examples)
Format

ex4.1 is a data frame with 600 observations on 2 real variables.
ex4.2 is a data frame with 600 observations on 2 real variables.
ex4.3 is a data frame with 200 observations on 2 real variables.
ex4.4.1 is a data frame with 800 observations on 2 real variables.
ex4.4.2 is a data frame with 300 observations on 3 real variables.
Test1D is a data frame with 200 observations on 1 real variable.

References

Examples

```r
## Not run:
data(Baudry_etal_2010_JCGS_examples)

output <- clustCombi(ex4.4.1)
output # is of class clustCombi

# plots the hierarchy of combined solutions, then some "entropy plots" which
# may help one to select the number of classes
plot(output, ex4.4.1)

## End(Not run)
```

bic

BIC for Parameterized Gaussian Mixture Models

Description

Computes the BIC (Bayesian Information Criterion) for parameterized mixture models given the loglikelihood, the dimension of the data, and number of mixture components in the model.

Usage

```r
bic(modelName, loglik, n, d, G, noise=FALSE, equalPro=FALSE, ...)
```
Arguments

modelName
 A character string indicating the model. The help file for \texttt{mclustModelNames} describes the available models.

loglik
 The log-likelihood for a data set with respect to the Gaussian mixture model specified in the \texttt{modelName} argument.

n
 The number of observations in the data used to compute \texttt{loglik}.

d
 The dimension of the data used to compute \texttt{loglik}.

G
 The number of components in the Gaussian mixture model used to compute \texttt{loglik}.

noise
 A logical variable indicating whether or not the model includes an optional Poisson noise component. The default is to assume no noise component.

equalPro
 A logical variable indicating whether or not the components in the model are assumed to be present in equal proportion. The default is to assume unequal mixing proportions.

\ldots
 Catches unused arguments in an indirect or list call via \texttt{do.call}.

Value

The BIC or Bayesian Information Criterion for the given input arguments.

References

See Also

\texttt{mclustBIC}, \texttt{nVarParams}, \texttt{mclustModelNames}.

Examples

\begin{verbatim}
 n <- nrow(iris)
 d <- ncol(iris)-1
 G <- 3

 emEst <- me(modelName="VVI", data=iris[, -5], unmap(iris[,5]))
 names(emEst)

 args(bic)
 bic(modelName="VVI", loglik=emEst$loglik, n=n, d=d, G=G)
 ## Not run: do.call("bic", emEst) ## alternative call
\end{verbatim}
cdens Component Density for Parameterized MVN Mixture Models

Description

Computes component densities for observations in MVN mixture models parameterized by eigenvalue decomposition.

Usage

```r
cdens(modelName, data, logarithm = FALSE, parameters, warn = NULL, ...)
```

Arguments

- `modelName` A character string indicating the model. The help file for `mclustModelNames` describes the available models.
- `data` A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- `logarithm` A logical value indicating whether or not the logarithm of the component densities should be returned. The default is to return the component densities, obtained from the log component densities by exponentiation.
- `parameters` The parameters of the model:
 - `mean` The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
 - `variance` A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.
- `warn` A logical value indicating whether or not a warning should be issued when computations fail. The default is `warn=FALSE`.
- `...` Catches unused arguments in indirect or list calls via `do.call`.

Value

A numeric matrix whose \([i,k]\)th entry is the density or log density of observation \(i\) in component \(k\). The densities are not scaled by mixing proportions.

References

cdensE

Note
When one or more component densities are very large in magnitude, it may be possible to compute the logarithm of the component densities but not the component densities themselves due to overflow.

See Also
cdensE, ..., cdensVVV, dens, estep, mclustModelNames, mclustVariance, mclust.options, do.call

Examples
z2 <- unmap(hclass(hcVVV(faithful),2)) # initial value for 2 class case
model <- me(modelName = "EEE", data = faithful, z = z2)
cdens(modelName = "EEE", data = faithful, logarithm = TRUE, parameters = model$parameters)[1:5,]
data(cross)
odd <- seq(1, nrow(cross), by = 2)
oddBIC <- mclustBIC(cross[odd,-1])
oddModel <- mclustModel(cross[odd,-1], oddBIC) ## best parameter estimates
names(oddModel)
even <- odd + 1
densities <- cdens(modelName = oddModel$modelName, data = cross[even,-1], parameters = oddModel$parameters)
cbind(class = cross[even,1], densities)[1:5,]

Component Density for a Parameterized MVN Mixture Model

Description
Computes component densities for points in a parameterized MVN mixture model.

Usage
cdensE(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensV(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensX(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensEI(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensVII(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensEEEI(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensVEI(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensEVI(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensVVII(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensEEE(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensEEV(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensVEV(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensVVV(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensEVE(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensEVV(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensVEE(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensVVE(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensXII(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensXXI(data, logarithm = FALSE, parameters, warn = NULL, ...)
cdensXXX(data, logarithm = FALSE, parameters, warn = NULL, ...)

Arguments

- **data**: A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

- **logarithm**: A logical value indicating whether or not the logarithm of the component densities should be returned. The default is to return the component densities, obtained from the log component densities by exponentiation.

- **parameters**: The parameters of the model:
 - **mean**: The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
 - **variance**: A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.
 - **pro**: Mixing proportions for the components of the mixture. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.

- **warn**: A logical value indicating whether or not a warning should be issued when computations fail. The default is `warn=FALSE`.

- **...**: Catches unused arguments in indirect or list calls via `do.call`.

Value

A numeric matrix whose [i, j]th entry is the density of observation i in component j. The densities are not scaled by mixing proportions.

References

Note
When one or more component densities are very large in magnitude, then it may be possible to compute the logarithm of the component densities but not the component densities themselves due to overflow.

See Also
cdfMclust, cdens, dens, mclustVariance, mstep, mclust.options, do.call.

Examples
z2 <- unmap(hclass(hcVWV(faithful), 2)) # initial value for 2 class case
model <- meVWV(data = faithful, z = z2)
cdensVWV(data = faithful, logarithm = TRUE, parameters = model$parameters)
data(cross)
z2 <- unmap(cross[,1])
model <- meEEV(data = cross[, -1], z = z2)
EEVdensities <- cdensEEV(data = cross[, -1], parameters = model$parameters)
cbind(cross[, -1], map(EEVdensities))

cdfMclust Cumulative Distribution and Quantiles for a univariate Gaussian mixture distribution

description
Compute the cumulative density function (cdf) or quantiles from an estimated one-dimensional Gaussian mixture fitted using densityMclust.

Usage
cdfMclust(object, data, ngrid = 100, ...)
quantileMclust(object, p, ...)

Arguments
object a densityMclust model object.
data a numeric vector of evaluation points.
ngrid the number of points in a regular grid to be used as evaluation points if no data are provided.
p a numeric vector of probabilities.
... further arguments passed to or from other methods.
Details

The cdf is evaluated at points given by the optional argument `data`. If not provided, a regular grid of length `ngrid` for the evaluation points is used.

The quantiles are computed using interpolating splines on an adaptive finer grid.

Value

cdfMclust returns a list of x and y values providing, respectively, the evaluation points and the estimated cdf.

quantileMclust returns a vector of quantiles.

References

Author(s)

Luca Scrucca

See Also

densityMclust, plot.densityMclust.

Examples

```r
x <- c(rnorm(100), rnorm(100, 3, 2))
dens <- densityMclust(x)
summary(dens, parameters = TRUE)
cdf <- cdfMclust(dens)
str(cdf)
q <- quantileMclust(dens, p = c(0.01, 0.1, 0.5, 0.9, 0.99))
cbind(quantile = q, cdf = cdfMclust(dens, q)$y)
plot(cdf, type = "l", xlab = "x", ylab = "CDF")
points(q, cdfMclust(dens, q)$y, pch = 20, col = "red3")
par(mfrow = c(2,2))
dens.waiting <- densityMclust(faithful$waiting)
plot(dens.waiting)
plot(cdfMclust(dens.waiting), type = "l",
xlab = dens.waiting$varname, ylab = "CDF")
dens.eruptions <- densityMclust(faithful$eruptions)
plot(dens.eruptions)
plot(cdfMclust(dens.eruptions), type = "l",
xlab = dens.eruptions$varname, ylab = "CDF")
par(mfrow = c(1,1))
```
Simulated minefield data

Description

A set of simulated bivariate minefield data (1104 observations).

Usage

data(chevron)

References

classError

Classification error

Description

Error for a given classification relative to a known truth. Location of errors in a given classification relative to a known truth.

Usage

classError(classification, truth)

Arguments

classification A numeric or character vector of class labels.

truth A numeric or character vector of class labels. Must have the same length as classification.

Details

If more than one mapping between classification and truth corresponds to the minimum number of classification errors, only one possible set of misclassified observations is returned.
clPairs

Value

A list with the following two components:

- **misclassified**: The indexes of the misclassified data points in a minimum error mapping between the given classification and the given truth.

- **errorRate**: The errorRate corresponding to a minimum error mapping mapping between the given classification and the given truth.

References

See Also

- `mapClass`, `table`

Examples

```r
a <- rep(1:3, 3)
b <- rep(c("A", "B", "C"), 3)
classError(a, b)

a <- sample(1:3, 9, replace = TRUE)
b <- sample(c("A", "B", "C"), 9, replace = TRUE)
classError(a, b)
```

clPairs

Pairwise Scatter Plots showing Classification

Description

Creates a scatter plot for each pair of variables in given data. Observations in different classes are represented by different colors and symbols.

Usage

```r
clPairs(data, classification, symbols, colors, labels = dimnames(data)[[2]],
        CEX = 1, gap = 0.2, ...)
clPairsLegend(x, y, class, col, pch, ...)
```
clPairs

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

classification A numeric or character vector representing a classification of observations (rows) of data.
symbols Either an integer or character vector assigning a plotting symbol to each unique class in classification. Elements in symbols correspond to classes in order of appearance in the sequence of observations (the order used by the function unique). The default is given by mclust.options("classPlotSymbols").

colors Either an integer or character vector assigning a color to each unique class in classification. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function unique). The default is given by mclust.options("classPlotColors").

labels A vector of character strings for labeling the variables. The default is to use the column dimension names of data.

CEX An argument specifying the size of the plotting symbols. The default value is 1.
gap An argument specifying the distance between subplots (see pairs).
x, y The x and y co-ordinates with respect to a graphic device having plotting region coordinates par("usr" = c(0,1,0,1)).
class The class labels.
col, pch The colors and plotting symbols appearing in the legend.

... For a clPairs call may be additional arguments to be passed to pairs. For a clPairsLegend call may be additional arguments to be passed to legend.

Value

The function clPairs invisibly returns a list with the following components:

class A character vector of class labels.
col A vector of colors used for each class.
pch A vector of plotting symbols used for each class.

Details

The function clPairs draws scatter plots on the current graphics device for each combination of variables in data. Observations of different classifications are labeled with different symbols.

The function clPairsLegend can be used to add a legend. See examples below.

References

See Also

pairs, coordProj, mclust.options

Examples

clPairs(iris[,1:4], cl = iris$Species)

clp <- clPairs(iris[,1:4], cl = iris$Species, lower.panel = NULL)
clPairsLegend(0.1, 0.4, class = clp$class,
 col = clp$col, pch = clp$pch,
 title = "Iris data")

clustCombi

Combining Gaussian Mixture Components for Clustering

Description

Provides a hierarchy of combined clusterings from the EM/BIC Gaussian mixture solution to one class, following the methodology proposed in the article cited in the references.

Usage

clustCombi(data, MclustOutput = NULL, ...)

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

MclustOutput A list giving the optimal (according to BIC) parameters, conditional probabilities z, and log-likelihood, together with the associated classification and its uncertainty, as returned by Mclust. Please see Mclust documentation for the details of the components. Default value is NULL, in which case Mclust is called to get this output.

... Optional arguments to be passed to called functions. Notably, any option (such as the numbers of components for which the BIC is computed; the models to be fitted by EM; initialization parameters for the EM algorithm...) to be passed to Mclust in case MclustOutput is NULL. Please see the Mclust documentation for more details.

Details

Mclust provides a Gaussian mixture fitted to the data by maximum likelihood through the EM algorithm, for the model and number of components selected according to BIC. The corresponding components are hierarchically combined according to an entropy criterion, following the methodology described in the article cited in the references section. The solutions with numbers of classes between the one selected by BIC and one are returned as a clustCombi class object.
Value

A list of class `clustCombi` giving the hierarchy of combined solutions from the number of components selected by BIC to one. The details of the output components are as follows:

- **classification**: A list of the data classifications obtained for each combined solution of the hierarchy through a MAP assignment.
- **combiM**: A list of matrices. `combiM[[K]]` is the matrix used to combine the components of the (K+1)-classes solution to get the K-classes solution. Please see the examples.
- **combiz**: A list of matrices. `combiz[[K]]` is a matrix whose [i,k]th entry is the probability that observation i in the data belongs to the kth class according to the K-classes combined solution.
- **MclustOutput**: A list of class `mclust`. Output of a call to the Mclust function (as provided by the user or the result of a call to the Mclust function) used to initiate the combined solutions hierarchy: please see the `Mclust` function documentation for details.

Author(s)

J.-P. Baudry, A. E. Raftery, L. Scrucca

References

Examples

data(Baudry_etal_2010_JCGS_examples)
output <- clustCombi(ex4.1) # will run Mclust to get the MclustOutput

MclustOutput <- Mclust(ex4.1) # or you can run Mclust yourself
output <- clustCombi(ex4.1, MclustOutput) # and provide the output to clustCombi

any further optional argument is passed to Mclust (see the Mclust documentation)
Not run: output <- clustCombi(ex4.1, modelName = "EEV", G = 1:15)

output # is of class clustCombi
plots the hierarchy of combined solutions, then some "entropy plots" which
may help one to select the number of classes (please see the article cited
in the references)
plot(output, ex4.1)

the selected model and number of components by Mclust, ie by BIC with MLE
on Gaussian mixtures
output$MclustOutput

the selected number of components by Mclust: the combined hierarchy then
starts from this number of classes and ends at one
output$MclustOutput$G

the matrix whose [i,k]th entry is the probability that observation i in
the data belongs to the kth class according to the BIC solution
head(output$combiz[[output$Mclust$Output$G]])
is the matrix whose [i,k]th entry is the probability that observation i in
the data belongs to the kth class according to the first combined
((output$Mclust$Output$G-1)-classes) solution
head(output$combiz[[output$Mclust$Output$G-1]])
the matrix describing how to merge the 6-classes solution to get the
5-classes solution
output$combim[[5]]
for example the following code returns the label of the class (in the
5-classes combined solution) to which the 4th class (in the 6-classes
solution) is assigned. Only two classes in the (K+1)-classes solution
are assigned the same class in the K-classes solution: the two which
are merged at this step...
output$combim[[5]]
recover the 5-classes soft clustering from the 6-classes soft clustering
and the 6 -> 5 combining matrix
all(output$combiz[[5]] == t(output$combim[[5]] %*% t(output$combiz[[6]])))
the hard clustering under the 5-classes solution
head(output$classification[[5]])

combiPlot

Plot Classifications Corresponding to Successive Combined Solutions

Description

Plot classifications corresponding to successive combined solutions.

Usage

combiPlot(data, z, combiM, ...)

Arguments

data
A matrix whose [i,k]th entry is the probability that observation i in the data
belongs to the kth class, for the initial solution (ie before any combining). Typi-
cally, the one returned by Mclust/BIC.

z
A "combining matrix" (as provided by clustCombi), ie a matrix whose kth row
contains only zeros, but in columns corresponding to the labels of the classes in
the initial solution to be merged together to get the combined solution.

combiM

Other arguments to be passed to the Mclust plot functions.

Value

Plot the classifications obtained by MAP from the matrix t(combiM %*% t(z)), which is the matrix
whose [i,k]th entry is the probability that observation i in the data belongs to the kth class, according
to the combined solution obtained by merging (according to combiM) the initial solution described
by z.
Author(s)
J.-P. Baudry, A. E. Raftery, L. Scrucca

References

See Also
clustCombi, combMat, clustCombi

Examples

data(Baudry_etal_2010_JCGS_examples)
MclustOutput <- Mclust(ex4.1)

MclustOutput$G # Mclust/BIC selected 6 classes

par(mfrow=c(2,2))

combiM0 = diag(6) # is the identity matrix
no merging: plot the initial solution, given by z
combiPlot(ex4.1, MclustOutput$z, combiM0, cex = 3)
title("No combining")

combiM1 = combMat(6, 1, 2) # let's merge classes labeled 1 and 2
combiM1
combiPlot(ex4.1, MclustOutput$z, combiM1)
title("Combine 1 and 2")

let's merge classes labeled 1 and 2, and then components labeled (in this
new 5-classes combined solution...) 1 and 2
combiM2 = combMat(5, 1, 2) @combMat(6, 1, 2)
combiM2
combiPlot(ex4.1, MclustOutput$z, combiM2)
title("Combine 1, 2 and then 1 and 2 again")

plot(0,0,type="n", xlab = ", ylab = ", axes = FALSE)
legend("center", legend = 1:6,
 col = mclust.options("classPlotColors"),
 pch = mclust.options("classPlotSymbols"),
 title = "Class labels:"
Description

Create a combining matrix

Usage

combMat(K, 11, 12)

Arguments

K The original number of classes: the matrix will define a combining from K to (K-1) classes.
11 Label of one of the two classes to be combined.
12 Label of the other class to be combined.

Value

If z is a vector (length K) whose kth entry is the probability that an observation belongs to the kth class in a K-classes classification, then combiM %*% z is the vector (length K-1) whose kth entry is the probability that the observation belongs to the kth class in the K-1-classes classification obtained by merging classes 11 and 12 in the initial classification.

Author(s)

J.-P. Baudry, A. E. Raftery, L. Scrucca

References

See Also

clustCombi, combiPlot

Examples

Please see the documentation for the combiPlot function for an
illustration of how to use this function
coordProj

Coordinate projections of multidimensional data modeled by an MVN mixture.

Description

Plots coordinate projections given multidimensional data and parameters of an MVN mixture model for the data.

Usage

```
coordProj(data, dimens = c(1,2), parameters = NULL, z = NULL,
  classification = NULL, truth = NULL, uncertainty = NULL,
  what = c("classification", "errors", "uncertainty"),
  addEllipses = TRUE, symbols = NULL, colors = NULL, scale = FALSE,
  xlim = NULL, ylim = NULL, CEX = 1, PCH = ".", main = FALSE, ...)
```

Arguments

data A numeric matrix or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

dimens A vector of length 2 giving the integer dimensions of the desired coordinate projections. The default is c(1,2), in which the first dimension is plotted against the second.

parameters A named list giving the parameters of an MCLUST model, used to produce superimposing ellipses on the plot. The relevant components are as follows:

 mean The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.

 variance A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.

z A matrix in which the [i,k]th entry gives the probability of observation i belonging to the kth class. Used to compute classification and uncertainty if those arguments aren’t available.

classification A numeric or character vector representing a classification of observations (rows) of data. If present argument z will be ignored.

truth A numeric or character vector giving a known classification of each data point. If classification or z is also present, this is used for displaying classification errors.

uncertainty A numeric vector of values in (0,1) giving the uncertainty of each data point. If present argument z will be ignored.

what Choose from one of the following three options: "classification" (default), "errors", "uncertainty".
addEllipses A logical indicating whether or not to add ellipses with axes corresponding to the within-cluster covariances in case of "classification" or "uncertainty" plots.

symbols Either an integer or character vector assigning a plotting symbol to each unique class in classification. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function unique). The default is given by mclust.options("classPlotSymbols").

colors Either an integer or character vector assigning a color to each unique class in classification. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function unique). The default is given by mclust.options("classPlotColors").

scale A logical variable indicating whether or not the two chosen dimensions should be plotted on the same scale, and thus preserve the shape of the distribution. Default: scale=FALSE

xlim, ylim Arguments specifying bounds for the ordinate, abscissa of the plot. This may be useful for when comparing plots.

CEX An argument specifying the size of the plotting symbols. The default value is 1.

PCH An argument specifying the symbol to be used when a classification has not been specified for the data. The default value is a small dot ".".

main A logical variable or NULL indicating whether or not to add a title to the plot identifying the dimensions used.

... Other graphics parameters.

Side Effects
A plot showing a two-dimensional coordinate projection of the data, together with the location of the mixture components, classification, uncertainty, and/or classification errors.

References

See Also
clPairs, randProj, mclust2Dplot, mclust.options

Examples
est <- meVWV(iris[,5], unmap(iris[,5]))

Not run:
par(pty = "s", mfrow = c(1,1))
coordProj(iris[,5], dimens=c(2,3), parameters = est$parameters, z = est$z,


```r
what = "classification", main = TRUE)
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
truth = iris[,5], what = "errors", main = TRUE)
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
what = "uncertainty", main = TRUE)
```

End(Not run)

covw

Weighted means, covariance and scattering matrices conditioning on a weighted matrix.

Description

Compute efficiently (via Fortran code) the means, covariance and scattering matrices conditioning on a weighted or indicator matrix

Usage

```r
covw(X, Z, normalize = TRUE)
```

Arguments

- **X**
 - A \((nxp)\) data matrix, with \(n\) observations on \(p\) variables.

- **Z**
 - A \((nxG)\) matrix of weights, with \(G\) number of groups.

- **normalize**
 - A logical indicating if rows of \(Z\) should be normalized to sum to one.

Value

A list with the following components:

- **mean**
 - A \((pxG)\) matrix of weighted means.

- **S**
 - A \((pxpxG)\) array of weighted covariance matrices.

- **W**
 - A \((pxpxG)\) array of weighted scattering matrices.

Author(s)

M. Fop and L. Scrucca

Examples

```r
# Z as an indicator matrix
X = iris[,1:4]
Z = unmap(iris$Species)
str(covw(X, Z))

# Z as a matrix of weights
mod = Mclust(X, G = 3, modelNames = "VVV")
str(covw(X, mod$z))
```
cross

Simulated Cross Data

Description
A 500 by 3 matrix in which the first column is the classification and the remaining columns are two data from a simulation of two crossed elliptical Gaussians.

Usage
data(cross)

Examples

This dataset was created as follows
Not run:
n <- 250
set.seed(0)
cross <- rbind(matrix(rnorm(n*2), n, 2) %*% diag(c(1,9)),
 matrix(rnorm(n*2), n, 2) %*% diag(c(1,9))[,2:1])
cross <- cbind(c(rep(1,n), rep(2,n)), cross)
End(Not run)

cvMclustDA

MclustDA cross-validation

Description
K-fold cross-validation for discriminant analysis based on Gaussian finite mixture modeling.

Usage
cvMclustDA(object, nfold = 10, verbose = TRUE, ...)

Arguments

object An object of class 'MclustDA' resulting from a call to MclustDA.
nfold An integer specifying the number of folds.
verbose A logical, if TRUE and the session is interactive a text progress bar is displayed during the algorithm.
... Further arguments passed to or from other methods.
Value

The function returns a list with the following components:

- **classification**: a factor of cross-validated class labels.
- **error**: the cross-validation error.
- **se**: the standard error of cv error.

References

Author(s)

Luca Scrucca

See Also

Examples

```r
X <- iris[, -5]
Class <- iris[, 5]

# common EEE covariance structure (which is essentially equivalent to linear discriminant analysis)
irisMclustDA <- MclustDA(X, Class, modelType = "EDDA", modelName = "EEE")
cv <- cvMclustDA(irisMclustDA) # default 10-fold CV
cv[c("error", "se")]

cv <- cvMclustDA(irisMclustDA, nfold = length(Class)) # LOO-CV
cv[c("error", "se")]
# compare with
# cvEMtrain(X, Class, "EEE")

# general covariance structure selected by BIC
irisMclustDA <- MclustDA(X, Class)
cv <- cvMclustDA(irisMclustDA) # default 10-fold CV
cv[c("error", "se")]
```
decomp2sigma

Convert mixture component covariances to matrix form.

Description

Converts covariances from a parameterization by eigenvalue decomposition or cholesky factorization to representation as a 3-D array.

Usage

decomp2sigma(d, G, scale, shape, orientation, ...)

Arguments

d The dimension of the data.
G The number of components in the mixture model.
scale Either a G-vector giving the scale of the covariance (the dth root of its determinant) for each component in the mixture model, or a single numeric value if the scale is the same for each component.
shape Either a G by d matrix in which the kth column is the shape of the covariance matrix (normalized to have determinant 1) for the kth component, or a d-vector giving a common shape for all components.
orientation Either a d by d by G array whose [, , k]th entry is the orthonomal matrix whose columns are the eigenvectors of the covariance matrix of the kth component, or a d by d orthonormal matrix if the mixture components have a common orientation. The orientation component of decomp can be omitted in spherical and diagonal models, for which the principal components are parallel to the coordinate axes so that the orientation matrix is the identity.
... Catches unused arguments from an indirect or list call via do.call.

Value

A 3-D array whose [, , k]th component is the covariance matrix of the kth component in an MVN mixture model.

References

See Also

sigma2decomp
defaultPrior

Default conjugate prior for Gaussian mixtures.

Description

Default conjugate prior specification for Gaussian mixtures.

Usage

```
defaultPrior(data, G, modelName, ...)
```

Arguments

- `data` A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

- `G` The number of mixture components.

- `modelName` A character string indicating the model:

 - "E": equal variance (univariate)
 - "V": variable variance (univariate)
 - "EII": spherical, equal volume
 - "VII": spherical, unequal volume
 - "EEI": diagonal, equal volume and shape
 - "VEI": diagonal, varying volume, equal shape
 - "EVI": diagonal, equal volume, varying shape
 - "VVI": diagonal, varying volume and shape
 - "EEE": ellipsoidal, equal volume, shape, and orientation
 - "EEV": ellipsoidal, equal volume and equal shape
 - "VEV": ellipsoidal, equal shape
 - "VVV": ellipsoidal, varying volume, shape, and orientation.

A description of the models above is provided in the help of `mclustModelNames`. Note that in the multivariate case only 10 out of 14 models may be used in conjunction with a prior, i.e. those available in `MCLUST` up to version 4.4.
One or more of the following:

dof The degrees of freedom for the prior on the variance. The default is $d + 2$, where d is the dimension of the data.
scale The scale parameter for the prior on the variance. The default is $\text{var(data)}/G^2(2/d)$, where d is the dimension of the data.
shrinkage The shrinkage parameter for the prior on the mean. The default value is 0.01. If 0 or NA, no prior is assumed for the mean.
mean The mean parameter for the prior. The default value is colMeans(data).

Details
defaultPrior is a function whose default is to output the default prior specification for EM within MCLUST.
Furthermore, defaultPrior can be used as a template to specify alternative parameters for a conjugate prior.

Value
A list giving the prior degrees of freedom, scale, shrinkage, and mean.

References

See Also
mclustBIC, me, mstep, priorControl

Examples

default prior
irisBIC <- mclustBIC(iris[, -5], prior = priorControl())
summary(irisBIC, iris[, -5])

equivalent to previous example
irisBIC <- mclustBIC(iris[, -5],
 prior = priorControl(functionName = "defaultPrior"))
summary(irisBIC, iris[, -5])

no prior on the mean; default prior on variance
densBIC <- mclustBIC(iris[,,-5], prior = priorControl(shrinkage = 0))
summary(densBIC, iris[,,-5])

equivalent to previous example
irisBIC <- mclustBIC(iris[,,-5], prior =
 priorControl(functionName="defaultPrior", shrinkage=0))
summary(irisBIC, iris[,,-5])

defaultPrior(iris[-5], G = 3, modelName = "VV"

dens Density for Parameterized MVN Mixtures

Description
Computes densities of observations in parameterized MVN mixtures.

Usage
dens(modelName, data, logarithm = FALSE, parameters, warn=NULL, ...)

Arguments
modelName
A character string indicating the model. The help file for mclustModelNames describes the available models.
data
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
logarithm
A logical value indicating whether or not the logarithm of the component densities should be returned. The default is to return the component densities, obtained from the log component densities by exponentiation.
parameters
The parameters of the model:
 pro The vector of mixing proportions for the components of the mixture.
 mean The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
 variance A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.
warn
A logical value indicating whether or not a warning should be issued when computations fail. The default is warn=FALSE.
...
Catches unused arguments in indirect or list calls via do.call.

Value
A numeric vector whose ith component is the density of the ith observation in data in the MVN mixture specified by parameters.
References

See Also
cdens, mclust.options, do.call

Examples

```r
faithfulModel <- Mclust(faithful)
Dens <- dens(modelName = faithfulModel$modelName, data = faithful, 
parameters = faithfulModel$parameters)
Dens

## Not run:
## alternative call
do.call("dens", faithfulModel)

## End(Not run)
```

densityMclust

Density Estimation via Model-Based Clustering

Description

Produces a density estimate for each data point using a Gaussian finite mixture model from Mclust.

Usage

densityMclust(data, ...)

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

... Additional arguments for the Mclust function. In particular, setting the arguments g and modelNames allow to specify the number of mixture components and the type of model to be fitted. By default an "optimal" model is selected based on the BIC criterion.
Value

An object of class `densityMclust`, which inherits from `Mclust`, is returned with the following slot added:

- **density**: The density evaluated at the input data computed from the estimated model.

References

Author(s)

Revised version by Luca Scrucca based on the original code by C. Fraley and A.E. Raftery.

See Also

Examples

```r
dens <- densityMclust(faithful$waiting)
summary(dens)
summary(dens, parameters = TRUE)
plot(dens, what = "BIC", legendArgs = list(x = "topright"))
plot(dens, what = "density", data = faithful$waiting)

dens <- densityMclust(faithful)
summary(dens)
summary(dens, parameters = TRUE)
plot(dens, what = "density", data = faithful)
plot(dens, what = "density", data = faithful,
    drawlabels = FALSE, points.pch = 20, col = "grey",
    levels = quantile(dens$density, probs = c(0.05, 0.25, 0.5, 0.75, 0.95)))
plot(dens, what = "density", type = "image", col = topo.colors(50))
plot(dens, what = "density", type = "persp")

dens <- densityMclust(iris[,1:4])
summary(dens, parameters = TRUE)
plot(dens, what = "density", data = iris[,1:4],
    col = "slategrey", drawlabels = FALSE, nlevels = 7)
## Not run:
    plot(dens, what = "density", type = "image", col = "slategrey")
    plot(dens, what = "density", type = "persp", col = grey(0.9))
## End(Not run)
```
densityMclust.diagnostic

Diagnostic plots for mclustDensity estimation

Description

Diagnostic plots for density estimation. Only available for the one-dimensional case.

Usage

densityMclust.diagnostic(object, type = c("cdf", "qq"),
 col = c("black", "green"),
 lwd = c(2,2), lty = c(1,2),
 legend = TRUE, grid = TRUE,
 main = TRUE, ...)

Arguments

object An object of class 'mclustDensity' obtained from a call to densityMclust function.
type The type of graph requested:
 "cdf" = a plot of the estimated CDF versus the empirical distribution function.
 "qq" = a Q-Q plot of sample quantiles versus the quantiles obtained from the
 inverse of the estimated cdf.
col A pair of values for the color to be used for plotting, respectively, the estimated
 CDF and the empirical cdf.
lwd A pair of values for the line width to be used for plotting, respectively, the esti-
 mated CDF and the empirical cdf.
lty A pair of values for the line type to be used for plotting, respectively, the esti-
 mated CDF and the empirical cdf.
legend A logical indicating if a legend must be added to the plot of fitted CDF vs the
 empirical CDF.
grid A logical indicating if a grid should be added to the plot.
main A logical indicating if a title should be added to the plot.
... Additional arguments.

Details

The two diagnostic plots for density estimation in the one-dimensional case are discussed in Loader
References

Author(s)

Luca Scrucca

See Also
densityMclust, plot.densityMclust.

Examples

```r
x = faithful$waiting
dens = densityMclust(x)
## Not run:
plot(dens, x, what = "diagnostic")
## End(Not run)
# or
densityMclust.diag(dens, type = "cdf")
densityMclust.diag(dens, type = "qq")
```

diabetes

Diabetes data

Description

The data set contains three measurements made on 145 non-obese adult patients classified into three groups.

Usage

data(diabetes)

Format

A data frame with the following variables:

- **class** The type of diabete: Normal, Overt, and Chemical.
- **glucose** Area under plasma glucose curve after a three hour oral glucose tolerance test (OGTT).
- **insulin** Area under plasma insulin curve after a three hour oral glucose tolerance test (OGTT).
- **sspg** Steady state plasma glucose.
Source

em
EM algorithm starting with E-step for parameterized Gaussian mixture models.

Description

Implements the EM algorithm for parameterized Gaussian mixture models, starting with the expectation step.

Usage

```r
em(modelName, data, parameters, prior = NULL, control = emControl(), 
   warn = NULL, ...)
```

Arguments

- **modelName**
 A character string indicating the model. The help file for `mclustModelNames` describes the available models.

- **data**
 A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

- **parameters**
 A names list giving the parameters of the model. The components are as follows:
 - `pro`
 Mixing proportions for the components of the mixture. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.
 - `mean`
 The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
 - `variance`
 A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.
 - `vinv`
 An estimate of the reciprocal hypervolume of the data region. If set to NULL or a negative value, the default is determined by applying function `hypvol` to the data. Used only when `pro` includes an additional mixing proportion for a noise component.

- **prior**
 Specification of a conjugate prior on the means and variances. The default assumes no prior.

- **control**
 A list of control parameters for EM. The defaults are set by the call `emControl()`.

- **warn**
 A logical value indicating whether or not a warning should be issued when computations fail. The default is `warn=FALSE`.

- **...**
 Catches unused arguments in indirect or list calls via `do.call`.
Value

A list including the following components:

- **modelName**: A character string identifying the model (same as the input argument).
- **n**: The number of observations in the data.
- **d**: The dimension of the data.
- **G**: The number of mixture components.
- **z**: A matrix whose \([i,k]\)th entry is the conditional probability of the \(i\)th observation belonging to the \(k\)th component of the mixture.
- **parameters**: A vector whose \(k\)th component is the mixing proportion for the \(k\)th component of the mixture model. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.
- **mean**: The mean for each component. If there is more than one component, this is a matrix whose \(k\)th column is the mean of the \(k\)th component of the mixture model.
- **variance**: A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.
- **Vinv**: The estimate of the reciprocal hypervolume of the data region used in the computation when the input indicates the addition of a noise component to the model.
- **loglik**: The log likelihood for the data in the mixture model.
- **control**: The list of control parameters for EM used.
- **prior**: The specification of a conjugate prior on the means and variances used, NULL if no prior is used.

Attributes:

- “info” Information on the iteration.
- “WARNING” An appropriate warning if problems are encountered in the computations.

References

See Also

`emE`, `. . .`, `emVvVv`, `estep`, `me`, `mstep`, `mclust.options`, `do.call`
Examples

```r
msEst <- mstep(modelName = "EEE", data = iris[,-5],
               z = unmap(iris[,5]))
names(msEst)

em(modelName = msEst$modelName, data = iris[,-5],
    parameters = msEst$parameters)
## Not run:
do.call("em", c(list(data = iris[,-5]), msEst))  ## alternative call

## End(Not run)
```

`emControl`

Set control values for use with the EM algorithm.

Description

Supplies a list of values including tolerances for singularity and convergence assessment, for use functions involving EM within *MCLUST*.

Usage

```r
emControl(eps, tol, itmax, equalPro)
```

Arguments

- **eps**: A scalar tolerance associated with deciding when to terminate computations due to computational singularity in covariances. Smaller values of `eps` allow computations to proceed nearer to singularity. The default is the relative machine precision `.Machine$double.eps`, which is approximately $2e^{-16}$ on IEEE-compliant machines.

- **tol**: A vector of length two giving relative convergence tolerances for the log-likelihood and for parameter convergence in the inner loop for models with iterative M-step ("VEI", "EVE", "VEE", "VVE", "VEV"), respectively. The default is `c(1.e-5, sqrt(.Machine$double.eps))`. If only one number is supplied, it is used as the tolerance for the outer iterations and the tolerance for the inner iterations is as in the default.

- **itmax**: A vector of length two giving integer limits on the number of EM iterations and on the number of iterations in the inner loop for models with iterative M-step ("VEI", "EVE", "VEE", "VVE", "VEV"), respectively. The default is `c(.Machine$integer.max, .Machine$integer.max)` allowing termination to be completely governed by `tol`. If only one number is supplied, it is used as the iteration limit for the outer iteration only.

- **equalPro**: Logical variable indicating whether or not the mixing proportions are equal in the model. Default: `equalPro = FALSE`.
Details

emControl is provided for assigning values and defaults for EM within \textit{MCLUST}.

Value

A named list in which the names are the names of the arguments and the values are the values supplied to the arguments.

References

See Also

em, estep, me, mstep, mclustBIC

Examples

irisBIC <- mclustBIC(iris[, -5], control = emControl(tol = 1.e-6))
summary(irisBIC, iris[, -5])

emE \hspace{1cm} \textit{EM algorithm starting with E-step for a parameterized Gaussian mixture model.}

Description

Implements the EM algorithm for a parameterized Gaussian mixture model, starting with the expectation step.

Usage

\begin{verbatim}
emE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...)
emV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...)
emX(data, prior = NULL, warn = NULL, ...)
emEII(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...)
emVII(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...)
emEEI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...)
emVEI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...)
emEVII(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...)
emEEEI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...)
emEEV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...)
\end{verbatim}
Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

parameters The parameters of the model:

pro Mixing proportions for the components of the mixture. There should one more mixing proportion than the number of Gaussian components if the mixture model includes a Poisson noise term.

mean The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.

variance A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.

Vinv An estimate of the reciprocal hypervolume of the data region. The default is determined by applying function hypvol to the data. Used only when pro includes an additional mixing proportion for a noise component.

prior The default assumes no prior, but this argument allows specification of a conjugate prior on the means and variances through the function priorControl.

control A list of control parameters for EM. The defaults are set by the call emControl().

warn A logical value indicating whether or not a warning should be issued whenever a singularity is encountered. The default is given in mclust.options("warn").

Value

A list including the following components:

modelName A character string identifying the model (same as the input argument).

z A matrix whose [i,k]th entry is the conditional probability of the ith observation belonging to the kth component of the mixture.

parameters pro A vector whose kth component is the mixing proportion for the kth component of the mixture model. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.
mean The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.

variance A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.

Vinv The estimate of the reciprocal hypervolume of the data region used in the computation when the input indicates the addition of a noise component to the model.

loglik The log likelihood for the data in the mixture model.

Attributes: "info" Information on the iteration.
 "WARNING" An appropriate warning if problems are encountered in the computations.

References

See Also

me, mstep, mclustVariance, mclust.options.

Examples

msEst <- mstepEE(data = iris[,-5], z = unmap(iris[,5]))
names(msEst)

emEEE(data = iris[,-5], parameters = msEst$parameters)

entPlot Plot Entropy Plots

Description

Plot "entropy plots" to help select the number of classes from a hierarchy of combined clusterings.

Usage

entPlot(z, combiM, abc = c("standard", "normalized"), reg = 2, ...)
Arguments

z A matrix whose \([i,k]\)th entry is the probability that observation \(i\) in the data belongs to the \(k\)th class, for the initial solution (ie before any combining). Typically, the one returned by Mclust/BIC.

combiM A list of "combining matrices" (as provided by clustCombi), ie combiM[[K]] is the matrix whose \(k\)th row contains only zeros, but in columns corresponding to the labels of the classes in the \((K+1)\)-classes solution to be merged to get the \(K\)-classes combined solution. combiM must contain matrices from \(K = number of classes in z\) to one.

abc Choose one or more of: "standard", "normalized", to specify whether the number of observations involved in each combining step should be taken into account to scale the plots or not.

reg The number of parts of the piecewise linear regression for the entropy plots. Choose one or more of: 2 (for 1 change-point), 3 (for 2 change-points).

... Other graphical arguments to be passed to the plot functions.

Details

Please see the article cited in the references for more details. A clear elbow in the "entropy plot" should suggest the user to consider the corresponding number(s) of class(es).

Value

- if abc = "standard", plots the entropy against the number of clusters and the difference between the entropy of successive combined solutions against the number of clusters. if abc = "normalized", plots the entropy against the cumulated number of observations involved in the successive combining steps and the difference between the entropy of successive combined solutions divided by the number of observations involved in the corresponding combining step against the number of clusters.

Author(s)

J.-P. Baudry, A. E. Raftery, L. Scrucca

References

See Also

- plot.clustCombi, combiPlot, clustCombi

Examples

```r
## Not run:
data(Baudry_etal_2010_JCGS_examples)
# run Mclust to get the MclustOutput
```
output <- clustCombi(ex4.2, modelNames = "VII")

entPlot(output$MclustOutput$z, output$combiM, reg = c(2,3))
legend: in red, the single-change-point piecewise linear regression;
in blue, the two-change-point piecewise linear regression.

End(Not run)

errorBars
Draw error bars on a plot

Description

Draw error bars at x from upper to lower. If `horizontal = FALSE` (default) bars are drawn vertically, otherwise horizontally.

Usage

```r
errorBars(x, upper, lower, width = 0.1, code = 3, angle = 90, horizontal = FALSE, ...)
```

Arguments

- `x`
 A vector of values where the bars must be drawn.
- `upper`
 A vector of upper values where the bars must end.
- `lower`
 A vector of lower values where the bars must start.
- `width`
 A value specifying the width of the end-point segment.
- `code`
 An integer code specifying the kind of arrows to be drawn. For details see `arrows`.
- `angle`
 A value specifying the angle at the arrow edge. For details see `arrows`.
- `horizontal`
 A logical specifying if bars should be drawn vertically (default) or horizontally.
- `...`
 Further arguments are passed to `arrows`.

Examples

```r
par(mfrow=c(2,2))
# Create a simple example dataset
x <- 1:5
n <- c(10, 15, 12, 6, 3)
se <- c(1, 1.2, 2, 1, .5)
# upper and lower bars
b <- barplot(n, ylim = c(0, max(n)*1.5))
errorBars(b, lower = n-se, upper = n+se, lwd = 2, col = "red3")
# one side bars
b <- barplot(n, ylim = c(0, max(n)*1.5))
errorBars(b, lower = n, upper = n+se, lwd = 2, col = "red3", code = 1)
# plot(x, n, ylim = c(0, max(n)*1.5), pch = 0)
```
estep

E-step for parameterized Gaussian mixture models.

Description

Implements the expectation step of EM algorithm for parameterized Gaussian mixture models.

Usage

estep(modelName, data, parameters, warn = NULL, ...)

Arguments

modelName A character string indicating the model. The help file for mclustModelNames describes the available models.
data A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
parameters A names list giving the parameters of the model. The components are as follows:
pro Mixing proportions for the components of the mixture. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.
mean The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
variance A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.
Vinv An estimate of the reciprocal hypervolume of the data region. If set to NULL or a negative value, the default is determined by applying function hypvol to the data. Used only when pro includes an additional mixing proportion for a noise component.
warn A logical value indicating whether or not a warning should be issued when computations fail. The default is warn=FALSE.
... Catches unused arguments in indirect or list calls via do.call.
Value

- **modelName**: A character string identifying the model (same as the input argument).
- **z**: A matrix whose $[i,k]$th entry is the conditional probability of the ith observation belonging to the kth component of the mixture.
- **parameters**: The input parameters.
- **loglik**: The log-likelihood for the data in the mixture model.

Attributes

- "WARNING": an appropriate warning if problems are encountered in the computations.

References

See Also

- estepE, ..., estepVVV, em, mstep, mclust.options, mclustVariance

Examples

```r
msEst <- mstep(modelName = "VVV", data = iris[,5], z = unmap(iris[,5]))
names(msEst)
estep(modelName = msEst$modelName, data = iris[,5],
parameters = msEst$parameters)
```

estepE

E-step in the EM algorithm for a parameterized Gaussian mixture model.

Description

Implements the expectation step in the EM algorithm for a parameterized Gaussian mixture model.

Usage

- `estepE(data, parameters, warn = NULL, ...)`
- `estepV(data, parameters, warn = NULL, ...)`
- `estepEEI(data, parameters, warn = NULL, ...)`
- `estepEII(data, parameters, warn = NULL, ...)`
- `estepVII(data, parameters, warn = NULL, ...)`
- `estepEEII(data, parameters, warn = NULL, ...)`

estepVEI(data, parameters, warn = NULL, ...)
estepEVI(data, parameters, warn = NULL, ...)
estepVVI(data, parameters, warn = NULL, ...)
estepEEE(data, parameters, warn = NULL, ...)
estepEEV(data, parameters, warn = NULL, ...)
estepVEV(data, parameters, warn = NULL, ...)
estepVVV(data, parameters, warn = NULL, ...)
estepEVE(data, parameters, warn = NULL, ...)
estepEVE(data, parameters, warn = NULL, ...)
estepVVE(data, parameters, warn = NULL, ...)
estepVVE(data, parameters, warn = NULL, ...)

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

parameters The parameters of the model:

pro Mixing proportions for the components of the mixture. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.

mu The mean for each component. If there is more than one component, this is a matrix whose columns are the means of the components.

variance A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for \texttt{mclustVariance} for details.

Vinv An estimate of the reciprocal hypervolume of the data region. If not supplied or set to a negative value, the default is determined by applying function \texttt{hypvol} to the data. Used only when \texttt{pro} includes an additional mixing proportion for a noise component.

warn A logical value indicating whether or certain warnings should be issued. The default is given by \texttt{mclust.options(“warn”).}

... Catches unused arguments in indirect or list calls via \texttt{do.call}.

Value

A list including the following components:

modelName Character string identifying the model.

z A matrix whose \([i, k]th\) entry is the conditional probability of the \(i\)th observation belonging to the \(k\)th component of the mixture.

parameters The input parameters.

loglik The loglikelihood for the data in the mixture model.

Attribute “\texttt{WARNING}”: An appropriate warning if problems are encountered in the computations.
References

See Also

`estep, em, mstep, do.call, mclustVariance, mclust.options`.

Examples

```r
msEst <- mstepEII(data = iris[, -5], z = unmap(iris[, 5]))
names(msEst)

estepEII(data = iris[, -5], parameters = msEst$parameters)
```

GvHD Dataset

Description

GvHD (Graft-versus-Host Disease) data of Brinkman et al. (2007). Two samples of this flow cytometry data, one from a patient with the GvHD, and the other from a control patient. The GvHD positive and control samples consist of 9083 and 6809 observations, respectively. Both samples include four biomarker variables, namely, CD4, CD8b, CD3, and CD8. The objective of the analysis is to identify CD3+ CD4+ CD8b+ cell sub-populations present in the GvHD positive sample.

A treatment of this data by combining mixtures is proposed in Baudry et al. (2010).

Usage

`data(GvHD)`

Format

GvHD.pos (positive patient) is a data frame with 9083 observations on the following 4 variables, which are biomarker measurements.

- **CD4**
- **CD8b**
- **CD3**
- **CD8**

GvHD.control (control patient) is a data frame with 6809 observations on the following 4 variables, which are biomarker measurements.
CD4
CD8b
CD3
CD8

References

Examples

```r
## Not run:
data(GvHD)

dat <- GvHD.pos[1:500,] # only a few lines for a quick example

output <- clustCombi(dat)

output # is of class clustCombi

# plots the hierarchy of combined solutions, then some "entropy plots" which
# may help one to select the number of classes
plot(output, dat)

## End(Not run)
```

hc

Model-based Hierarchical Clustering

Description

Agglomerative hierarchical clustering based on maximum likelihood criteria for Gaussian mixture models parameterized by eigenvalue decomposition.

Usage

```r
hc(data,  
  modelName = mclust.options("hcModelNames")[[1],  
  use = mclust.options("hcUse"), ...)```
Arguments

- **data**: A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

- **modelName**: A character string indicating the model to be used. Possible models are:
  - "E": equal variance (one-dimensional)
  - "V": spherical, variable variance (one-dimensional)
  - "EII": spherical, equal volume
  - "VII": spherical, unequal volume
  - "EEE": ellipsoidal, equal volume, shape, and orientation
  - "VVV": ellipsoidal, varying volume, shape, and orientation.

By default the first model listed in `mclust.options("hclModelNames")`, i.e. "VVV", is used.

- **use**: A character string specifying what type of data/transformation should be used for model-based hierarchical clustering. This is experimental and it is only useful for the initialization of EM algorithm. By default it uses the method specified in `mclust.options("hcUse")`, which is set to "VAR5", i.e. the original input variables.

Details

Most models have memory usage of the order of the square of the number groups in the initial partition for fast execution. Some models, such as equal variance or "EEE", do not admit a fast algorithm under the usual agglomerative hierarchical clustering paradigm. These use less memory but are much slower to execute.

Value

A numeric two-column matrix in which the $i$th row gives the minimum index for observations in each of the two clusters merged at the $i$th stage of agglomerative hierarchical clustering.

References

Note

If `modelName = "E"` (univariate with equal variances) or `modelName = "EII"` (multivariate with equal spherical covariances), then the method is equivalent to Ward’s method for hierarchical clustering.

See Also

`hcE`, `hcVII`, `hclass`, `mclust.options`

Examples

```r
cTree <- hc(modelName = "VIII", data = iris[, -5])
cl <- hclass(cTree, c(2, 3))

Not run:
par(pty = "s", mfrow = c(1, 1))
clPairs(iris[, -5], cl = cl[, "2"])
clPairs(iris[, -5], cl = cl[, "3"])

par(mfrow = c(1, 2))
dimens <- c(1, 2)
coordProj(iris[, -5], dimens = dimens, classification = cl[, "2"])
coordProj(iris[, -5], dimens = dimens, classification = cl[, "3"])

End(Not run)
```

---

**hcE**

*Model-based Hierarchical Clustering*

Description

Agglomerative hierarchical clustering based on maximum likelihood for a Gaussian mixture model parameterized by eigenvalue decomposition.

Usage

```r
hcE(data, partition, minclus=1, ...)
hcVII(data, partition, minclus = 1, alpha = 1, ...)
hcEII(data, partition, minclus = 1, ...)
hcVIII(data, partition, minclus = 1, alpha = 1, ...)
hcEEE(data, partition, minclus = 1, ...)
hcVVV(data, partition, minclus = 1, alpha = 1, beta = 1, ...)
```

Arguments

- **data**
  - A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
partition

A numeric or character vector representing a partition of observations (rows) of data. If provided, group merges will start with this partition. Otherwise, each observation is assumed to be in a cluster by itself at the start of agglomeration.

minclus

A number indicating the number of clusters at which to stop the agglomeration. The default is to stop when all observations have been merged into a single cluster.

alpha, beta

Additional tuning parameters needed for initialization in some models. For details, see Fraley 1998. The defaults provided are usually adequate.

... 

Catch unused arguments from a do.call call.

Details

Most models have memory usage of the order of the square of the number groups in the initial partition for fast execution. Some models, such as equal variance or "EEE", do not admit a fast algorithm under the usual agglomerative hierarchical clustering paradigm. These use less memory but are much slower to execute.

Value

A numeric two-column matrix in which the $i$th row gives the minimum index for observations in each of the two clusters merged at the $i$th stage of agglomerative hierarchical clustering.

References


See Also

hc, hclass randomPairs

Examples

hcTree <- hceII(data = iris[-,5])
c1 <- hclass(hcTree, c(2,3))

## Not run:
par(pty = "s", mrow = c(1,1))
clPairs(iris[-,5], cl=c1[,"2"])
clPairs(iris[-,5], cl=c1[,"3"])

par(mfrow = c(1,2))
dimens <- c(1,2)
coordProj(iris[-5], classification=cl[,2], dimens=dimens)
coordProj(iris[-5], classification=cl[,3], dimens=dimens)

### End(Not run)

```r

hclass(hcPairs, G)
```

### Arguments

**hcPairs**

A numeric two-column matrix in which the \( i \)th row gives the minimum index for observations in each of the two clusters merged at the \( i \)th stage of agglomerative hierarchical clustering.

**G**

An integer or vector of integers giving the number of clusters for which the corresponding classifications are wanted.

### Value

A matrix with `length(G)` columns, each column corresponding to a classification. Columns are indexed by the character representation of the integers in `G`.

### References


### See Also

`hc`, `hcE`
Examples

```r
hcTree <- hc(modelName="YW", data = iris[, -5])
cl <- hclass(hcTree, c(2, 3))

Not run:
par(pty = "s", mfrow = c(1, 1))
clPairs(iris[, -5], cl = cl[, "2"])
clPairs(iris[, -5], cl = cl[, "3"])

End(Not run)
```

hypvol

**Aproximate Hypervolume for Multivariate Data**

Description

Computes a simple approximation to the hypervolume of a multivariate data set.

Usage

```r
hypvol(data, reciprocal=FALSE)
```

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

reciprocal A logical variable indicating whether or not the reciprocal hypervolume is desired rather than the hypervolume itself. The default is to return the hypervolume.

Value

Returns the minimum of the hypervolume computed from simple variable bounds and that computed from variable bounds of the principal component scores. Used for the default hypervolume parameter for the noise component when observations are designated as noise in `mclust` and `mclustBIC`.

References


icl

ICL for an estimated Gaussian Mixture Model

Description
Computes the ICL (Integrated Complete-data Likelihood) for criterion for a Gaussian Mixture Model fitted by Mclust.

Usage
icl(object, ...)

Arguments

object          An object of class 'Mclust' resulting from a call to Mclust.

...             Further arguments passed to or from other methods.

Value
The ICL for the given input MCLUST model.

References


See Also
Mclust, mclustBIC, mclustICL, bic.

Examples
mod = Mclust(iris[,1:4])
icl(mod)
imputeData

**Description**

Imputes missing data using the **mix** package.

**Usage**

```r
imputeData(x, categorical = NULL, seed = NULL)
```

**Arguments**

- `x`: A numeric vector, matrix, or data frame of observations containing missing values. Categorical variables are allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- `categorical`: A logical vectors whose $i$th entry is `TRUE` if the $i$th variable or column of `x` is to be interpreted as categorical and `FALSE` otherwise. The default is to assume that a variable is to be interpreted as categorical only if it is a factor.
- `seed`: A seed for the function `rngseed` that is used to initialize the random number generator in `mix`. By default, a seed is chosen uniformly in the interval `.Machine$integer.max/1024, .Machine$integer.max`.

**Value**

A dataset of the same dimensions as `x` with missing values filled in.

**References**


**See Also**

- `imputePairs`

**Examples**

```r
Note that package 'mix' must be installed.
Not run:

impute the continuos variables in the stlouis data
stlimp <- imputeData(stlouis[, -(1:3)])

plot imputed values
imputePairs(stlouis[, -(1:3)], stlimp)

End(Not run)
```
**imputePairs**

*Pairwise Scatter Plots showing Missing Data Imputations*

**Description**

Creates a scatter plot for each pair of variables in given data, allowing display of imputations for missing values in different colors and symbols than non missing values.

**Usage**

```r
imputePairs(x, impx, symbols = c(16,1), colors = c("black", "red"), labels,
panel = points, ..., lower.panel = panel, upper.panel = panel,
diag.panel = NULL, text.panel = textPanel, label.pos = 0.5 +
has.diag/3, cex.labels = NULL, font.labels = 1, rowlattop = TRUE,
gap = 0.2)
```

**Arguments**

- `x` A numeric vector, matrix, or data frame of observations containing missing values. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- `impx` The dataset `x` with missing values imputed.
- `symbols` Either an integer or character vector assigning plotting symbols to the nonmissing data and imputed values, respectively. The default is a closed circle for the nonmissing data and an open circle for the imputed values.
- `colors` Either an integer or character vector assigning colors to the nonmissing data and imputed values, respectively. The default is black for the nonmissing data and red for the imputed values.
- `labels` As in function `pairs`.
- `panel` As in function `pairs`.
- `...` As in function `pairs`.
- `lower.panel` As in function `pairs`.
- `upper.panel` As in function `pairs`.
- `diag.panel` As in function `pairs`.
- `text.panel` As in function `pairs`.
- `label.pos` As in function `pairs`.
- `cex.labels` As in function `pairs`.
- `font.labels` As in function `pairs`.
- `rowlattop` As in function `pairs`.
- `gap` As in function `pairs`.
logLik.Mclust

Side Effects
A pairs plot displaying the location of missing and nonmissing values.

References

See Also
pairs, imputeData

Examples

# Note that package 'mix' must be installed.

# impute the continuous variables in the stlouis data
stlimp <- imputeData(stlouis[, -(1:3)]

# plot imputed values
imputePairs(stlouis[, -(1:3)], stlimp)

logLik.Mclust  Log-Likelihood of a Mclust object

Description
Returns the log-likelihood for a 'Mclust' object.

Usage

## S3 method for class 'Mclust'
logLik(object, ...)

Arguments

object  an object of class 'Mclust' resulting from a call to Mclust.

...  further arguments passed to or from other methods.

Value
Returns an object of class 'logLik' with an element providing the maximized log-likelihood, and further arguments giving the number of (estimated) parameters in the model ("df") and the sample size ("nobs").
Author(s)
Luca Scrucca

References

See Also
`Mclust`.

Examples
```r
Not run:
irisMclust <- Mclust(iris[,1:4])
summary(irisMclust)
logLik(irisMclust)

End(Not run)
```

Description
Returns the log-likelihood for a `MclustDA` object.

Usage
```r
S3 method for class 'MclustDA'
logLik(object, data, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>an object of class <code>MclustDA</code> resulting from a call to <code>MclustDA</code></td>
</tr>
<tr>
<td>data</td>
<td>the data for which the log-likelihood must be computed. If missing, the observed data from the <code>MclustDA</code> object is used.</td>
</tr>
<tr>
<td>...</td>
<td>further arguments passed to or from other methods.</td>
</tr>
</tbody>
</table>

Value
Returns an object of class `logLik` with an element providing the maximized log-likelihood, and further arguments giving the number of (estimated) parameters in the model ("df") and the sample size ("nobs").
map

Author(s)
Luca Scrucca

References


See Also
MclustDA.

Examples
```r
Not run:
irisMclustDA <- MclustDA(iris[,1:4], iris$Species)
summary(irisMclustDA)
logLik(irisMclustDA)

End(Not run)
```

Description
Classification given Probabilities

Converts a matrix in which each row sums to 1 into the nearest matrix of \((0,1)\) indicator variables.

Usage
```r
map(z, warn = mclust.options("warn"), ...)
```

Arguments
`z` A matrix (for example a matrix of conditional probabilities in which each row sums to 1 as produced by the E-step of the EM algorithm).

`warn` A logical variable indicating whether or not a warning should be issued when there are some columns of `z` for which no row attains a maximum.

`...` Provided to allow lists with elements other than the arguments can be passed in indirect or list calls with `do.call`.

Value
A integer vector with one entry for each row of `z`, in which the `i`-th value is the column index at which the `i`-th row of `z` attains a maximum.
References


See Also

unmap, estep, em, me.

Examples

```r
 emEst <- me(modelName = "VVV", data = iris[, -5], z = unmap(iris[, 5]))
 mapClass(emEst$z)
```

---

**mapClass**

*Correspondence between classifications.*

**Description**

Best correspondence between classes given two vectors viewed as alternative classifications of the same object.

**Usage**

```r
 mapClass(a, b)
```

**Arguments**

- `a` A numeric or character vector of class labels.
- `b` A numeric or character vector of class labels. Must have the same length as `a`.

**Value**

A list with two named elements, `aToB` and `bToA` which are themselves lists. The `aToB` list has a component corresponding to each unique element of `a`, which gives the element or elements of `b` that result in the closest class correspondence.

The `bToA` list has a component corresponding to each unique element of `b`, which gives the element or elements of `a` that result in the closest class correspondence.

**See Also**

mapClass, classError, table
Examples

```r
a <- rep(1:3, 3)
b <- rep(c("A", "B", "C"), 3)
mapClass(a, b)
a <- sample(1:3, 9, replace = TRUE)
b <- sample(c("A", "B", "C"), 9, replace = TRUE)
mapClass(a, b)
```

Description

The optimal model according to BIC for EM initialized by hierarchical clustering for parameterized Gaussian mixture models.

Usage

```r
mclust(data, G = NULL, modelNames = NULL, prior = NULL, control = emControl(), initialization = NULL, warn = mclust.options("warn"), x = NULL, ...)
```

Arguments

- **data** A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- **G** An integer vector specifying the numbers of mixture components (clusters) for which the BIC is to be calculated. The default is G=1:9.
- **modelNames** A vector of character strings indicating the models to be fitted in the EM phase of clustering. The default is:
  - for univariate data: c("E", "V")
  - for multivariate data (n > d): mclust.options("emModelNames")
  - for multivariate data (n <= d) the spherical and diagonal models: c("EII", "VII", "EEI", "EVI", "VEI", "VVI")

The help file for `mclustModelNames` describes the available models.
- **prior** The default assumes no prior, but this argument allows specification of a conjugate prior on the means and variances through the function `priorControl`.
Note that, as described in `defaultPrior`, in the multivariate case only 10 out of 14 models may be used in conjunction with a prior, i.e. those available in `MCLUST` up to version 4.4.

**control**
A list of control parameters for EM. The defaults are set by the call `emControl()`.

**initialization**
A list containing zero or more of the following components:

- `hcPairs` A matrix of merge pairs for hierarchical clustering such as produced by function `hc`. For multivariate data, the default is to compute a hierarchical clustering tree by applying function `hc` with `modelName = "VVV"` to the data or a subset as indicated by the `subset` argument. The hierarchical clustering results are to start EM. For univariate data, the default is to use quantiles to start EM.

- `subset` A logical or numeric vector specifying a subset of the data to be used in the initial hierarchical clustering phase.

- `noise` A logical or numeric vector indicating an initial guess as to which observations are noise in the data. If numeric the entries should correspond to row indexes of the data. If supplied, a noise term will be added to the model in the estimation.

- `warn` A logical value indicating whether or not certain warnings (usually related to singularity) should be issued. The default is controlled by `mclust.options`.

- `x` An object of class `'mclustBIC'`. If supplied, BIC values for models that have already been computed and are available in `x` are not recomputed. All arguments, with the exception of `data`, `G` and `modelName`, are ignored and their values are set as specified in the attributes of `x`. Defaults for `G` and `modelNames` are taken from `x`.

... Catches unused arguments in indirect or list calls via `do.call`.

**Value**
An object of class `'mclust'` providing the optimal (according to BIC) mixture model estimation. The details of the output components are as follows:

- `call` The matched call
- `data` The input data matrix.
- `modelName` A character string denoting the model at which the optimal BIC occurs.
- `n` The number of observations in the data.
- `d` The dimension of the data.
- `G` The optimal number of mixture components.
- `BIC` All BIC values.
- `bic` Optimal BIC value.
- `loglik` The log-likelihood corresponding to the optimal BIC.
- `df` The number of estimated parameters.
- `hypvol` The hypervolume parameter for the noise component if required, otherwise set to NULL (see `hypvol`).
parameters  A list with the following components:

pro  A vector whose \( k \)th component is the mixing proportion for the \( k \)th component of the mixture model. If missing, equal proportions are assumed.

mean  The mean for each component. If there is more than one component, this is a matrix whose \( k \)th column is the mean of the \( k \)th component of the mixture model.

variance  A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.

\( z \)  A matrix whose \( i,k \)th entry is the probability that observation \( i \) in the test data belongs to the \( k \)th class.

classification  The classification corresponding to \( z \), i.e. \( \text{map}(z) \).

uncertainty  The uncertainty associated with the classification.

References


See Also

`summary.Mclust`, `plot.Mclust`, `priorControl`, `emControl`, `hc`, `mclustBIC`, `mclustModelNames`, `mclust.options`

Examples

```r
mod1 = Mclust(iris[,1:4])
summary(mod1)

mod2 = Mclust(iris[,1:4], G = 3)
summary(mod2, parameters = TRUE)

Using prior
mod3 = Mclust(iris[,1:4], prior = priorControl())
summary(mod3)

mod4 = Mclust(iris[,1:4], prior = priorControl(functionName="defaultPrior", shrinkage=0.1))
summary(mod4)

Clustering of faithful data with some artificial noise added
```
nNoise = 100
set.seed(0) # to make it reproducible
Noise = apply(faithful, 2, function(x)
  runif(nNoise, min = min(x)-.1, max = max(x)+.1))
data = rbind(faithful, Noise)
plot(faithful)
points(Noise, pch = 20, cex = 0.5, col = "lightgrey")
set.seed(0)
NoiseInit = sample(c(TRUE,FALSE), size = nrow(faithful)+nNoise,
  replace = TRUE, prob = c(3,1)/4)
mod5 = Mclust(data, initialization = list(noise = NoiseInit))
summary(mod5, parameter = TRUE)
plot(mod5, what = "classification")

---

mclust-deprecated  Deprecated Functions in mclust package

Description

These functions are provided for compatibility with older versions of the mclust package only, and may be removed eventually.

Usage

cv.MclustDA(...)
cv1EMtrain(data, labels, modelNames=NULL)
bicEMtrain(data, labels, modelNames=NULL)

Arguments

...  pass arguments down.
data  A numeric vector or matrix of observations.
labels  Labels for each element or row in the dataset.
modelNames  Vector of model names that should be tested. The default is to select all available model names.

---

mclust.options  Default values for use with MCLUST package

Description

Set or retrieve default values for use with MCLUST package.

Usage

mclust.options(...)
Arguments

... one or more arguments provided in the name = value form, or no argument at all may be given.
Available arguments are described in the Details section below.

Details

`mclust.options` is provided for assigning values to the `.mclust` variable list, which is used to supply default values to various functions in MCLUST.

Available options are:

- `emModelNames` A vector of 3-character strings that are associated with multivariate models for which EM estimation is available in MCLUST.
  The current default is all of the multivariate mixture models supported in MCLUST. The help file for `mclustModelNames` describes the available models.

- `hcModelNames` A vector of character strings associated with multivariate models for which model-based hierarchical clustering is available in MCLUST.
  The available models are the following:
  "EII" = spherical, equal volume
  "EEE" = ellipsoidal, equal volume, shape, and orientation
  "VII" = spherical, unequal volume
  "VVV" = ellipsoidal, varying volume, shape, and orientation.
  The last model in this list is used as default for initialization of EM-algorithm.

- `hcUse` A string specifying the type of input variables to be used for model-based hierarchical clustering to start the EM-algorithm. Possible values are:
  "VARS" = original variables (default);
  "STD" = standardized variables;
  "SPH" = sphered variables (centered, scaled, uncorrelated) computed using SVD;
  "PCS" = principal components computed using SVD on centered variables (i.e. using the covariance matrix);
  "PCR" = principal components computed using SVD on standardized (center and scaled) variables (i.e. using the correlation matrix);
  "SVD" = scaled SVD transformation.

- `bicPlotSymbols` A vector whose entries correspond to graphics symbols for plotting the BIC values output from `Mclust` and `mclustBIC`. These are displayed in the legend which appears at the lower right of the BIC plots.

- `bicPlotColors` A vector whose entries correspond to colors for plotting the BIC curves from output from `Mclust` and `mclustBIC`. These are displayed in the legend which appears at the lower right of the BIC plots.

- `classPlotSymbols` A vector whose entries are either integers corresponding to graphics symbols or single characters for indicating classifications when plotting data. Classes are assigned symbols in the given order.

- `classPlotColors` A vector whose entries correspond to colors for indicating classifications when plotting data. Classes are assigned colors in the given order.

- `warn` A logical value indicating whether or not to issue certain warnings. Most of these warnings have to do with situations in which singularities are encountered. The default is `warn = FALSE`. 
The parameter values set via a call to this function will remain in effect for the rest of the session, affecting the subsequent behaviour of the functions for which the given parameters are relevant.

Value

If the argument list is empty the function returns the current list of values. If the argument list is not empty, the returned list is invisible.

References


See Also

mclust, MclustDA, densityMclust, emControl

Examples

```r
opt <- mclust.options() # save default values
irisBIC <- mclustBIC(iris[, -5])
summary(irisBIC, iris[, -5])

mclust.options(emModelNames = c("EI", "EE", "EEE"))
irisBIC <- mclustBIC(iris[, -5])
summary(irisBIC, iris[, -5])

mclust.options(opt) # restore default values
mclust.options()

oldpar <- par(mfrow = c(2, 1), no.readonly = TRUE)
n <- with(mclust.options(),
 max(sapply(list(bicPlotSymbols, bicPlotColors),length)))
plot(seq(n), rep(1, n), ylab = "", xlab = "", yaxt = "n",
 pch = mclust.options("bicPlotSymbols"),
 col = mclust.options("bicPlotColors"))
title("mclust.options("bicPlotSymbols") \n mclust.options("bicPlotColors")")
n <- with(mclust.options(),
 max(sapply(list(classPlotSymbols, classPlotColors),length)))
plot(seq(n), rep(1, n), ylab = "", xlab = "", yaxt = "n",
 pch = mclust.options("classPlotSymbols"),
 col = mclust.options("classPlotColors"))
title("mclust.options("classPlotSymbols") \n mclust.options("classPlotColors")")
par(oldpar)
```
mclust1Dplot  
Plot one-dimensional data modeled by an MVN mixture.

Description

Plot one-dimensional data given parameters of an MVN mixture model for the data.

Usage

mclust1Dplot(data, parameters = NULL, z = NULL,  
classification = NULL, truth = NULL, uncertainty = NULL,  
what = c("classification", "density", "errors", "uncertainty"),  
symbols = NULL, colors = NULL, ngrid = length(data),  
xlab = NULL, xlim = NULL, CEX = 1,  
main = FALSE, ...)

Arguments

data  A numeric vector of observations. Categorical variables are not allowed.
parameters  A named list giving the parameters of an MCLUST model, used to produce superimposing ellipses on the plot. The relevant components are as follows:
pro  Mixing proportions for the components of the mixture. There should one more mixing proportion than the number of Gaussian components if the mixture model includes a Poisson noise term.
mean  The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
varyance  A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.
z  A matrix in which the [i,k]th entry gives the probability of observation i belonging to the kth class. Used to compute classification and uncertainty if those arguments aren't available.
classification  A numeric or character vector representing a classification of observations (rows) of data. If present argument z will be ignored.
truth  A numeric or character vector giving a known classification of each data point. If classification or z is also present, this is used for displaying classification errors.
uncertainty  A numeric vector of values in (0,1) giving the uncertainty of each data point. If present argument z will be ignored.
what  Choose from one of the following three options: "classification" (default), "density", "errors", "uncertainty".
symbols

Either an integer or character vector assigning a plotting symbol to each unique classification. Elements in symbols correspond to classes in classification in order of appearance in the observations (the order used by the function unique). The default is to use a single plotting symbol |. Classes are delineated by showing them in separate lines above the whole of the data.

colors

Either an integer or character vector assigning a color to each unique class classification. Elements in colors correspond to classes in order of appearance in the observations (the order used by the function unique). The default is given is mclust.options("classPlotColors").

nggrid

Number of grid points to use for density computation over the interval spanned by the data. The default is the length of the data set.

xlab

An argument specifying a label for the horizontal axis.

xlim

An argument specifying bounds of the plot. This may be useful for when comparing plots.

CEX

An argument specifying the size of the plotting symbols. The default value is 1.

main

A logical variable or NULL indicating whether or not to add a title to the plot identifying the dimensions used.

... Other graphics parameters.

Side Effects

A plot showing location of the mixture components, classification, uncertainty, density and/or classification errors. Points in the different classes are shown in separated levels above the whole of the data.

References


See Also

mclust2Dplot, clPairs, coordProj

Examples

n <- 250 # create artificial data
set.seed(1)
y <- c(rnorm(n,-5), rnorm(n,0), rnorm(n,5))
yclass <- c(rep(1,n), rep(2,n), rep(3,n))

yModel <- Mclust(y)

mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, what = "classification", main = TRUE)
mclust2Dplot(y, parameters = yModel$parameters, z = yModel$z, truth = yclass, what = "errors", main = TRUE)
mclust2Dplot(y, parameters = yModel$parameters, z = yModel$z, what = "density", main = TRUE)
mclust2Dplot(y, z = yModel$z, parameters = yModel$parameters, what = "uncertainty", main = TRUE)

---

**mclust2Dplot**  
*Plot two-dimensional data modelled by an MVN mixture.*

**Description**

Plot two-dimensional data given parameters of an MVN mixture model for the data.

**Usage**

```r
mclust2Dplot(data, parameters = NULL, z = NULL, classification = NULL, truth = NULL, uncertainty = NULL, what = c("classification","uncertainty","errors"), addEllipses = TRUE, symbols = NULL, colors = NULL, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, scale = FALSE, CEX = 1, PCH = ".", main = FALSE, swapAxes = FALSE, ...)```

Arguments

- `data`
 A numeric matrix or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables. In this case the data are two dimensional, so there are two columns.

- `parameters`
 A named list giving the parameters of an *MCLUST* model, used to produce superimposing ellipses on the plot. The relevant components are as follows:

 - `pro`
 Mixing proportions for the components of the mixture. There should one more mixing proportion than the number of Gaussian components if the mixture model includes a Poisson noise term.

 - `mean`
 The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.

 - `variance`
 A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.
A matrix in which the $[i,k]$th entry gives the probability of observation i belonging to the kth class. Used to compute classification and uncertainty if those arguments aren’t available.

classification
A numeric or character vector representing a classification of observations (rows) of data. If present argument z will be ignored.

truth
A numeric or character vector giving a known classification of each data point. If classification or z is also present, this is used for displaying classification errors.

uncertainty
A numeric vector of values in $(0,1)$ giving the uncertainty of each data point. If present argument z will be ignored.

what
Choose from one of the following three options: “classification” (default), “errors”, “uncertainty”.

addEllipses
A logical indicating whether or not to add ellipses with axes corresponding to the within-cluster covariances.

symbols
Either an integer or character vector assigning a plotting symbol to each unique class in classification. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function unique). The default is given by mclust.options("classPlotSymbols").

colors
Either an integer or character vector assigning a color to each unique class in classification. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function unique). The default is given is mclust.options("classPlotColors").

xlim, ylim
Optional argument specifying bounds for the ordinate, abscissa of the plot. This may be useful for when comparing plots.

xlab, ylab
Optional argument specifying labels for the x-axis and y-axis.

scale
A logical variable indicating whether or not the two chosen dimensions should be plotted on the same scale, and thus preserve the shape of the distribution. Default: scale=FALSE

CEX
An argument specifying the size of the plotting symbols. The default value is 1.

PCH
An argument specifying the symbol to be used when a classification has not been specified for the data. The default value is a small dot ".".

main
A logical variable or NULL indicating whether or not to add a title to the plot identifying the dimensions used.

swapAxes
A logical variable indicating whether or not the axes should be swapped for the plot.

... Other graphics parameters.

Side Effects

A plot showing the data, together with the location of the mixture components, classification, uncertainty, and/or classification errors.
mclustBIC

References

See Also

surfacePlot, clPairs, coordProj, mclust.options

Examples

faithfulModel <- Mclust(faithful)
mclust2Dplot(faithful, parameters=faithfulModel$parameters, z=faithfulModel$z, what = "classification", main = TRUE)
mclust2Dplot(faithful, parameters=faithfulModel$parameters, z=faithfulModel$z, what = "uncertainty", main = TRUE)

mclustBIC

BIC for Model-Based Clustering

Description

BIC for parameterized Gaussian mixture models fitted by EM algorithm initialized by model-based hierarchical clustering.

Usage

mclustBIC(data, G = NULL, modelNames = NULL, prior = NULL, control = emControl(), initialization = list(hcPairs = NULL, subset = NULL, noise = NULL), Vinv = NULL, warn = mclust.options("warn"), x = NULL, ...)

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

G An integer vector specifying the numbers of mixture components (clusters) for which the BIC is to be calculated. The default is G=1:9, unless the argument x is specified, in which case the default is taken from the values associated with x.
modelNames A vector of character strings indicating the models to be fitted in the EM phase of clustering. The help file for `mclustModelNames` describes the available models. The default is:

c("E", "V") for univariate data
mclust.options("emModelNames") for multivariate data (n > d)
c("EII", "VII", "EEI", "EVI", "VEI", "VVI") the spherical and diagonal models for multivariate data (n <= d)

unless the argument x is specified, in which case the default is taken from the values associated with x.

prior The default assumes no prior, but this argument allows specification of a conjugate prior on the means and variances through the function `priorControl`.

control A list of control parameters for EM. The defaults are set by the call `emControl()`.

initialization A list containing zero or more of the following components:

- `hcPairs` A matrix of merge pairs for hierarchical clustering such as produced by function `hc`. For multivariate data, the default is to compute a hierarchical clustering tree by applying function `hc` with `modelName = "VVV"` to the data or a subset as indicated by the subset argument. The hierarchical clustering results are to start EM. For univariate data, the default is to use quantiles to start EM.
- `subset` A logical or numeric vector specifying a subset of the data to be used in the initial hierarchical clustering phase.
- `noise` A logical or numeric vector indicating an initial guess as to which observations are noise in the data. If numeric the entries should correspond to row indexes of the data. If supplied, a noise term will be added to the model in the estimation.

Vinv An estimate of the reciprocal hypervolume of the data region. The default is determined by applying function `hypvol` to the data. Used only if an initial guess as to which observations are noise is supplied.

warn A logical value indicating whether or not certain warnings (usually related to singularity) should be issued when estimation fails. The default is controlled by `mclust.options`.

x An object of class 'mclustBIC'. If supplied, `mclustBIC` will use the settings in x to produce another object of class 'mclustBIC', but with G and modelNames as specified in the arguments. Models that have already been computed in x are not recomputed. All arguments to `mclustBIC` except data, G and modelName are ignored and their values are set as specified in the attributes of x. Defaults for G and modelNames are taken from x.

... Catches unused arguments in indirect or list calls via do.call.

Value

Return an object of class 'mclustBIC' containing the Bayesian Information Criterion for the specified mixture models numbers of clusters. Auxiliary information returned as attributes.

The corresponding `print` method shows the matrix of values and the top models according to the BIC criterion.
References

See Also

priorControl, emControl, mclustModel, summary.mclustBIC, hc, me, mclustModelNames, mclust.options

Examples

irisBIC <- mclustBIC(iris[, -5])
irisBIC
plot(irisBIC)

Not run:
subset <- sample(1:nrow(iris), 100)
irisBIC <- mclustBIC(iris[, -5], initialization=list(subset = subset))
irisBIC
plot(irisBIC)

irisBIC1 <- mclustBIC(iris[, -5], G=seq(from=1, to=9, by=2),
 modelNames=c("EII", "EEI", "EEE"))
irisBIC1
plot(irisBIC1)
irisBIC2 <- mclustBIC(iris[, -5], G=seq(from=2, to=8, by=2),
 modelNames=c("VII", "VVI", "VVV"), x= irisBIC1)
irisBIC2
plot(irisBIC2)

End(Not run)

nNoise <- 450
set.seed(0)
poissonNoise <- apply(apply(iris[, -5], 2, range), 2, function(x, n)
 runif(n, min = x[1]-.1, max = x[2]+.1), n = nNoise)
set.seed(0)
nNoiseInit <- sample(c(TRUE, FALSE), size=nrow(iris)+nNoise, replace=TRUE,
 prob=c(3,1))
irisNData <- rbind(iris[, -5], poissonNoise)
nNoiseBIC <- mclustBIC(data = irisNData, G = 1:5,
 initialization = list(noise = noiseInit))
nNoiseBIC
plot(nNoiseBIC)
Description

Bootstrap or jackknife estimation of standard errors and percentile bootstrap confidence intervals for the parameters of a Gaussian mixture model.

Usage

\[\text{MclustBootstrap}(\text{object, nboot = 999, type = c("bs", "wlbs", "jk"), verbose = TRUE, ...}) \]

Arguments

- \text{object}: An object of class 'Mclust' or 'densityMclust' providing an estimated Gaussian mixture model.
- \text{nboot}: The number of bootstrap replications.
- \text{type}: A character string specifying the type of resampling to use:
 - "bs": nonparametric bootstrap
 - "wlbs": weighted likelihood bootstrap
 - "jk": jackknife
- \text{verbose}: A logical, if TRUE and the session is interactive a text progress bar is displayed during the bootstrap procedure.
- \text{...}: Further arguments passed to or from other methods.

Details

For a fitted Gaussian mixture model with \text{object\$G} mixture components and covariances parameterisation \text{object\$modelName}, this function returns either the bootstrap distribution or the jackknife distribution of mixture parameters. In the former case, the nonparametric bootstrap or the weighted likelihood bootstrap approach could be used, so the the bootstrap procedure generates \text{nboot} bootstrap samples of the same size as the original data by resampling with replacement from the observed data. In the jackknife case, the procedure considers all the samples obtained by omitting one observation at time.

The resulting resampling distribution can then be used to obtain standard errors and percentile confidence intervals by the use of \text{summary.MclustBootstrap} function.

Value

An object of class 'MclustBootstrap' with the following components:

- \text{n}: The number of observations in the data.
MclustBootstrap

The dimension of the data.

A value specifying the number of mixture components.

A character string specifying the mixture model covariances parameterisation (see mclustModelNames).

A list of estimated parameters for the mixture components with the following components:

- pro a vector of mixing proportions.
- mean a matrix of means for each component.
- variance an array of covariance matrices for each component.

The number of bootstrap replications if type = "bs" or type = "wlbs". The sample size if type = "jk".

The type of resampling approach used.

The number of resamples that did not convergence during the procedure.

A matrix of dimension (nboot x G) containing the bootstrap distribution for the mixing proportion.

An array of dimension (nboot x d x G), where d is the dimension of the data, containing the bootstrap distribution for the component means.

An array of dimension (nboot x d x d x G), where d is the dimension of the data, containing the bootstrap distribution for the component covariances.

References

See Also

Examples

```r
## Not run:
data(diabetes)
X = diabetes[,-1]
modClust = Mclust(X)
bootClust = MclustBootstrap(modClust)
summary(bootClust, what = "se")
summary(bootClust, what = "ci")

data(acidity)
modDens = densityMclust(acidity)
modDens = MclustBootstrap(modDens)
summary(modDens, what = "se")
```
mclustBootstrapLRT

Bootstrap Likelihood Ratio Test for the Number of Mixture Components

Description

Perform the likelihood ratio test (LRT) for assessing the number of mixture components in a specific finite mixture model parameterisation. The observed significance is approximated by using the (parametric) bootstrap for the likelihood ratio test statistic (LRTS).

Usage

`mclustbootstraplrt(data, modelName = NULL, nboot = 999, level = 0.05, maxG = NULL, verbose = TRUE, ...)`

```r
## S3 method for class 'mclustBootstrapLRT'
print(x, ...)
```

```r
## S3 method for class 'mclustBootstrapLRT'
plot(x, G = 1, hist.col = "grey", hist.border = "lightgrey", breaks = "Scott", col = "forestgreen", lwd = 2, lty = 3, main = NULL, ...)
```

Arguments

- **data**
 A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

- **modelName**
 A character string indicating the mixture model to be fitted. The help file for `mclustModelNames` describes the available models.

- **nboot**
 The number of bootstrap replications to use (by default 999).

- **level**
 The significance level to be used to terminate the sequential bootstrap procedure.

- **maxG**
 The maximum number of mixture components G to test. If not provided the procedure is stopped when a test is not significant at the specified `level`.

- **verbose**
 A logical, if TRUE and the session is interactive a text progress bar is displayed during the bootstrap procedure.

- **...**
 Further arguments passed to or from other methods. In particular, see the optional arguments in `mclustBIC`.

- **x**
 An `mclustBootstrapLRT` object.

- **G**
 A value specifying the number of components for which to plot the bootstrap distribution.

- **hist.col**
 The colour to be used to fill the bars of the histogram.
hist.border The color of the border around the bars of the histogram.
breaks See the argument in function hist.
col, lwd, lty The color, line width and line type to be used to represent the observed LRT statistic.
main The title for the graph.

Details

The implemented algorithm for computing the LRT observed significance using the bootstrap is the following. Let G_0 be the number of mixture components under the null hypothesis versus $G_1 = G_0 + 1$ under the alternative. Bootstrap samples are drawn by simulating data under the null hypothesis. Then, the p-value may be approximated using eq. (13) on McLachlan and Rathnayake (2014). Equivalently, using the notation of Davison and Hinkley (1997) it may be computed as

$$p\text{-value} = \frac{1 + \#\{LRT_b^* \geq LRT_{obs}\}}{B + 1}$$

where

B = number of bootstrap samples
LRT_{obs} = LRTS computed on the observed data
LRT_b^* = LRTS computed on the bth bootstrap sample.

Value

An object of class 'mclustBootstrapLRT' with the following components:

- G A vector of number of components tested under the null hypothesis.
- modelName A character string specifying the mixture model as provided in the function call (see above).
- obs The observed values of the LRTS.
- boot A matrix of dimension nboot x the number of components tested containing the bootstrap values of LRTS.
- p.value A vector of p-values.

References

See Also

mclustBIC, mclustICL, Mclust
Examples

```r
## Not run:
data(faithful)
faithful.boot = mclustBootstrapRT(faithful, model = "VVV")
faithful.boot
plot(faithful.boot, G = 1)
plot(faithful.boot, G = 2)

## End(Not run)
```

Description

Discriminant analysis based on Gaussian finite mixture modeling.

Usage

```r
MclustDA(data, class, G = NULL, modelName = NULL,
modelType = c("MclustDA", "EDDA"),
prior = NULL,
control = emControl(),
initialization = NULL,
warn = mclust.options(\"warn\"),
...)
```

Arguments

data: A data frame or matrix giving the training data.

class: A vector giving the class labels for the observations in the training data.

G: An integer vector specifying the numbers of mixture components (clusters) for which the BIC is to be calculated within each class. The default is G = 1:5. A different set of mixture components for each class can be specified by providing this argument with a list of integers for each class. See the examples below.

modelName: A vector of character strings indicating the models to be fitted by EM within each class (see the description in mclustModelNames). A different set of mixture models for each class can be specified by providing this argument with a list of character strings. See the examples below.

modelType: A character string specifying whether the models given in modelName should fit a different number of mixture components and covariance structures for each class ("MclustDA", the default) or should be constrained to have a single component for each class with the same covariance structure among classes ("EDDA"). See Details section and the examples below.
prior The default assumes no prior, but this argument allows specification of a conju-
gate prior on the means and variances through the function priorControl.
control A list of control parameters for EM. The defaults are set by the call emControl().
initialization A list containing zero or more of the following components:
 hcPairs A matrix of merge pairs for hierarchical clustering such as produced
 by function hc. The default is to compute a hierarchical clustering tree
 by applying function hc with modelName = "E" to univariate data and
 modelName = "V" to multivariate data or a subset as indicated by the
 subset argument. The hierarchical clustering results are used as starting
 values for EM.
 subset A logical or numeric vector specifying a subset of the data to be used
 in the initial hierarchical clustering phase.
warn A logical value indicating whether or not certain warnings (usually related to
 singularity) should be issued when estimation fails. The default is controlled by
 mclust.options.
... Further arguments passed to or from other methods.

Details
The "EDDA" method for discriminant analysis is described in Bensmail and Celeux (1996), while
"MclustDA" in Fraley and Raftery (2002).

Value
An object of class 'MclustDA' providing the optimal (according to BIC) mixture model.
The details of the output components are as follows:
call The matched call.
data The input data matrix.
class The input class labels.
type A character string specifying the modelType estimated.
models A list of Mclust objects containing information on fitted model for each class.
n The total number of observations in the data.
d The dimension of the data.
bic Optimal BIC value.
loglik Log-likelihood for the selected model.
df Number of estimated parameters.

References
Bensmail, H., and Celeux, G. (1996) Regularized Gaussian Discriminant Analysis Through Eigen-
C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density

Author(s)
Luca Scrucca

See Also

summary.mclustDA, plot.mclustDA, predict.mclustDA, classError

Examples

odd <- seq(from = 1, to = nrow(iris), by = 2)
even <- odd + 1
X.train <- iris[odd,-5]
Class.train <- iris[odd,5]
X.test <- iris[even,-5]
Class.test <- iris[even,5]

common EEE covariance structure (which is essentially equivalent to linear discriminant analysis)
irisMclustDA <- MclustDA(X.train, Class.train, modelType = "EDDA", modelNames = "EEE")
summary(irisMclustDA, parameters = TRUE)
summary(irisMclustDA, newdata = X.test, newclass = Class.test)

common covariance structure selected by BIC
irisMclustDA <- MclustDA(X.train, Class.train, modelType = "EDDA")
summary(irisMclustDA, parameters = TRUE)
summary(irisMclustDA, newdata = X.test, newclass = Class.test)

general covariance structure selected by BIC
irisMclustDA <- MclustDA(X.train, Class.train)
summary(irisMclustDA, parameters = TRUE)
summary(irisMclustDA, newdata = X.test, newclass = Class.test)

plot(irisMclustDA)
plot(irisMclustDA, dimens = 3:4)
plot(irisMclustDA, dimens = 4)

plot(irisMclustDA, what = "classification")
plot(irisMclustDA, what = "classification", newdata = X.test)
plot(irisMclustDA, what = "classification", dimens = 3:4)
plot(irisMclustDA, what = "classification", dimens = 4)
plot(irisMclustDA, what = "classification", dimens = 4, newdata = X.test)

plot(irisMclustDA, what = "train&test", newdata = X.test)
plot(irisMclustDA, what = "train&test", newdata = X.test, dimens = 3:4)
plot(irisMclustDA, what = "train&test", newdata = X.test, dimens = 4)

plot(irisMclustDA, what = "error")
MclustDR

Dimension reduction for model-based clustering and classification

Description

A dimension reduction method for visualizing the clustering or classification structure obtained from a finite mixture of Gaussian densities.
Usage

\texttt{MclustDR(object, normalized = TRUE, Sigma, lambda = 0.5,}
\texttt{ tol = sqrt(.Machine$double.eps))}

Arguments

\begin{itemize}
\item \textbf{object} An object of class 'Mclust' or 'MclustDA' resulting from a call to, re-
\item \textbf{normalized} Logical. If \texttt{TRUE} directions are normalized to unit norm.
\item \textbf{Sigma} Marginal covariance matrix of data. If not provided is estimated by the MLE of
\item \textbf{lambda} A tuning parameter in the range [0,1] described in Scrucca (2014). The default
\item \textbf{tol} A tolerance value.
\end{itemize}

Details

The method aims at reducing the dimensionality by identifying a set of linear combinations, ordered
by importance as quantified by the associated eigenvalues, of the original features which capture
most of the clustering or classification structure contained in the data.

Information on the dimension reduction subspace is obtained from the variation on group means
and, depending on the estimated mixture model, on the variation on group covariances (see Scrucca,
2010).

Observations may then be projected onto such a reduced subspace, thus providing summary plots
which help to visualize the underlying structure.

The method has been extended to the supervised case, i.e. when the true classification is known
(see Scrucca, 2013).

This implementation doesn’t provide a formal procedure for the selection of dimensionality. A
future release will include one or more methods.

Value

An object of class 'MclustDR' with the following components:

\begin{itemize}
\item \textbf{call} The matched call
\item \textbf{type} A character string specifying the type of model for which the dimension redu-
\item \textbf{x} The data matrix.
\item \textbf{Sigma} The covariance matrix of the data.
\item \textbf{mixcomp} A numeric vector specifying the mixture component of each data observation.
\end{itemize}
A factor specifying the classification of each data observation. For model-based clustering this is equivalent to the corresponding mixture component. For model-based classification this is the known classification.

G
The number of mixture components.

modelName
The name of the parameterization of the estimated mixture model(s). See mclustModelNames.

mu
A matrix of means for each mixture component.

sigma
An array of covariance matrices for each mixture component.

pro
The estimated prior for each mixture component.

M
The kernel matrix.

lambda
The tuning parameter.

evalues
The eigenvalues from the generalized eigen-decomposition of the kernel matrix.

raw.evectors
The raw eigenvectors from the generalized eigen-decomposition of the kernel matrix, ordered according to the eigenvalues.

basis
The basis of the estimated dimension reduction subspace.

std.basis
The basis of the estimated dimension reduction subspace standardized to variables having unit standard deviation.

numdir
The dimension of the projection subspace.

dir
The estimated directions, i.e. the data projected onto the estimated dimension reduction subspace.

Author(s)
Luca Scrucca

References

See Also

summary.MclustDR, plot.MclustDR, Mclust, MclustDA.

Examples

clustering
data(diabetes)
mod = Mclust(diabetes[, -1])
summary(mod)
adjust the tuning parameter to show the most separating directions
dr1 = MclustDR(mod, lambda = 1)
summary(dr1)
plot(dr1, what = "scatterplot")
plot(dr1, what = "values")

classification
data(banknote)
da = MclustDA(banknote[,2:7], banknote$Status, modelType = "EDDA")
dr = MclustDR(da)
summary(dr)
da = MclustDA(banknote[,2:7], banknote$Status)
dr = MclustDR(da)
summary(dr)

mclustICL

ICL Criterion for Model-Based Clustering

Description

ICL (Integrated Complete-data Likelihood) for parameterized Gaussian mixture models fitted by EM algorithm initialized by model-based hierarchical clustering.

Usage

```r
mclustICL(data, G = NULL, modelNames = NULL,
          initialization = list(hcPairs = NULL,
                               subset = NULL,
                               noise = NULL),
          x = NULL, ...)
```

Arguments

- `data` A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- `G` An integer vector specifying the numbers of mixture components (clusters) for which the criteria should be calculated. The default is `G = 1:9`.
mclustICL

85

modelNames A vector of character strings indicating the models to be fitted in the EM phase of clustering. The help file for mclustModelNames describes the available models. The default is:
c("E", "V") for univariate data
call(mclust.options("emModelNames")) for multivariate data (n > d)
c("EII", "VII", "EEI", "EVI", "VEI", "VVI") the spherical and diagonal models for multivariate data (n <= d)

initialization A list containing zero or more of the following components:

hPairs A matrix of merge pairs for hierarchical clustering such as produced by function hc. For multivariate data, the default is to compute a hierarchical clustering tree by applying function hc with modelName = "VV" to the data or a subset as indicated by the subset argument. The hierarchical clustering results are to start EM. For univariate data, the default is to use quantiles to start EM.

subset A logical or numeric vector specifying a subset of the data to be used in the initial hierarchical clustering phase.

x An object of class 'mclustICL'. If supplied, mclustICL will use the settings in x to produce another object of class 'mclustICL', but with G and modelNames as specified in the arguments. Models that have already been computed in x are not recomputed. All arguments to mclustICL except data, G and modelName are ignored and their values are set as specified in the attributes of x. Defaults for G and modelNames are taken from x.

... Futhermore arguments used in the call to Mclust. See also mclustBIC.

object An integer vector specifying the numbers of mixture components (clusters) for which the criteria should be calculated. The default is G = 1:9.

Value

Returns an object of class 'mclustICL' containing the the ICL criterion for the specified mixture models and numbers of clusters.

The corresponding print method shows the matrix of values and the top models according to the ICL criterion. The summary method shows only the top models.

References

See Also

plot.mclustICL, Mclust, mclustBIC, mclustBootstrapLRT, bic, icl
mclustModel

Best model based on BIC

Description

Determines the best model from clustering via mclustBIC for a given set of model parameterizations and numbers of components.

Usage

mclustModel(data, BICvalues, G, modelNames, ...)

Arguments

data The matrix or vector of observations used to generate 'object'.
BICvalues An 'mclustBIC' object, which is the result of applying mclustBIC to data.
G A vector of integers giving the numbers of mixture components (clusters) from which the best model according to BIC will be selected (as. character(G) must be a subset of the row names of BICvalues). The default is to select the best model for all numbers of mixture components used to obtain BICvalues.
modelNames A vector of integers giving the model parameterizations from which the best model according to BIC will be selected (as. character(model) must be a subset of the column names of BICvalues). The default is to select the best model for parameterizations used to obtain BICvalues.
... Not used. For generic/method consistency.

Value

A list giving the optimal (according to BIC) parameters, conditional probabilities z, and log-likelihood, together with the associated classification and its uncertainty.

The details of the output components are as follows:

Examples

data(faithful)
faithful.ICL <- mclustICL(faithful)
faithful.ICL
summary(faithful.ICL)
plot(faithful.ICL)
Not run:
compare with
faithful.BIC = mclustBIC(faithful)
faithful.BIC
plot(faithful.BIC)

End(Not run)
mclustModel

modelName A character string indicating the model. The help file for `mclustModelNames` describes the available models.

n The number of observations in the data.

d The dimension of the data.

G The number of components in the Gaussian mixture model corresponding to the optimal BIC.

bic The optimal BIC value.

loglik The log-likelihood corresponding to the optimal BIC.

parameters A list with the following components:

pro A vector whose kth component is the mixing proportion for the kth component of the mixture model. If missing, equal proportions are assumed.

mean The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.

variance A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.

Vinv The estimate of the reciprocal hypervolume of the data region used in the computation when the input indicates the addition of a noise component to the model.

z A matrix whose [i,k]th entry is the probability that observation i in the test data belongs to the kth class.

References

See Also

`mclustBIC`

Examples

```r
irisBIC <- mclustBIC(iris[, -5])
mclustModel(iris[, -5], irisBIC)
mclustModel(iris[, -5], irisBIC, G = 1:6, modelNames = c("VII", "VVI", "VVV"))
```
Description

Description of model names used in the MCLUST package.

Usage

mclustModelNames(model)

Arguments

model A string specifying the model.

Details

The following models are available in package mclust:

univariate mixture
"E" = equal variance (one-dimensional)
"V" = variable variance (one-dimensional)

multivariate mixture
"EII" = spherical, equal volume
"VII" = spherical, unequal volume
"EEI" = diagonal, equal volume and shape
"VEI" = diagonal, varying volume, equal shape
"EEV" = diagonal, equal volume, varying shape
"VVI" = diagonal, varying volume and shape
"EEE" = ellipsoidal, equal volume, shape, and orientation
"EVE" = ellipsoidal, equal volume and orientation (*)
"VEE" = ellipsoidal, equal shape and orientation (*)
"VVE" = ellipsoidal, equal orientation (*)
"EEV" = ellipsoidal, equal volume and equal shape
"VEV" = ellipsoidal, equal shape
"EVV" = ellipsoidal, equal volume (*)
"VVV" = ellipsoidal, varying volume, shape, and orientation

single component
"X" = univariate normal
"XII" = spherical multivariate normal
"XXI" = diagonal multivariate normal
"XXX" = ellipsoidal multivariate normal

(*) new models in mclust version >= 5.0.0.
mclustVariance

Value

Returns a list with the following components:

- **model**: a character string indicating the model (as in input).
- **type**: the description of the indicated model (see Details section).

References

See Also

`mclust`, `mclustBIC`

Examples

```r
mclustModelNames("E")
mclustModelNames("EEE")
mclustModelNames("VVV")
mclustModelNames("XXI")
```

mclustVariance

Template for variance specification for parameterized Gaussian mixture models

Description

Specification of variance parameters for the various types of Gaussian mixture models.

Usage

```r
mclustVariance(modelName, d = NULL, G = 2)
```

Arguments

- **modelName**: A character string specifying the model.
- **d**: A integer specifying the dimension of the data.
- **G**: An integer specifying the number of components in the mixture model.
The variance component in the parameters list from the output to e.g. `me` or `mstep` or input to e.g. `estep` may contain one or more of the following arguments, depending on the model:

- **modelName**: A character string indicating the model.
- **d**: The number of components in the mixture model.
- **G**: The dimension of the data.
- **sigmasq**: For the one-dimensional models ("E", "V") and spherical models ("EII", "VII"). This is either a vector whose kth component is the variance for the kth component in the mixture model ("V" and "VII"), or a scalar giving the common variance for all components in the mixture model ("E" and "EII").
- **sigma**: For all multidimensional mixture models. A d by d by G matrix array whose [l, k, l]th entry is the covariance matrix for the kth component of the mixture model.
- **cholsigma**: For the unconstrained covariance mixture model "VII". A d by d upper triangular matrix giving the Cholesky factor of the covariance matrix for the kth component of the mixture model.
- **scale**: For diagonal models "EEI", "EVI", "VEI", "VVI" and constant-shape models "EEV" and "VEV". Either a G-vector giving the scale of the covariance (the dth root of its determinant) for each component in the mixture model, or a single numeric value if the scale is the same for each component.
- **shape**: For diagonal models "EEI", "EVI", "VEI", "VVI" and constant-shape models "EEV" and "VEV". Either a G by d matrix in which the kth column is the shape of the covariance matrix (normalized to have determinant 1) for the kth component, or a d-vector giving a common shape for all components.
- **orientation**: For the constant-shape models "EEV" and "VEV". Either a d by d by G array whose [l, k, l]th entry is the orthonormal matrix whose columns are the eigenvectors of the covariance matrix of the kth component, or a d by d orthonormal matrix if the mixture components have a common orientation. The orientation component is not needed in spherical and diagonal models, since the principal components are parallel to the coordinate axes so that the orientation matrix is the identity.

In all cases, the value -1 is used as a placeholder for unknown nonzero entries.

References

Description

Implements the EM algorithm for MVN mixture models parameterized by eigenvalue decomposition, starting with the maximization step.

Usage

```r
me(modelName, data, z, prior = NULL, control = emControl(),
   Vinv = NULL, warn = NULL, ...)
```

Arguments

- `modelName` A character string indicating the model. The help file for `mclustModelNames` describes the available models.
- `data` A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- `z` A matrix whose \([i,k]\)th entry is an initial estimate of the conditional probability of the \(i\)th observation belonging to the \(k\)th component of the mixture.
- `prior` Specification of a conjugate prior on the means and variances. See the help file for `priorControl` for further information. The default assumes no prior.
- `control` A list of control parameters for EM. The defaults are set by the call `emControl()`.
- `Vinv` If the model is to include a noise term, `Vinv` is an estimate of the reciprocal hypervolume of the data region. If set to a negative value or 0, the model will include a noise term with the reciprocal hypervolume estimated by the function `hypvol`. The default is not to assume a noise term in the model through the setting `Vinv=NULL`.
- `warn` A logical value indicating whether or not certain warnings (usually related to singularity) should be issued when the estimation fails. The default is set in `mclust.options("warn")`.
- `...` Catches unused arguments in indirect or list calls via `do.call`.

Value

A list including the following components:

- `modelName` A character string identifying the model (same as the input argument).
- `n` The number of observations in the data.
- `d` The dimension of the data.
- `G` The number of mixture components.
A matrix whose \([i,k]\)th entry is the conditional probability of the \(i\)th observation belonging to the \(k\)th component of the mixture.

parameters

A vector whose \(k\)th component is the mixing proportion for the \(k\)th component of the mixture model. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.

mean

The mean for each component. If there is more than one component, this is a matrix whose \(k\)th column is the mean of the \(k\)th component of the mixture model.

variance

A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for \texttt{mclustVariance} for details.

\(\text{vinv}\)

The estimate of the reciprocal hypervolume of the data region used in the computation when the input indicates the addition of a noise component to the model.

loglik

The log likelihood for the data in the mixture model.

control

The list of control parameters for EM used.

prior

The specification of a conjugate prior on the means and variances used, NULL if no prior is used.

Attributes:

"info" Information on the iteration.

"WARNING" An appropriate warning if problems are encountered in the computations.

References

See Also

\texttt{me}, \texttt{meV}, \texttt{em}, \texttt{mstep}, \texttt{estep}, \texttt{priorControl}, \texttt{mclustModelNames}, \texttt{mclustVariance}, \texttt{mclust.options}

Examples

\begin{verbatim}
me(modelName = "VVV", data = iris[,-5], z = unmap(iris[,5]))
\end{verbatim}
Description

Implements the EM algorithm for fitting MVN mixture models parameterized by eigenvalue decomposition, when observations have weights, starting with the maximization step.

Usage

```r
me.weighted(modelName, data, z, weights = NULL, prior = NULL, 
control = emControl(), Vinv = NULL, warn = NULL, ...)
```

Arguments

- **modelName**: A character string indicating the model. The help file for `mclustModelNames` describes the available models.
- **data**: A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- **z**: A matrix whose \([i,k]th\) entry is an initial estimate of the conditional probability of the \(i\)th observation belonging to the \(k\)th component of the mixture.
- **weights**: A vector of positive weights, where the \([i]\)th entry is the weight for the \(i\)th observation. If any of the weights are greater than one, then they are scaled so that the maximum weight is one.
- **prior**: Specification of a conjugate prior on the means and variances. See the help file for `priorControl` for further information. The default assumes no prior.
- **control**: A list of control parameters for EM. The defaults are set by the call `emControl`.
- **Vinv**: If the model is to include a noise term, \(Vinv\) is an estimate of the reciprocal hypervolume of the data region. If set to a negative value or 0, the model will include a noise term with the reciprocal hypervolume estimated by the function `hypvol`. The default is not to assume a noise term in the model through the setting \(Vinv=NULL\).
- **warn**: A logical value indicating whether or not certain warnings (usually related to singularity) should be issued when the estimation fails. The default is set by `warn` using `mclust.options`.
- **...**: Catches unused arguments in indirect or list calls via `do.call`.

Value

A list including the following components:

- **modelName**: A character string identifying the model (same as the input argument).
A matrix whose $[i,k]$th entry is the conditional probability of the ith observation belonging to the kth component of the mixture.

parameters A vector whose kth component is the mixing proportion for the kth component of the mixture model. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.

mean The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.

variance A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.

Vinv The estimate of the reciprocal hypervolume of the data region used in the computation when the input indicates the addition of a noise component to the model.

loglik The log likelihood for the data in the mixture model.

Attributes: "info" Information on the iteration. "WARNING" An appropriate warning if problems are encountered in the computations.

References

Author(s)

Thomas Brendan Murphy

See Also

`me, meE, ..., meVV, em, mstep, estep, priorControl, mclustModelNames, mclustVariance, mclust.options`

Examples

```r
w <- rep(1, 150)
w[1] <- 0
me.weighted(modelName = "VVV", data = iris[, -5], z = unmap(iris[, 5]), weights = w)
```
EM algorithm starting with M-step for a parameterized Gaussian mixture model.

Description

Implements the EM algorithm for a parameterized Gaussian mixture model, starting with the maximization step.

Usage

```r
meE(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...)
meV(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...)
meEII(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...)
meVII(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...)
meEEE(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...)
meEVE(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...)
meEVE(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...)
meVVE(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...)
meEVV(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...)
meEXI(data, prior = NULL, warn = NULL, ...)
meXXI(data, prior = NULL, warn = NULL, ...)
meXXX(data, prior = NULL, warn = NULL, ...)
```

Arguments

- **data**
 A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

- **z**
 A matrix whose \([i,k]\)th entry is the conditional probability of the \(i\)th observation belonging to the \(k\)th component of the mixture.

- **prior**
 Specification of a conjugate prior on the means and variances. The default assumes no prior.

- **control**
 A list of control parameters for EM. The defaults are set by the call `emControl()`.

- **Vinv**
 An estimate of the reciprocal hypervolume of the data region, when the model is to include a noise term. Set to a negative value or zero if a noise term is desired, but an estimate is unavailable — in that case function `hypvol` will be used to obtain the estimate. The default is not to assume a noise term in the model through the setting `Vinv=NULL`.
warn A logical value indicating whether or not certain warnings (usually related to singularity) should be issued when the estimation fails. The default is given by
mclust.options("warn").

... Catches unused arguments in indirect or list calls via do.call.

Value

A list including the following components:

- **modelName** A character string identifying the model (same as the input argument).
- **z** A matrix whose \([i,k]\)th entry is the conditional probability of the \(i\)th observation belonging to the \(k\)th component of the mixture.
- **parameters** pro A vector whose \(k\)th component is the mixing proportion for the \(k\)th component of the mixture model. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.
- **mean** The mean for each component. If there is more than one component, this is a matrix whose \(k\)th column is the mean of the \(k\)th component of the mixture model.
- **variance** A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.
- **vinv** The estimate of the reciprocal hypervolume of the data region used in the computation when the input indicates the addition of a noise component to the model.
- **loglik** The log likelihood for the data in the mixture model.

Attributes: "info" Information on the iteration.

"WARNING" An appropriate warning if problems are encountered in the computations.

References

See Also

em, me, estep, mclust.options
mstep

Examples

```r
mstep(data = iris[,5], z = unmap(iris[,5]))
```

Description

Maximization step in the EM algorithm for parameterized Gaussian mixture models.

Usage

```r
mstep(modelName, data, z, prior = NULL, warn = NULL, ...)
```

Arguments

- `modelName` A character string indicating the model. The help file for `mclustModelNames` describes the available models.
- `data` A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- `z` A matrix whose $[i,k]$th entry is the conditional probability of the ith observation belonging to the kth component of the mixture. In analyses involving noise, this should not include the conditional probabilities for the noise component.
- `prior` Specification of a conjugate prior on the means and variances. The default assumes no prior.
- `warn` A logical value indicating whether or not certain warnings (usually related to singularity) should be issued when the estimation fails. The default is given by `mclust.options("warn")`.
- `...` Catches unused arguments in indirect or list calls via `do.call`.

Value

A list including the following components:

- `modelName` A character string identifying the model (same as the input argument).
- `parameters` A vector whose kth component is the mixing proportion for the kth component of the mixture model. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.
- `mean` The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
- `variance` A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.
Attributes:

"info" For those models with iterative M-steps ("VEI" and "VEV"), information on the iteration.
"WARNING" An appropriate warning if problems are encountered in the computations.

References

Note

This function computes the M-step only for MVN mixtures, so in analyses involving noise, the conditional probabilities input should exclude those for the noise component.

In contrast to `me` for the EM algorithm, computations in `mstep` are carried out unless failure due to overflow would occur. To impose stricter tolerances on a single `mstep`, use `me` with the `itmax` component of the control argument set to 1.

See Also

`mstepE`, ..., `mstepVVV, emControl, me, estep, mclust.options`

Examples

```r
mstep(modelName = "VII", data = iris[, -5], z = unmap(iris[, 5]))
```

Description

Maximization step in the EM algorithm for a parameterized Gaussian mixture model.

Usage

```r
mstepE( data, z, prior = NULL, warn = NULL, ...)
mstepV( data, z, prior = NULL, warn = NULL, ...)
mstepEII( data, z, prior = NULL, warn = NULL, ...)
mstepVII( data, z, prior = NULL, warn = NULL, ...)
mstepEII( data, z, prior = NULL, warn = NULL, ...)
mstepVEI( data, z, prior = NULL, warn = NULL, control = NULL, ...)
mstepVEI( data, z, prior = NULL, warn = NULL, ...)
mstepVVI( data, z, prior = NULL, warn = NULL, ...)
mstepVVI( data, z, prior = NULL, warn = NULL, ...)
```
Arguments

- **data**: A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

- **z**: A matrix whose \([i, k]\)th entry is the conditional probability of the \(i\)th observation belonging to the \(k\)th component of the mixture. In analyses involving noise, this should not include the conditional probabilities for the noise component.

- **prior**: Specification of a conjugate prior on the means and variances. The default assumes no prior.

- **warn**: A logical value indicating whether or not certain warnings (usually related to singularity) should be issued when the estimation fails. The default is given by mclust.options("warn").

- **control**: Values controlling termination for models "VEI" and "VEV" that have an iterative M-step. This should be a list with components named \(\text{itmax}\) and \(\text{tol}\). These components can be of length 1 or 2; in the latter case, mstep will use the second value, under the assumption that the first applies to an outer iteration (as in the function \(\text{me}\)). The default uses the default values from the function \(\text{emControl}\), which sets no limit on the number of iterations, and a relative tolerance of \(\sqrt{\text{Machine}_\text{double}_\text{eps}}\) on successive iterates.

- **...**: Catches unused arguments in indirect or list calls via do.call.

Value

A list including the following components:

- **modelName**: A character string identifying the model (same as the input argument).

- **parameters**: A vector whose \(k\)th component is the mixing proportion for the \(k\)th component of the mixture model. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.

- **mean**: The mean for each component. If there is more than one component, this is a matrix whose \(k\)th column is the mean of the \(k\)th component of the mixture model.

- **variance**: A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.
mvn

\textbf{Attributes:}
"info" For those models with iterative M-steps ("VEI" and "VEV"), information on the iteration.
"WARNING" An appropriate warning if problems are encountered in the computations.

\textbf{References}

\textbf{Note}

This function computes the M-step only for MVN mixtures, so in analyses involving noise, the conditional probabilities input should exclude those for the noise component.

In contrast to \texttt{me} for the EM algorithm, computations in \texttt{mstep} are carried out unless failure due to overflow would occur. To impose stricter tolerances on a single \texttt{mstep}, use \texttt{me} with the \textit{itmax} component of the \texttt{control} argument set to 1.

\textbf{See Also}

\texttt{mstep}, \texttt{me}, \texttt{estep}, \texttt{mclustVariance}, \texttt{priorControl}, \texttt{emControl}.

\textbf{Examples}

\begin{verbatim}
mstepVII(data = iris[,-5], z = unmap(iris[,5]))
\end{verbatim}

\begin{center}
\begin{tabular}{ll}
\textbf{mvn} & \textit{Univariate or Multivariate Normal Fit} \\
\end{tabular}
\end{center}

\textbf{Description}

Computes the mean, covariance, and log-likelihood from fitting a single Gaussian to given data (univariate or multivariate normal).

\textbf{Usage}

\begin{verbatim}
mvn(modelName, data, prior = NULL, warn = NULL, ...)
\end{verbatim}
Arguments

modelName A character string representing a model name. This can be either "Spherical", "Diagonal", or "Ellipsoidal" or else "X" for one-dimensional data, "XII" for a spherical Gaussian, "XXI" for a diagonal Gaussian "XXX" for a general ellipsoidal Gaussian

data A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
prior Specification of a conjugate prior on the means and variances. The default assumes no prior.
warn A logical value indicating whether or not a warning should be issued whenever a singularity is encountered. The default is given by mclust.options("warn").

Value

A list including the following components:

modelName A character string identifying the model (same as the input argument).
parameters mean The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
 variance A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.

loglik The log likelihood for the data in the mixture model.

Attributes: "WARNING" An appropriate warning if problems are encountered in the computations.

References

See Also

mvnX, mvnXII, mvnXXI, mvnXXX, mclustModelNames
Examples

```r
n <- 1000
data <- matrix(rnorm(n*3), n, 3)
mvn(modName = "X", x)
mvnx(data, prior = NULL, warn = NULL, ...)
mvnxII(data, prior = NULL, warn = NULL, ...)
mvnxII(data, prior = NULL, warn = NULL, ...)
mvnxXXX(data, prior = NULL, warn = NULL, ...)
```

Description

Computes the mean, covariance, and log-likelihood from fitting a single Gaussian (univariate or multivariate normal).

Usage

```r
mvnx(data, prior = NULL, warn = NULL, ...)
mvnxII(data, prior = NULL, warn = NULL, ...)
mvnxII(data, prior = NULL, warn = NULL, ...)
mvnxXXX(data, prior = NULL, warn = NULL, ...)
```

Arguments

- **data**
 A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
prior Specification of a conjugate prior on the means and variances. The default assumes no prior.

warn A logical value indicating whether or not a warning should be issued whenever a singularity is encountered. The default is given by mclust.options("warn").

... Catches unused arguments in indirect or list calls via do.call.

Details

mvnXII computes the best fitting Gaussian with the covariance restricted to be a multiple of the identity.

mvnXXI computes the best fitting Gaussian with the covariance restricted to be diagonal.

mvnXXX computes the best fitting Gaussian with ellipsoidal (unrestricted) covariance.

Value

A list including the following components:

modelName A character string identifying the model (same as the input argument).

parameters

mean The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.

variance A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.

loglik The log likelihood for the data in the mixture model.

Attributes: "WARNING" An appropriate warning if problems are encountered in the computations.

References

See Also

mvn, mstepE

Examples

n <- 1000
set.seed(0)
x <- rnorm(n, mean = -1, sd = 2)
mvnX(x)
mu <- c(-1, 0, 1)

set.seed(0)
x <- sweep(matrix(rnorm(n*3), n, 3) %*% (2*diag(3)),
 MARGIN = 2, STATS = mu, FUN = "+")
mvnXII(x)

set.seed(0)
x <- sweep(matrix(rnorm(n*3), n, 3) %*% diag(1:3),
 MARGIN = 2, STATS = mu, FUN = "+")
mvnXI(x)

Sigma <- matrix(c(9,-4,1,-4,9,4,1,4,9), 3, 3)
set.seed(0)
x <- sweep(matrix(rnorm(n*3), n, 3) %*% chol(Sigma),
 MARGIN = 2, STATS = mu, FUN = "+")
mvnXXX(x)

nMclustParams

Number of Estimated Parameters in Gaussian Mixture Models

Description

Gives the number of estimated parameters for parameterizations of the Gaussian mixture model that are used in MCLUST.

Usage

nMclustParams(modelName, d, G, noise = FALSE, equalPro = FALSE, ...)

Arguments

- **modelName**
 A character string indicating the model. The help file for `mclustModelNames` describes the available models.

- **d**
 The dimension of the data. Not used for models in which neither the shape nor the orientation varies.

- **G**
 The number of components in the Gaussian mixture model used to compute loglik.

- **noise**
 A logical variable indicating whether or not the model includes an optional Poisson noise component.

- **equalPro**
 A logical variable indicating whether or not the components in the model are assumed to be present in equal proportion.

- **...**
 Catches unused arguments in indirect or list calls via `do.call`.

Details

To get the total number of parameters in model, add G*d for the means and G-1 for the mixing proportions if they are unequal.
nVarParams

Value

The number of variance parameters in the corresponding Gaussian mixture model.

References

See Also

bic, nVarParams.

Examples

```r
mapply(nMclustParams, mclust.options("emModelNames"), d = 2, G = 3)
```

<table>
<thead>
<tr>
<th>nVarParams</th>
<th>Number of Variance Parameters in Gaussian Mixture Models</th>
</tr>
</thead>
</table>

Description

Gives the number of variance parameters for parameterizations of the Gaussian mixture model that are used in MCLUST.

Usage

```r
nVarParams(modelName, d, G, ...)
```

Arguments

- `modelName` A character string indicating the model. The help file for `mclustModelNames` describes the available models.
- `d` The dimension of the data. Not used for models in which neither the shape nor the orientation varies.
- `G` The number of components in the Gaussian mixture model used to compute loglik.
- `...` Catches unused arguments in indirect or list calls via `do.call`.

Details

To get the total number of parameters in model, add G*d for the means and G−1 for the mixing proportions if they are unequal.
Value

The number of variance parameters in the corresponding Gaussian mixture model.

References

See Also

bic, nMclustParams.

Examples

```r
mapply(nVarParams, mclust.options("emModelNames"), d = 2, G = 3)
```

partconv

Numeric Encoding of a Partitioning

Description

Converts a vector interpreted as a classification or partitioning into a numeric vector.

Usage

```r
partconv(x, consec=TRUE)
```

Arguments

- **x**: A vector interpreted as a classification or partitioning.
- **consec**: Logical value indicating whether or not consecutive class numbers should be used.

Value

Numeric encoding of `x`. When `consec = TRUE`, the distinct values in `x` are numbered by the order in which they appear. When `consec = FALSE`, each distinct value in `x` is numbered by the index corresponding to its first appearance in `x`.

See Also

partuniq
partuniq

Classifies Data According to Unique Observations

Description

Gives a one-to-one mapping from unique observations to rows of a data matrix.

Usage

partuniq(x)

Arguments

x Matrix of observations.

Value

A vector of length nrow(x) with integer entries. An observation k is assigned an integer i whenever observation i is the first row of x that is identical to observation k (note that i \leq k).

See Also

partconv

Examples

set.seed(0)

mat <- data.frame(lets = sample(LETTERS[1:2], 9, TRUE), nums = sample(1:2, 9, TRUE))

mat

ans <- partuniq(mat)

ans

partconv(ans, consec=TRUE)
plot.clustCombi Plot Combined Clusterings Results

Description

Plot combined clusterings results: classifications corresponding to mclust/BIC and to the hierarchically combined classes, and "entropy plots" to help to select a number of classes.

Usage

```r
## S3 method for class 'clustCombi'
plot(x, data = NULL, what = c("classification", "entropy"), reg = 2, ...)
```

Arguments

- `x` Output from clustCombi.
- `data` The data used to produce Output.
- `what` Choose one or more of: "classification", "entropy".
- `reg` The number of parts of the piecewise linear regression for the entropy plots. Choose one or more of: 2 (for 1 change-point), 3 (for 2 change-points).
- `...` Other arguments to be passed to combiPlot, entPlot, or to the mclust called plot functions (please see the corresponding documentations).

Value

Classifications are plotted with combiPlot, which relies on the mclust plot functions. Entropy plots (plotted with entPlot) may help to select a number of classes: please see the article cited in the references.

Author(s)

J.-P. Baudry, A. E. Raftery, L. Scrucca

References

See Also

`combiPlot, entPlot, clustCombi`
Description

Plotting methods for an object of class `mclustDensity`. Available graphs are plot of BIC values and density for univariate and bivariate data. For higher data dimensionality a scatterplot matrix of pairwise densities is drawn.

Usage

```r
# S3 method for class 'densityMclust'
plot(x, data = NULL, what = c("BIC", "density", "diagnostic"), ...)

plotDensityMclust1(x, data = NULL, hist.col = "lightgrey",
                   hist.border = "white", breaks = "Sturges", ...)

plotDensityMclust2(x, data = NULL, nlevels = 11, levels = NULL, col = grey(0.6),
                   density = TRUE, ...)
plot.densityMclust

plotDensityMclust(x, data = NULL, nlevels = 11, levels = NULL, col = grey(0.6),
points.pch = 1, points.col = 1, points.cex = 0.8, gap = 0.2, ...)

Arguments

x
An object of class 'mclustDensity' obtained from a call to densityMclust function.

data
Optional data points.

what
The type of graph requested:
"density" = a plot of estimated density; if data is also provided the density is plotted over data points (see Details section).
"BIC" = a plot of BIC values for the estimated models versus the number of components.
"diagnostic" = diagnostic plots (only available for the one-dimensional case, see densityMclust.diagnostics)

hist.col
The color to be used to fill the bars of the histogram.

hist.border
The color of the border around the bars of the histogram.

breaks
See the argument in function hist.

points.pch, points.col, points.cex
The character symbols, colors, and magnification to be used for plotting data points.

nlevels
An integer, the number of levels to be used in plotting contour densities.

levels
A vector of density levels at which to draw the contour lines.

col
Color to be used for drawing the contour lines, the perspective plot, or the image density. In the latter case can be also a vector of color values.

gap
Distance between subplots, in margin lines, for the matrix of pairwise scatter-plots.

...
Additional arguments.

Details

The function plot.densityMclust allows to obtain the plot of estimated density or the graph of BIC values for evaluated models.

If what = "density" the produced plot dependes on the dimensionality of the data.

For one-dimensional data a call with no data provided produces a plot of the estimated density over a sensible range of values. If data is provided the density is over-plotted on a histogram for the observed data.

For two-dimensional data further arguments available are those accepted by the surfacePlot function. In particular, the density can be represented through "contour", "image", and "persp" type of graph.

For higher dimensionality a scatterplot matrix of pairwise densities is drawn.
plot.Mclust

References


Author(s)

Luca Scrucca

See Also

densityMclust, densityMclust.density, Mclust.

Examples

dens = densityMclust(faithful$waiting)
plot(dens, what = "density")
plot(dens, what = "density", data = faithful$waiting)

dens = densityMclust(faithful)
plot(dens, what = "density")
plot(dens, what = "density", type = "image", col = "steelblue")
plot(dens, what = "density", type = "persp", col = adjustcolor("steelblue", alpha.f = 0.5))

x = iris[,1:4]
dens = densityMclust(x)
plot(dens, what = "density", nlevels = 7)
## Not run:
  plot(dens, x, what = "density", drawlabels = FALSE,
    levels = quantile(dens$density, probs = c(0.05, 0.25, 0.5, 0.75, 0.95)))
  plot(dens, what = "density", type = "image", col = "steelblue")
  plot(dens, what = "density", type = "persp", border = adjustcolor(grey(0.1), alpha.f = 0.5))
## End(Not run)

---

Plot Model-Based Clustering Results

Description

Plot model-based clustering results: BIC, classification, uncertainty and (for univariate and bivariate data) density.
Usage

```r
S3 method for class 'Mclust'
plot(x, what = c("BIC", "classification", "uncertainty", "density"),
dimens = NULL, xlab = NULL, ylab = NULL, ylim = NULL,
addEllipses = TRUE, main = TRUE, ...)
```

Arguments

- `x`: Output from `Mclust`.
- `what`: The type of graph requested:
  - "BIC"
  - "classification"
  - "uncertainty"
  - "density"

By default, all the above graphs are produced. See the description below.

- `dimens`: A vector of length one or two giving the integer dimensions of the desired coordinate projections for multivariate data in case of "classification" or "uncertainty" plots.
- `xlab`, `ylab`: Optional labels for the x-axis and the y-axis.
- `ylim`: Optional limits for the vertical axis of the BIC plot.
- `addEllipses`: A logical indicating whether or not to add ellipses with axes corresponding to the within-cluster covariances in case of "classification" or "uncertainty" plots.
- `main`: A logical or NULL indicating whether or not to add a title to the plot identifying the dimensions used.
- `...`: Other graphics parameters.

Details

For more flexibility in plotting, use `mclust1Dplot`, `mclust2Dplot`, `surfacePlot`, `coordProj`, or `randProj`.

Value

Model-based clustering plots:

- "BIC" = BIC values used for choosing the number of clusters.
- "classification" = a plot showing the clustering. For data in more than two dimensions a pairs plot is produced, followed by a coordinate projection plot using specified `dimens`.
- "uncertainty" = a plot of classification uncertainty. For data in more than two dimensions a coordinate projection plot is drawn using specified `dimens`.
- "density" = a plot of estimated density. For two dimensional a contour plot is drawn, while for data in more than two dimensions a matrix of contours for pairs of variables is produced.
References


See Also

*mclust*, *plot.mclustBIC*, *plot.mclustICL*, *plot.mclustDplot*, *mclust2Dplot*, *surfacePlot*, *coordProj*, *randProj*.

Examples

```r
precipMclust <- Mclust(precip)
plot(precipMclust)

faithfulMclust <- Mclust(faithful)
plot(faithfulMclust)

irisMclust <- Mclust(iris[,,-5])
plot(irisMclust)
```

---

**plot.mclustBIC**  
*BIC Plot for Model-Based Clustering*

Description

Plots the BIC values returned by the `mclustBIC` function.

Usage

```r
S3 method for class 'mclustBIC'
plot(x, G = NULL, modelNames = NULL,
 symbols = NULL, colors = NULL,
 xlab = NULL, ylab = "BIC", ylim = NULL,
 legendArgs = list(x = "bottomright", ncol = 2, cex = 1, inset = 0.01),
 ...)```

Arguments

x

Output from `mclustBIC`.

G

One or more numbers of components corresponding to models fit in x. The default is to plot the BIC for all of the numbers of components fit.

modelNames

One or more model names corresponding to models fit in x. The default is to plot the BIC for all of the models fit.
symbols
Either an integer or character vector assigning a plotting symbol to each unique class in classification. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function unique). The default is given by mclust.options("classPlotSymbols").

colors
Either an integer or character vector assigning a color to each unique class in classification. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function unique). The default is given by mclust.options("classPlotColors").

xlab
Optional label for the horizontal axis of the BIC plot.

ylab
Label for the vertical axis of the BIC plot.

ylim
Optional limits for the vertical axis of the BIC plot.

legendArgs
Arguments to pass to the legend function. Set to NULL for no legend.

... Other graphics parameters.

Value
A plot of the BIC values.

References

See Also
mclustBIC

Examples

```r
## Not run:
plot(mclustBIC(precip), legendArgs = list(x = "bottomleft"))

plot(mclustBIC(faithful))

plot(mclustBIC(iris[, -5]))

## End(Not run)
```
Description
Plots the bootstrap distribution of parameters as returned by the \texttt{MclustBootstrap} function.

Usage
\begin{verbatim}
S3 method for class 'MclustBootstrap'
plot(x, what = c("pro", "mean", "var"),
 hist.col = "grey", hist.border = "lightgrey", breaks = "Sturges",
 col = "forestgreen", lwd = 2, lty = 3,
 xlab = NULL, xlim = NULL, ylim = NULL, ...)
\end{verbatim}

Arguments
\begin{itemize}
\item \texttt{x} Object returned by \texttt{MclustBootstrap}.
\item \texttt{what} Character string specifying if mixing proportions ("pro"), component means ("mean") or component variances ("var") should be drawn.
\item \texttt{hist.col} The color to be used to fill the bars of the histograms.
\item \texttt{hist.border} The color of the border around the bars of the histograms.
\item \texttt{breaks} See the argument in function \texttt{hist}.
\item \texttt{col, lwd, lty} The color, line width and line type to be used to represent the estimated parameters.
\item \texttt{xlab} Optional label for the horizontal axis.
\item \texttt{xlim, ylim} A two-values vector of axis range for, respectively, horizontal and vertical axis.
\item \texttt{...} Other graphics parameters.
\end{itemize}

Value
A plot for each variable/component of the selected parameters.

See Also
\texttt{MclustBootstrap}

Examples
\begin{verbatim}
data(diabetes)
X = diabetes[,,-1]
modClust = Mclust(X, G = 3, modelNames = "VVV")
bootClust = MclustBootstrap(modClust, nboot = 99)
par(mfrow = c(1,3), mar = c(4,2,2,0.5))
plot(bootClust, what = "pro")
par(mfrow = c(3,3), mar = c(4,2,2,0.5))
plot(bootClust, what = "mean")
\end{verbatim}
plot.MclustDA

Plotting method for MclustDA discriminant analysis

Description

Graphical tools for training and test data, known training data classification, mclustDA test data classification, and/or training errors.

Usage

```r
## S3 method for class 'MclustDA'
plot(x, what = c("scatterplot", "classification", "train&test", "error"),
     newdata, newclass, dimens, symbols, colors, ...)
```

Arguments

- **x**
 An object of class 'MclustDA' resulting from a call to `MclustDA`.

- **what**
 The type of graph requested:
 - "scatterplot" = a plot of training data with points marked based the known classification. Ellipses corresponding to covariances of mixture components are also drawn.
 - "classification" = a plot of data with points marked based the predicted classification; if `newdata` is provided then the test set is shown otherwise the training set.
 - "train&test" = a plot of training and test data with points marked according to the type of set.
 - "error" = a plot of training set (or test set if `newdata` and `newclass` are provided) with misclassified points marked.

- **newdata**
 A data frame or matrix for test data.

- **newclass**
 A vector giving the class labels for the observations in the test data (if known).

- **dimens**
 A vector of integers giving the dimensions of the desired coordinate projections for multivariate data. The default is to take all the the available dimensions for plotting.

- **symbols**
 Either an integer or character vector assigning a plotting symbol to each unique class. Elements in `colors` correspond to classes in order of appearance in the sequence of observations (the order used by the function `factor`). The default is given by `mclust.options("classPlotSymbols")`.

- **colors**
 Either an integer or character vector assigning a color to each unique class in classification. Elements in `colors` correspond to classes in order of appearance in the sequence of observations (the order used by the function `factor`). The default is given by `mclust.options("classPlotColors")`.

- **...**
 Further arguments passed to or from other methods.
plot.MclustDA

Details

For more flexibility in plotting, use mclust1Dplot, mclust2Dplot, surfacePlot, coordProj, or randProj.

References

Author(s)

Luca Scrucca

See Also

MclustDA, surfacePlot, coordProj, randProj

Examples

```r
# Not run:
odd <- seq(from = 1, to = nrow(iris), by = 2)
even <- odd + 1
X.train <- iris[odd,-5]
Class.train <- iris[odd,5]
X.test  <- iris[even,-5]
Class.test <- iris[even,5]

# common EEE covariance structure (which is essentially equivalent to linear discriminant analysis)
irisMclustDA <- MclustDA(X.train, Class.train, modelType = "EDDA", modelNames = "EEE")
summary(irisMclustDA, parameters = TRUE)
summary(irisMclustDA, newdata = X.test, newclass = Class.test)

# common covariance structure selected by BIC
irisMclustDA <- MclustDA(X.train, Class.train, modelType = "EDDA")
summary(irisMclustDA, parameters = TRUE)
summary(irisMclustDA, newdata = X.test, newclass = Class.test)

# general covariance structure selected by BIC
irisMclustDA <- MclustDA(X.train, Class.train)
summary(irisMclustDA, parameters = TRUE)
summary(irisMclustDA, newdata = X.test, newclass = Class.test)

plot(irisMclustDA)
plot(irisMclustDA, dimens = 3:4)
plot(irisMclustDA, dimens = 4)
plot(irisMclustDA, what = "classification")
plot(irisMclustDA, what = "classification", newdata = X.test)
```
```r
plot(irisMclustDA, what = "classification", dimens = 3:4)
plot(irisMclustDA, what = "classification", newdata = X.test, dimens = 3:4)
plot(irisMclustDA, what = "classification", dimens = 4)
plot(irisMclustDA, what = "classification", newdata = X.test)

plot(irisMclustDA, what = "train&test", newdata = X.test)
plot(irisMclustDA, what = "train&test", newdata = X.test, dimens = 3:4)
plot(irisMclustDA, what = "train&test", newdata = X.test, dimens = 4)

plot(irisMclustDA, what = "error")
plot(irisMclustDA, what = "error", dimens = 3:4)
plot(irisMclustDA, what = "error", dimens = 4)
plot(irisMclustDA, what = "error", newdata = X.test, newclass = Class.test)
plot(irisMclustDA, what = "error", newdata = X.test, newclass = Class.test, dimens = 3:4)
plot(irisMclustDA, what = "error", newdata = X.test, newclass = Class.test, dimens = 4)

# simulated 1D data
n <- 250
set.seed(1)
triModal <- c(rnorm(n,-5), rnorm(n,0), rnorm(n,5))
triclass <- c(rep(1,n), rep(2,n), rep(3,n))
odd <- seq(from = 1, to = length(triModal), by = 2)
even <- odd + 1
trimclustDA <- MclustDA(trimodal[odd], triclass[odd])
summary(trimclustDA, newdata = trimodal[even], newclass = triclass[even])
plot(trimclustDA)

# simulated 2D cross data
data(cross)
odd <- seq(from = 1, to = nrow(cross), by = 2)
even <- odd + 1
crossmclustDA <- MclustDA(cross[odd,-1], cross[odd,1])
summary(crossmclustDA, parameters = TRUE)
summary(crossmclustDA, newdata = cross[even,-1], newclass = cross[even,1])
plot(crossmclustDA)
```

```
## End(Not run)
```
plot.MclustDR

Plotting method for dimension reduction for model-based clustering and classification

Description

Graphs data projected onto the estimated subspace for model-based clustering and classification.

Usage

S3 method for class 'MclustDR'
plot(x, dimens,
what = c("scatterplot", "pairs", "contour", "classification", "boundaries", "density", "evals"),
symbols, colors, col.contour = gray(0.7), col.sep = grey(0.4),
ngrid = 100, nlevels = 5, asp = NULL, ...)

Arguments

- x: An object of class 'MclustDR' resulting from a call to MclustDR.
- dimens: A vector of integers giving the dimensions of the desired coordinate projections for multivariate data.
- what: The type of graph requested:
 - "scatterplot" = a two-dimensional plot of data projected onto the first two directions specified by dimens and with data points marked according to the corresponding mixture component. By default, the first two directions are selected for plotting.
 - "pairs" = a scatterplot matrix of data projected onto the estimated subspace and with data points marked according to the corresponding mixture component. By default, all the available directions are used, unless they have been specified by dimens.
 - "contour" = a two-dimensional plot of data projected onto the first two directions specified by dimens (by default, the first two directions) with density contours for classes or clusters and data points marked according to the corresponding mixture component.
 - "classification" = a two-dimensional plot of data projected onto the first two directions specified by dimens (by default, the first two directions) with classification region and data points marked according to the corresponding mixture component.
 - "boundaries" = a two-dimensional plot of data projected onto the first two directions specified by dimens (by default, the first two directions) with uncertainty boundaries and data points marked according to the corresponding mixture component. The uncertainty is shown using a greyscale with darker regions indicating higher uncertainty.
 - "density" = a one-dimensional plot of estimated density for the first direction specified by dimens (by default, the first one). A set of box-plots for each estimated cluster or known class are also shown at the bottom of the graph.
symbols Either an integer or character vector assigning a plotting symbol to each unique mixture component. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function factor). The default is given by mclust.options("classPlotSymbols").

colors Either an integer or character vector assigning a color to each unique cluster or known class. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function factor). The default is given by mclust.options("classPlotColors").

col.contour The color of contours in case what = "contour".

col.sep The color of classification boundaries in case what = "classification".

ngrid An integer specifying the number of grid points to use in evaluating the classification regions.

nlevels The number of levels to use in case what = "contour".

asp For scatterplots the y/x aspect ratio, see plot.window.

... further arguments passed to or from other methods.

Author(s)
Luca Scrucca

References

See Also
MclustDR

Examples
mod = Mclust(iris[,1:4], G = 3)
dr = MclustDR(mod)
plot(dr, what = "evalues")
plot(dr, what = "pairs")
plot(dr, what = "scatterplot", dimens = c(1,3))
plot(dr, what = "contour")
plot(dr, what = "classification", ngrid = 200)
plot(dr, what = "boundaries", ngrid = 200)
plot(dr, what = "density")
plot(dr, what = "density", dimens = 2)

data(banknote)
da = MclustDA(banknote[,2:7], banknote$Status, G = 1:3)
dr = MclustDR(da)
plot.mclustICL

```r
dr <- mclustICL(faithful)
plot(dr, what = "values")
plot(dr, what = "pairs")
plot(dr, what = "contour")
plot(dr, what = "contour", dimens = c(1,3))
plot(dr, what = "classification", ngrid = 200)
plot(dr, what = "boundaries", ngrid = 200)
plot(dr, what = "density")
plot(dr, what = "density", dimens = 2)
```

plot.mclustICL
ICL Plot for Model-Based Clustering

Description
Plots the ICL values returned by the `mclustICL` function.

Usage
```r
## S3 method for class 'mclustICL'
plot(x, ylab = "ICL", ...)
```

Arguments
- `x`
 Output from `mclustICL`.
- `ylab`
 Label for the vertical axis of the plot.
- `...`
 Further arguments passed to the `plot.mclustBIC` function.

Value
A plot of the ICL values.

References

See Also
`mclustICL`

Examples
```r
## Not run:
data(faithful)
faithful.ICL <- mclustICL(faithful)
plot(faithful.ICL)
## End(Not run)
```
predict.densityMclust

Density estimate of multivariate observations by Gaussian finite mixture modeling

Description

Compute density estimation for multivariate observations based on Gaussian finite mixture models estimated by predict.densityMclust.

Usage

S3 method for class 'densityMclust'

predict(object, newdata, what = c("dens", "cdens"), ...)

Arguments

- **object**: an object of class 'densityMclust' resulting from a call to densityMclust.
- **newdata**: a vector, a data frame or matrix giving the data. If missing the density is computed for the input data obtained from the call to densityMclust.
- **what**: a character string specifying what to retrieve: "dens" returns a vector of values for the mixture density, cdens returns a matrix of component densities for each mixture component (along the columns).
- **...**: further arguments passed to or from other methods.

Value

Returns a vector or a matrix of densities evaluated at newdata depending on the argument what (see above).

Author(s)

Luca Scrucca

References

See Also

Mclust.
Examples

```r
x = faithful$waiting
dens = densityMclust(x)
x0 = seq(50, 100, by = 10)
d0 = predict(dens, x0)
plot(dens)
points(x0, d0, pch = 20)
```

predict.Mclust

Cluster multivariate observations by Gaussian finite mixture modeling

Description

Cluster prediction for multivariate observations based on Gaussian finite mixture models estimated by Mclust.

Usage

```r
## S3 method for class 'Mclust'
predict(object, newdata, ...)  
```

Arguments

- **object**: an object of class 'Mclust' resulting from a call to Mclust.
- **newdata**: a data frame or matrix giving the data. If missing the clustering data obtained from the call to Mclust are classified.
- **...**: further arguments passed to or from other methods.

Value

Returns a list of with the following components:

- **classification**: a factor of predicted cluster labels for newdata.
- **z**: a matrix whose \(i,k\)th entry is the probability that observation \(i\) in newdata belongs to the \(k\)th cluster.

Author(s)

Luca Scrucca

References

See Also

`Mclust`.

Examples

```r
model <- Mclust(faithful)

# predict cluster for the observed data
pred <- predict(model)
str(pred)
pred$z     # equal to model$z
pred$classification # equal to
plot(faithful, col = pred$classification, pch = pred$classification)

# predict cluster over a grid
grid <- apply(faithful[,2], function(x) seq(min(x), max(x), length = 50))
grid <- expand.grid(eruptions = grid[,1], waiting = grid[,2])
grid <- predict(model, grid)
plot(grid, col = mclust.options("classPlotColors")[pred$classification], pch = 15, cex = 0.5)
points(faithful, pch = model$classification)
```

Classify multivariate observations by Gaussian finite mixture modeling

Description

Classify multivariate observations based on Gaussian finite mixture models estimated by `MclustDA`.

Usage

```r
## S3 method for class 'MclustDA'
predict(object, newdata, prior, ...)
```

Arguments

- `object`: an object of class 'MclustDA' resulting from a call to `MclustDA`.
- `newdata`: a data frame or matrix giving the data. If missing the train data obtained from the call to `MclustDA` are classified.
- `prior`: the prior probabilities of the classes; by default, this is set at the proportions in the training data.
- `...`: further arguments passed to or from other methods.
predict.MclustDA

Value

Returns a list with the following components:

- `classification` a factor of predicted class labels for `newdata`.
- `z` a matrix whose ${i,k}$th entry is the probability that observation i in `newdata` belongs to the kth class.

Author(s)

Luca Scrucca

References

See Also

`MclustDA`.

Examples

```r
## Not run:
odd <- seq(from = 1, to = nrow(iris), by = 2)
even <- odd + 1
X.train <- iris[odd,-5]
Class.train <- iris[odd,5]
X.test <- iris[even,-5]
Class.test <- iris[even,5]

irisMclustDA <- MclustDA(X.train, Class.train)
predTrain <- predict(irisMclustDA)
predTrain
predTest <- predict(irisMclustDA, X.test)
predTest

## End(Not run)
```
predict.MclustDR

Classify multivariate observations on a dimension reduced subspace by Gaussian finite mixture modeling

Description

Classify multivariate observations on a dimension reduced subspace estimated from a Gaussian finite mixture model.

Usage

```r
## S3 method for class 'MclustDR'
predict(object, dim = 1:object$numdir, newdata, eval.points, ...)
```

Arguments

- `object`: an object of class 'MclustDR' resulting from a call to MclustDR.
- `dim`: the dimensions of the reduced subspace used for prediction.
- `newdata`: a data frame or matrix giving the data. If missing the data obtained from the call to MclustDR are used.
- `eval.points`: a data frame or matrix giving the data projected on the reduced subspace. If provided newdata is not used.
- `...`: further arguments passed to or from other methods.

Value

Returns a list of with the following components:

- `dir`: a matrix containing the data projected onto the `dim` dimensions of the reduced subspace.
- `density`: densities from mixture model for each data point.
- `z`: a matrix whose $[i,k]$th entry is the probability that observation i in newdata belongs to the kth class.
- `uncertainty`: The uncertainty associated with the classification.
- `classification`: A vector of values giving the MAP classification.

Author(s)

Luca Scrucca

References

print.clustCombi

See Also

MclustDR.

Examples

```r
mod = Mclust(iris[,1:4])
dr = MclustDR(mod)
pred = predict(dr)
str(pred)

data(banknote)
mod = MclustDA(banknote[,2:7], banknote$Status)
mod = MclustDR(mod)
pred = predict(dr)
str(pred)
```

print.clustCombi Displays Combined Clusterings Results

Description

Displays the Gaussian mixture model and number of components selected by Mclust/BIC and the components proportions and means of the fitted corresponding distribution. Then, informations about the combining steps.

Usage

```r
## S3 method for class 'clustCombi'
print(x, ...)```

Arguments

- `x` An object of class 'clustCombi'. Typically an output from the clustCombi function.
- `...` additional arguments.

Author(s)

J.-P. Baudry, A. E. Raftery, L. Scrucca

References


See Also

clustCombi
priorControl

Examples

```r
Not run:
data(Baudry_etal_2010_JCGS_examples)

2D Example
output <- clustCombi(ex4.1)
output
```

### Description

Specify a conjugate prior for Gaussian mixtures.

### Usage

```r
priorControl(functionName = "defaultPrior", ...)
```

### Arguments

- **functionName**
  - The name of the function specifying the conjugate prior. By default the function `defaultPrior` is used, and this can also be used as a template for alternative specification.
- **...**
  - Optional named arguments to the function specified in `functionName` together with their values.

### Details

The function `priorControl` is used to specify a conjugate prior for EM within `MCLUST`. Note that, as described in `defaultPrior`, in the multivariate case only 10 out of 14 models may be used in conjunction with a prior, i.e. those available in `MCLUST` up to version 4.4.

### Value

A list with the function name as the first component. The remaining components (if any) consist of a list of arguments to the function with assigned values.

### References


randomPairs


**See Also**

mclustBIC, me, mstep, defaultPrior

**Examples**

```r
default prior
irisBIC <- mclustBIC(iris[, -5], prior = priorControl())
summary(irisBIC, iris[, -5])

no prior on the mean; default prior on variance
irisBIC <- mclustBIC(iris[, -5], prior = priorControl(shrinkage = 0))
summary(irisBIC, iris[, -5])
```

**randomPairs**

*Random hierarchical structure*

**Description**

Create a hierarchical structure using a random partition of the data.

**Usage**

randomPairs(data, seed, ...)

**Arguments**

- `data` A numeric matrix or data frame of observations. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- `seed` Optional single value, interpreted as an integer, specifying the seed for random partition.
- `...` Catches unused arguments in indirect or list calls via do.call.

**Value**

A numeric two-column matrix in which the \( i \)th row gives the minimum index for observations in each of the two clusters merged at the \( i \)th stage of a random agglomerative hierarchical clustering.

**References**

See Also

hc, hclass hcVV

Examples

data <- iris[,1:4]
randPairs <- randomPairs(data)
str(randPairs)
# start model-based clustering from a random partition
mod <- Mclust(data, initialization = list(hcPairs = randPairs))
summary(mod)

---

randProj  Random projections of multidimensional data modeled by an MVN mixture.

Description

Plots random projections given multidimensional data and parameters of an MVN mixture model for the data.

Usage

randProj(data, seeds=0, parameters=NULL, z=NULL,
classification=NULL, truth=NULL, uncertainty=NULL,
what = c("classification", "errors", "uncertainty"),
quantiles = c(0.75, 0.95), symbols=NULL, colors=NULL, scale = FALSE,
xlim=NULL, ylim=NULL, CEX = 1, PCH = ".", main = FALSE, ...)

Arguments

data  A numeric matrix or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

seeds  A vector of integer seeds for random number generation. Elements should be in the range 0:1000. Each seed should produce a different projection.

parameters  A named list giving the parameters of an MCLUST model, used to produce superimposing ellipses on the plot. The relevant components are as follows:

mean  The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.

variance  A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.

z  A matrix in which the [i,k]th entry gives the probability of observation i belonging to the kth class. Used to compute classification and uncertainty if those arguments aren’t available.
classification A numeric or character vector representing a classification of observations (rows) of data. If present argument z will be ignored.

truth A numeric or character vector giving a known classification of each data point. If classification or z is also present, this is used for displaying classification errors.

uncertainty A numeric vector of values in (0,1) giving the uncertainty of each data point. If present argument z will be ignored.

what Choose from one of the following three options: "classification" (default), "errors", "uncertainty".

quantiles A vector of length 2 giving quantiles used in plotting uncertainty. The smallest symbols correspond to the smallest quantile (lowest uncertainty), medium-sized (open) symbols to points falling between the given quantiles, and large (filled) symbols to those in the largest quantile (highest uncertainty). The default is (0.75,0.95).

symbols Either an integer or character vector assigning a plotting symbol to each unique class in classification. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function unique). The default is given by mclust.options("classPlotSymbols").

colors Either an integer or character vector assigning a color to each unique class in classification. Elements in colors correspond to classes in order of appearance in the sequence of observations (the order used by the function unique). The default is given by mclust.options("classPlotColors").

scale A logical variable indicating whether or not the two chosen dimensions should be plotted on the same scale, and thus preserve the shape of the distribution. Default: scale=FALSE

xlim, ylim Arguments specifying bounds for the ordinate, abscissa of the plot. This may be useful for when comparing plots.

CEX An argument specifying the size of the plotting symbols. The default value is 1.

PCH An argument specifying the symbol to be used when a classification has not been specified for the data. The default value is a small dot ".".

main A logical variable or NULL indicating whether or not to add a title to the plot identifying the dimensions used.

... Other graphics parameters.

Side Effects

A plot showing a random two-dimensional projection of the data, together with the location of the mixture components, classification, uncertainty, and/or classification errors.

References


sigma2decomp

Convert mixture component covariances to decomposition form.

Description

Converts a set of covariance matrices from representation as a 3-D array to a parameterization by eigenvalue decomposition.

Usage

sigma2decomp(sigma, G = NULL, tol = sqrt(.Machine$double.eps), ...)

Arguments

sigma

Either a 3-D array whose [,k]th component is the covariance matrix for the kth component in an MVN mixture model, or a single covariance matrix in the case that all components have the same covariance.

G

The number of components in the mixture. When sigma is a 3-D array, the number of components can be inferred from its dimensions.

tol

Tolerance for determining whether or not the covariances have equal volume, shape, and or orientation. The default is the square root of the relative machine precision, sqrt(.Machine$double.eps), which is about 1.e-8.

... Catches unused arguments from an indirect or list call via do.call.
Value

The covariance matrices for the mixture components in decomposition form, including the following components:

- **modelName**: A character string indicating the inferred model. The help file for `mclustModelNames` describes the available models.
- **d**: The dimension of the data.
- **G**: The number of components in the mixture model.
- **scale**: Either a \( G \)-vector giving the scale of the covariance (the \( d \)th root of its determinant) for each component in the mixture model, or a single numeric value if the scale is the same for each component.
- **shape**: Either a \( G \) by \( d \) matrix in which the \( k \)th column is the shape of the covariance matrix (normalized to have determinant 1) for the \( k \)th component, or a \( d \)-vector giving a common shape for all components.
- **orientation**: Either a \( d \) by \( d \) by \( G \) array whose \([LLk]\)th entry is the orthonormal matrix whose columns are the eigenvectors of the covariance matrix of the \( k \)th component, or a \( d \) by \( d \) orthonormal matrix if the mixture components have a common orientation. The orientation component of `decomp` can be omitted in spherical and diagonal models, for which the principal components are parallel to the coordinate axes so that the orientation matrix is the identity.

References


See Also

- `decomp2sigma`

Examples

```r
meEst <- meEE(iris[, -5], unmap(iris[, 5]))
names(meEst$parameters$variance)
meEst$parameters$variance$Sigma

sigma2decomp(meEst$parameters$variance$Sigma, G = length(unique(iris[, 5])))
```
Simulate from Parameterized MVN Mixture Models

Description

Simulate data from parameterized MVN mixture models.

Usage

`sim(modelName, parameters, n, seed = NULL, ...)`

Arguments

- `modelName`  
  A character string indicating the model. The help file for `mclustModelNames` describes the available models.

- `parameters`  
  A list with the following components:
  - `pro`  
    A vector whose \( k \)th component is the mixing proportion for the \( k \)th component of the mixture model. If missing, equal proportions are assumed.
  - `mean`  
    The mean for each component. If there is more than one component, this is a matrix whose \( k \)th column is the mean of the \( k \)th component of the mixture model.
  - `variance`  
    A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.

- `n`  
  An integer specifying the number of data points to be simulated.

- `seed`  
  An optional integer argument to `set.seed` for reproducible random class assignment. By default the current seed will be used. Reproducibility can also be achieved by calling `set.seed` before calling `sim`.

- `...`  
  Catches unused arguments in indirect or list calls via `do.call`.

Details

This function can be used with an indirect or list call using `do.call`, allowing the output of e.g. `mstep, em, me, Mclust` to be passed directly without the need to specify individual parameters as arguments.

Value

A matrix in which first column is the classification and the remaining columns are the \( n \) observations simulated from the specified MVN mixture model.

Attributes:  

- "modelName" A character string indicating the variance model used for the simulation.
sim

References


See Also

simE, ..., simVVV, Mclust, mstep, do.call

Examples

irisBIC <- mclustBIC(iris[, -5])
irisModel <- mclustModel(iris[, -5], irisBIC)
names(irisModel)
irisSim <- sim(modelName = irisModel$modelName,
               parameters = irisModel$parameters,
               n = nrow(iris))

## Not run:
do.call("sim", irisModel) # alternative call

## End(Not run)

par(pty = "s", mfrow = c(1, 2))
dimnames(irisSim) <- list(NULL, c("dummy", (dimnames(iris)[[2]][[5]]))

dimens <- c(1, 2)
lim1 <- apply(iris[, dimens], 2, range)
lim2 <- apply(irisSim[, dimens+1], 2, range)
lims <- apply(rbind(lim1, lim2), 2, range)
xlim <- lims[, 1]
ylim <- lims[, 2]

coordProj(iris[, -5], parameters=irisModel$parameters,
          classification=map(irisModel$z),
          dimens=dimens, xlim=xlim, ylim=ylim)

coordProj(iris[, -5], parameters=irisModel$parameters,
          classification=map(irisModel$z), truth = irisSim[, -1],
          dimens=dimens, xlim=xlim, ylim=ylim)

irisModel3 <- mclustModel(iris[, -5], irisBIC, G=3)
irisSim3 <- sim(modelName = irisModel3$modelName,
               parameters = irisModel3$parameters, n = 500, seed = 1)

## Not run:
irisModel3$n <- NULL
irisSim3 <- do.call("sim", c(list(n=500,seed=1),irisModel3)) # alternative call
Simulate from a Parameterized MVN Mixture Model

Description

Simulate data from a parameterized MVN mixture model.

Usage

```r
simE(parameters, n, seed = NULL, ...)
simV(parameters, n, seed = NULL, ...)
simEII(parameters, n, seed = NULL, ...)
simVII(parameters, n, seed = NULL, ...)
simEEI(parameters, n, seed = NULL, ...)
simVEI(parameters, n, seed = NULL, ...)
simEVI(parameters, n, seed = NULL, ...)
simVVI(parameters, n, seed = NULL, ...)
simEEE(parameters, n, seed = NULL, ...)
simEEV(parameters, n, seed = NULL, ...)
simVEV(parameters, n, seed = NULL, ...)
simVVE(parameters, n, seed = NULL, ...)
simVVEV(parameters, n, seed = NULL, ...)
simVVV(parameters, n, seed = NULL, ...)
simVEE(parameters, n, seed = NULL, ...)
simEVE(parameters, n, seed = NULL, ...)
```

Arguments

- **parameters**  
  A list with the following components:
  - **pro** A vector whose \( k \)th component is the mixing proportion for the \( k \)th component of the mixture model. If missing, equal proportions are assumed.
  - **mean** The mean for each component. If there is more than one component, this is a matrix whose \( k \)th column is the mean of the \( k \)th component of the mixture model.
  - **variance** A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.

- **n**  
  An integer specifying the number of data points to be simulated.

- **seed**  
  An optional integer argument to `set.seed` for reproducible random class assignment. By default the current seed will be used. Reproducibility can also be achieved by calling `set.seed` before calling `sim`.

- **...**  
  Catches unused arguments in indirect or list calls via `do.call`. 

## Example

```r
clPairs(irisSim3[, -1], cl = irisSim3[, 1])
```
Details
This function can be used with an indirect or list call using do.call, allowing the output of e.g. mstep, em, Mclust, to be passed directly without the need to specify individual parameters as arguments.

Value
A matrix in which first column is the classification and the remaining columns are the n observations simulated from the specified MVN mixture model.

Attributes:  "modelName" A character string indicating the variance model used for the simulation.

References


See Also
sim, Mclust, mstepE, mclustVariance.

Examples
```
d <- 2
G <- 2
scale <- 1
shape <- c(1, 9)

O1 <- diag(d)
O2 <- diag(d)[,,c(2,1)]
O <- array(cbind(O1,O2), c(2, 2, 2))
0

variance <- list(d= d, G = G, scale = scale, shape = shape, orientation = 0)
mu <- matrix(0, d, G) # center at the origin
simdat <- simEEV(n = 200,
parameters = list(pro=c(1,1),mean=mu,variance=variance),
seed = NULL)

cl <- simdat[,1]

Not run:
sigma <- array(apply(0, 3, function(x,y) crossprod(x*y),
y = sqrt(scale*shape)), c(2,2,2))
paramList <- list(mu = mu, sigma = sigma)
coordProj(simdat, paramList = paramList, classification = cl)
```
### Summary.Mclust

**Summarizing Gaussian Finite Mixture Model Fits**

#### Description

Summary method for class "Mclust".

#### Usage

```r
S3 method for class 'Mclust'
summary(object, parameters = FALSE, classification = FALSE, ...)
```

```r
S3 method for class 'summary.Mclust'
print(x, digits = getOption("digits"), ...)
```

#### Arguments

- `object`: An object of class 'Mclust' resulting of a call to `Mclust` or `densityMclust`.
- `x`: An object of class 'summary.Mclust', usually, a result of a call to `summary.Mclust`.
- `parameters`: Logical; if TRUE, the parameters of mixture components are printed.
- `classification`: Logical; if TRUE, the MAP classification/clustering of observations is printed.
- `digits`: The number of significant digits to use when printing.
- `...`: Further arguments passed to or from other methods.

#### Author(s)

Luca Scrucca

#### References


#### See Also

`Mclust`, `densityMclust`. 
Examples

mod1 = Mclust(iris[,1:4])
summary(mod1)
summary(mod1, parameters = TRUE, classification = TRUE)

mod2 = Mclust(iris[,1:4], G = 1)
summary(mod2, parameters = TRUE, classification = TRUE)

mod3 = Mclust(iris[,1:4], prior = priorControl())
summary(mod3)

mod4 = Mclust(iris[,1:4], prior = priorControl(functionName="defaultPrior", shrinkage=0.1))
summary(mod4, parameters = TRUE, classification = TRUE)

summary.mclustBIC  Summary function for model-based clustering via BIC

Description

Optimal model characteristics and classification for model-based clustering via mclustBIC.

Usage

## S3 method for class 'mclustBIC'
summary(object, data, g, modelNames, ...)

Arguments

- **object**: An 'mclustBIC' object, which is the result of applying mclustBIC to data.
- **data**: The matrix or vector of observations used to generate 'object'.
- **g**: A vector of integers giving the numbers of mixture components (clusters) from which the best model according to BIC will be selected (as character(g) must be a subset of the row names of object). The default is to select the best model for all numbers of mixture components used to obtain object.
- **modelNames**: A vector of integers giving the model parameterizations from which the best model according to BIC will be selected (as character(model) must be a subset of the column names of object). The default is to select the best model for parameterizations used to obtain object.
- **...**: Not used. For generic/method consistency.

Value

A list giving the optimal (according to BIC) parameters, conditional probabilities z, and log-likelihood, together with the associated classification and its uncertainty.

The details of the output components are as follows:

- **modelName**: A character string denoting the model corresponding to the optimal BIC.
The number of observations in the data.

The dimension of the data.

The number of mixture components in the model corresponding to the optimal BIC.

The optimal BIC value.

The log-likelihood corresponding to the optimal BIC.

A list with the following components:

- **pro**: A vector whose $k$th component is the mixing proportion for the $k$th component of the mixture model. If missing, equal proportions are assumed.
- **mean**: The mean for each component. If there is more than one component, this is a matrix whose $k$th column is the mean of the $k$th component of the mixture model.
- **variance**: A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for `mclustVariance` for details.

A matrix whose $[i,k]$th entry is the probability that observation $i$ in the data belongs to the $k$th class.

map(z): The classification corresponding to z.

The uncertainty associated with the classification.

"bestBICvalues" Some of the best bic values for the analysis.
"prior" The prior as specified in the input.
"control" The control parameters for EM as specified in the input.
"initialization" The parameters used to initial EM for computing the maximum likelihood values used to obtain the BIC.


**See Also**

- `mclustBIC`
- `mclustModel`

**Examples**

```r
irisBIC <- mclustBIC(iris[,,-5])
summary(irisBIC, iris[,,-5])
summary(irisBIC, iris[,,-5], G = 1:6, modelNames = c("VII", "VVI", "VVV"))
```
Summary Function for Bootstrap Inference for Gaussian Finite Mixture Models

Description

Summary of bootstrap distribution for the parameters of a Gaussian mixture model providing either standard errors or percentile bootstrap confidence intervals.

Usage

```r
S3 method for class 'MclustBootstrap'
summary(object, what = c("se", "ci"), conf.level = 0.95, ...)
```

Arguments

- `object`: An object of class 'MclustBootstrap' as returned by `MclustBootstrap`.
- `what`: A character string: "se" for the standard errors; "ci" for the confidence intervals.
- `conf.level`: A value specifying the confidence level of the interval.
- `...`: Further arguments passed to or from other methods.

Details

For details about the procedure used to obtain the bootstrap distribution see `MclustBootstrap`.

References


See Also

`MclustBootstrap`.

Examples

```r
Not run:
data(diabetes)
X = diabetes[,-1]
modClust = Mclust(X)
bootClust = MclustBootstrap(modClust)
summary(bootClust, what = "se")
summary(bootClust, what = "ci")
```
data(acidity)
modDens = densityMclust(acidity)
modDens = MclustBootstrap(modDens)
summary(modDens, what = "se")
summary(modDens, what = "ci")

## End(Not run)

summary.MclustDA  

Summary method for class "MclustDA".

Description

Summary method for class "MclustDA".

Usage

## S3 method for class 'MclustDA'
summary(object, parameters = FALSE, newdata, newclass, ...)
## S3 method for class 'summary.MclustDA'
print(x, digits = getOption("digits"), ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object of class 'MclustDA' resulting from a call to MclustDA.</td>
</tr>
<tr>
<td>x</td>
<td>An object of class 'summary.MclustDA', usually, a result of a call to summary.MclustDA.</td>
</tr>
<tr>
<td>parameters</td>
<td>Logical; if TRUE, the parameters of mixture components are printed.</td>
</tr>
<tr>
<td>newdata</td>
<td>A data frame or matrix giving the test data.</td>
</tr>
<tr>
<td>newclass</td>
<td>A vector giving the class labels for the observations in the test data.</td>
</tr>
<tr>
<td>digits</td>
<td>The number of significant digits to use when printing.</td>
</tr>
<tr>
<td>...</td>
<td>Further arguments passed to or from other methods.</td>
</tr>
</tbody>
</table>

Value

The function summary.MclustDA computes and returns a list of summary statistics of the estimated MclustDA or EDDA model for classification.

Author(s)

Luca Scrucca
References


See Also

`mclustDA, plot.MclustDA`

Examples

```r
mod = MclustDA(data = iris[,1:4], class = iris$Species)
summary(mod)
summary(mod, parameters = TRUE)
```

---

**summary.MclustDR**

Summary method for class "MclustDR".

**Usage**

```r
S3 method for class 'MclustDR'
summary(object, numdir, std = FALSE, ...)
S3 method for class 'summary.MclustDR'
print(x, digits = max(5,getOption("digits") - 3), ...)
```

**Arguments**

- `object` An object of class 'MclustDR' resulting from a call to `MclustDR`.
- `x` An object of class 'summary.MclustDR', usually, a result of a call to `summary.MclustDR`.
- `numdir` An integer providing the number of basis directions to be printed.
- `std` if TRUE the coefficients basis are scaled such that all predictors have unit standard deviation.
- `digits` The number of significant digits to use when printing.
- `...` Further arguments passed to or from other methods.

**Author(s)**

Luca Scrucca
References


See Also

MclustDR, plot.MclustDR

---

**surfacePlot**

*Density or uncertainty surface for bivariate mixtures.*

**Description**

Plots a density or uncertainty surface given bivariate data and parameters of an MVN mixture model for the data.

**Usage**

```r
surfacePlot(data, parameters,
 type = c("contour", "image", "persp"),
 what = c("density", "uncertainty"),
 transformation = c("none", "log", "sqrt"),
 grid = 100, nlevels = 11, levels = NULL, col = grey(0.6),
 xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL,
 scale = FALSE, main = FALSE, swapAxes = FALSE,
 verbose = FALSE, ...)
```

**Arguments**

- **data**
  A matrix, or data frame of bivariate observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

- **parameters**
  A named list giving the parameters of an *MCLUST* model, used to produce superimposing ellipses on the plot. The relevant components are as follows:
  - **mean**
    The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
  - **variance**
    A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for mclustVariance for details.

- **type**
  Choose from one of the following three options: "contour" (default), "image", "persp" indicating the plot type.

- **what**
  Choose from one of the following options: "density" (default), "uncertainty" indicating what to plot.
surfacePlot

transformation Choose from one of the following three options: "none" (default), "log", "sqrt" indicating a transformation to be applied before plotting.

grid The number of grid points (evenly spaced on each axis). The mixture density and uncertainty is computed at grid x grid points to produce the surface plot. Default: 100.

nlevels The number of levels to use for a contour plot. Default: 11.

levels A vector of levels at which to draw the lines in a contour plot.

col The color to be used for drawing contour lines.

xlim, ylim Optional argument specifying bounds for the ordinate, abscissa of the plot. This may be useful for when comparing plots.

xlab, ylab Optional argument specifying labels for the x-axis and y-axis.

scale A logical variable indicating whether or not the two dimensions should be plotted on the same scale, and thus preserve the shape of the distribution. The default is not to scale.

main A logical variable or NULL indicating whether or not to add a title to the plot identifying the dimensions used.

swapAxes A logical variable indicating whether or not the axes should be swapped for the plot.

verbose A logical variable telling whether or not to print an indication that the function is in the process of computing values at the grid points, which typically takes some time to complete.

... Other graphics parameters.

Value

An invisible list with components x, y, and z in which x and y are the values used to define the grid and z is the transformed density or uncertainty at the grid points.

Side Effects

A plots showing (a transformation of) the density or uncertainty for the given mixture model and data.

Details

For an image plot, a color scheme may need to be selected on the display device in order to view the plot.

References


thyroid

See Also

mclust2Dplot

Examples

faithfulModel <- Mclust(faithful)
surfacePlot(faithful, parameters = faithfulModel$parameters,
            type = "contour", what = "density", transformation = "none",
            drawlabels = FALSE)
surfacePlot(faithful, parameters = faithfulModel$parameters,
            type = "persp", what = "density", transformation = "log")
surfacePlot(faithful, parameters = faithfulModel$parameters,
            type = "contour", what = "uncertainty", transformation = "log")

thyroid

Thyroid gland data

Description

Data on five laboratory tests administered to a sample of 215 patients. The tests are used to predict whether a patient’s thyroid can be classified as euthyroidism (normal thyroid gland function), hypothyroidism (underactive thyroid not producing enough thyroid hormone) or hyperthyroidism (overactive thyroid producing and secreting excessive amounts of the free thyroid hormones T3 and/or thyroxine T4). Diagnosis of thyroid operation was based on a complete medical record, including anamnesis, scan, etc..

Usage

data(thyroid)

Format

A data frame with the following variables:

- **Diagnosis**  Diagnosis of thyroid operation: Hypo, Normal, and Hyper.
- **RT3U** T3-resin uptake test (percentage).
- **T4** Total Serum thyroxin as measured by the isotopic displacement method.
- **T3** Total serum triiodothyronine as measured by radioimmuno assay.
- **TSH** Basal thyroid-stimulating hormone (TSH) as measured by radioimmuno assay.
- **DTSH** Maximal absolute difference of TSH value after injection of 200 micro grams of thyrotropin-releasing hormone as compared to the basal value.

Source

References


Uncertainty Plot

**uncerPlot**  
*Uncertainty Plot for Model-Based Clustering*

**Description**

Displays the uncertainty in converting a conditional probability from EM to a classification in model-based clustering.

**Usage**

`uncerPlot(z, truth, ...)`

**Arguments**

- `z` A matrix whose $i,k$th entry is the conditional probability of the $i$th observation belonging to the $k$th component of the mixture.
- `truth` A numeric or character vector giving the true classification of the data.
- `...` Provided to allow lists with elements other than the arguments can be passed in indirect or list calls with `do.call`.

**Details**

When `truth` is provided and the number of classes is compatible with `z`, the function `compareClass` is used to find best correspondence between classes in `truth` and `z`.

**Value**

A plot of the uncertainty profile of the data, with uncertainties in increasing order of magnitude. If `truth` is supplied and the number of classes is the same as the number of columns of `z`, the uncertainty of the misclassified data is marked by vertical lines on the plot.

**References**


See Also

- `mclustBIC`, `em`, `me`, `mapClass`

Examples

```r
irisModel3 <- Mclust(iris[, -5], G = 3)
uncerPlot(z = irisModel3$z)
uncerPlot(z = irisModel3$z, truth = iris[, 5])
```

**Description**

Converts a classification into a matrix of indicator variables.

**Usage**

```r
unmap(classification, groups=NULL, noise=NULL, ...)
```

**Arguments**

- `classification`: A numeric or character vector. Typically the distinct entries of this vector would represent a classification of observations in a data set.
- `groups`: A numeric or character vector indicating the groups from which `classification` is drawn. If not supplied, the default is to assumed to be the unique entries of `classification`.
- `noise`: A single numeric or character value used to indicate the value of `groups` corresponding to noise.
- `...`: Catches unused arguments in indirect or list calls via `do.call`.

**Value**

An $n$ by $m$ matrix of $(0,1)$ indicator variables, where $n$ is the length of `classification` and $m$ is the number of unique values or symbols in `classification`. Columns are labeled by the unique values in `classification`, and the $[i,j]$th entry is $1$ if `classification[i]` is the $j$th unique value or symbol in sorted order `classification`. If a noise value of symbol is designated, the corresponding indicator variables are relocated to the last column of the matrix.

**References**


wreath

See Also
map, estep, me

Examples
z <- unmap(iris[,5])
z[1:5,

emEst <- me(modelName = "VVV", data = iris[, -5], z = z)
emEst$z[1:5,

map(emEst$z)

wreath Data Simulated from a 14-Component Mixture

Description
A dataset consisting of 1000 observations drawn from a 14-component normal mixture in which the covariances of the components have the same size and shape but differ in orientation.

Usage
data(wreath)

References
Index

*Topic cluster
  adjustedRandIndex, 5
  bic, 8
  cdens, 10
  cdense, 11
  cdFMclust, 13
  classError, 15
  cLPairs, 16
  clustCombi, 18
  combiPlot, 20
  combMat, 21
  coordProj, 23
  decom2sigma, 28
  defaultPrior, 29
  dens, 31
  densityMclust, 32
  densityMclust.diagnostic, 34
  em, 36
  emControl, 38
  emE, 39
  entPlot, 41
  estep, 44
  estepE, 45
  hc, 48
  hCE, 50
  hclass, 52
  hypvol, 53
  icl, 54
  imputeData, 55
  imputePairs, 56
  map, 59
  mapClass, 60
  Mclust, 61
  mclust.options, 64
  mclust1Dplot, 67
  mclust2Dplot, 69
  mclustBIC, 71
  MclustBootstrap, 74
  mclustBootstrapLRT, 76
  mclustICL, 84
  mclustModel, 86
  mclustModelNames, 88
  mclustVariance, 89
  me, 91
  me.weighted, 93
  meE, 95
  mstep, 97
  mstepE, 98
  mvn, 100
  mvnX, 102
  nMclustParams, 104
  nVarParams, 105
  partconv, 106
  partuniq, 107
  plot.clustCombi, 108
  plot.densityMclust, 109
  plot.Mclust, 111
  plot.mclustBIC, 113
  plot.MclustBootstrap, 115
  plot.mclustICL, 121
  print.clustCombi, 127
  priorControl, 128
  randomPairs, 129
  randProj, 130
  sigma2decomp, 132
  sim, 134
  simE, 136
  summary.Mclust, 138
  summary.mclustBIC, 139
  summary.MclustBootstrap, 141
  surfacePlot, 144
  uncerPlot, 147
  unmap, 148

*Topic datasets
  acidity, 5
  banknote, 6
  Baudry_etal_2010_JCGS_examples, 7
  chevron, 15
INDEX

cross, 26
diabetes, 35
GvHD, 47
thyroid, 146
wreath, 149
*Topic dplot
cdfMclust, 13
densityMclust.diagnostic, 34
plot.densityMclust, 109
*Topic htest
MclustBootstrap, 74
mclustBootstrapLRT, 76
summary.MclustBootstrap, 141
*Topic multivariate
covw, 25
cvMclustDA, 26
logLik.Mclust, 57
logLik.MclustDA, 58
MclustDA, 78
MclustDR, 81
plot.MclustDA, 116
plot.MclustDR, 119
predict.densityMclust, 122
predict.Mclust, 123
predict.MclustDA, 124
predict.MclustDR, 126
summary.MclustDA, 142
*Topic package
mclust-package, 4
acidity, 5
adjustedRandIndex, 5
arrows, 43

banknote, 6
Baudry_etal_2010_JCGS_examples, 7
bic, 8, 54, 85, 105, 106
bicEMtrain (mclust-deprecated), 64
cdens, 10, 13, 32
cdensE, 11, 11
cdensEEE (cdensE), 11
cdensEII (cdensE), 11
cdensEII (cdensE), 11
cdensE (cdensE), 11
cdensVE (cdensE), 11
cdensVII (cdensE), 11

*cdensVVE (cdensE), 11
cdensVEI (cdensE), 11
cdensVE (cdensE), 11
cdensVII (cdensE), 11
cdensVII (cdensE), 11
cdensVII (cdensE), 11
cdensV (cdensE), 11
emVEI (emE), 39
emVEV (emE), 39
emVII (emE), 39
emVVE (emE), 39
emVVI (emE), 39
emVVV, 37
emVVV (emE), 39
emX (emE), 39
emXII (emE), 39
emXXI (emE), 39
entPlot, 41, 108
errorBars, 43
estep, 11, 37, 39, 44, 47, 60, 92, 94, 96, 98, 100, 149
estepE, 45, 49
estepEEE (estepE), 45
estepEEEI (estepE), 45
estepEEV (estepE), 45
estepEII (estepE), 45
estepEVE (estepE), 45
estepEVI (estepE), 45
estepEVV (estepE), 45
estepV (estepE), 45
estepVEE (estepE), 45
estepVIE (estepE), 45
estepVEV (estepE), 45
estepVII (estepE), 45
estepVVE (estepE), 45
estepVVI (estepE), 45
estepVVV, 45
estepVVV (estepE), 45
ex4.1 (Baudry_etal_2010_JCGS_examples), 7
ex4.2 (Baudry_etal_2010_JCGS_examples), 7
ex4.3 (Baudry_etal_2010_JCGS_examples), 7
ex4.4.1 (Baudry_etal_2010_JCGS_examples), 7
ex4.4.2 (Baudry_etal_2010_JCGS_examples), 7
grid, 34
GvHD, 47
hc, 48, 51, 52, 63, 73, 130
hcE, 49, 50, 52
hcEEE (hcE), 50
hcEII (hcE), 50
class, 50, 51, 52, 130
hcV (hcE), 50
hcVII (hcE), 50
hcVVV, 50, 130
hcVVV (hcE), 50
hist, 77, 110, 115
hypvol, 53, 62
icl, 54, 85
imputeData, 55, 57
imputePairs, 55, 56
legend, 17
logLik.Mclust, 57
logLik.MclustDA, 58
map, 59, 149
mapClass, 6, 16, 60, 60, 148
mclust (mclust-package), 4
mclust-deprecated, 64
mclust-package, 4
mclust.options, 11, 13, 18, 24, 32, 37, 41, 45, 47, 50, 62, 63, 64, 71–73, 79, 92–94, 96, 98, 132
mclust1Dplot, 67, 113
mclust2Dplot, 24, 68, 69, 113, 132, 146
mclustBIC, 9, 30, 39, 54, 63, 65, 71, 76, 77, 85, 89, 113, 114, 129, 140, 148
MclustBootstrap, 74, 115, 141
MclustBootstrapLRT, 76, 85
MclustDA, 26, 58, 59, 66, 78, 82, 83, 116, 117, 124, 125, 142, 143
MclustDR, 81, 119, 120, 126, 127, 143, 144
mclustICL, 54, 77, 84, 121
mclustModel, 73, 86, 140
mclustModelNames, 9–11, 29, 31, 36, 44, 61, 63, 65, 72, 73, 75, 76, 78, 83, 85, 87, 88, 91–94, 97, 101, 104, 105, 133, 134
INDEX

me, 30, 37, 39, 41, 60, 73, 91, 94, 96, 98, 100, 129, 148, 149
me.weighted, 93
mE, 92, 94, 95
meEEE (mE), 95
meEII (mE), 95
meEEV (mE), 95
meEII (mE), 95
meEVE (mE), 95
meEVI (mE), 95
meEVV (mE), 95
meVEE (mE), 95
meVEI (mE), 95
meVEV (mE), 95
meVII (mE), 95
meVVE (mE), 95
meVVI (mE), 95
meVVV, 92, 94
meVVV (mE), 95
mex (me), 95
mexII (me), 95
mexXI (me), 95
mexXX (me), 95
mstep, 13, 30, 37, 39, 41, 45, 47, 92, 94, 97, 100, 129, 135
mstepE, 98, 98, 103, 137
mstepEEE (mstepE), 98
mstepEII (mstepE), 98
mstepEVV (mstepE), 98
mstepEVE (mstepE), 98
mstepEVI (mstepE), 98
mstepEVV (mstepE), 98
mstepV (mstepE), 98
mstepVEE (mstepE), 98
mstepVEI (mstepE), 98
mstepVEV (mstepE), 98
mstepVII (mstepE), 98
mstepVVE (mstepE), 98
mstepVII (mstepE), 98
mstepVVV, 98
mstepVVV (mstepE), 98
mvn, 100, 103
mvnX, 101, 102
mvnXII, 101
mvnXII (mvnX), 102
mvnXXI (mvnX), 102
mvnXXX, 101
mvnXXX (mvnX), 102
nMclustParams, 104, 106
nVarParams, 9, 105, 105
pairs, 17, 18, 57
partconv, 106, 107
partuniq, 106, 107
plot.clustCombi, 42, 108
plot.densityMclust, 14, 33, 35, 109
plot.Mclust, 63, 111
plot.mclustBIC, 113, 113, 121
plot.MclustBootstrap, 75, 115
plot.mclustBootstrapLRT
  (mclustBootstrapLRT), 76
plot.MclustDA, 27, 80, 116, 143
plot.MclustDR, 83, 118, 144
plot.mclustICL, 85, 113, 121
plot.window, 120
plotDensityMclust1
  (plot.densityMclust), 109
plotDensityMclust2
  (plot.densityMclust), 109
plotDensityMcluststd
  (plot.densityMclust), 109
plotEvaluates.MclustDR (plot.MclustDR), 119
predict.densityMclust, 33, 122
predict.Mclust, 123
predict.MclustDA, 27, 80, 124
predict.MclustDR, 126
predict2D.MclustDR (predict.MclustDR), 126
print.clustCombi, 127
print.hc (hc), 48
print.Mclust (Mclust), 61
print.mclustBIC (mclustBIC), 71
print.MclustBootstrap
  (MclustBootstrap), 74
print.mclustBootstrapLRT
  (mclustBootstrapLRT), 76
print.MclustDA (MclustDA), 78
print.MclustDR (MclustDR), 81
print.mclustICL (mclustICL), 84
print.summary.Mclust (summary.Mclust), 138
print.summary.mclustBIC
  (summary.mclustBIC), 139
print.summary.MclustBootstrap
  (summary.MclustBootstrap), 141
print.summary.MclustDA
  (summary.MclustDA), 142
print.summary.MclustDR
  (summary.MclustDR), 143
print.summary.mclustICL (mclustICL), 84
printSummaryMclustBIC
  (summary.mclustBIC), 139
printSummaryMclustBICn
  (summary.mclustBIC), 139
priorControl, 30, 61, 63, 73, 79, 92, 94, 100, 128

quantileMclust (cdfMclust), 13

randomPairs, 51, 129
randProj, 24, 113, 117, 130

sigma2decomp, 28, 132
sim, 134, 137
simE, 135, 136
simEEE (simE), 136
simEEII (simE), 136
simEEV (simE), 136
simEEII (simE), 136
simEVE (simE), 136
simEVII (simE), 136
simVEI (simE), 136
simEVV (simE), 136
simV (simE), 136
simVIII (simE), 136
simVII (simE), 136
simVIII (simE), 136
simVV (simE), 136
simVV (simE), 136
simVVV (simE), 136
summary.Mclust, 33, 63, 138
summary.mclustBIC, 73, 139
summary.MclustBootstrap, 74, 75, 141
summary.MclustDA, 27, 80, 142
summary.MclustDR, 83, 143
summary.mclustICL (mclustICL), 84
summaryMclustBICn (summary.mclustBIC), 139

surfacePlot, 71, 110, 113, 117, 144
table, 6, 16, 60
Test1D
  (Baudry_etal_2010_JCGS_examples), 7
thyroid, 146
uncerPlot, 147
unmap, 60, 148
wreath, 149