Package ‘mdw’

June 18, 2020

Title Maximum Diversity Weighting
Version 2020.6-17
Description
Dimension-reduction methods aim at defining a score that maximizes signal diversity. Three approaches, tree weight, maximum entropy weights, and maximum variance weights are provided. These methods are described in He and Fong (2019) <DOI:10.1002/sim.8212>.

Depends R (>= 3.5.0)
Suggests R.rsp, RUnit, Rmosek, mvtnorm, MethylCapSig, gtools
Imports kyotil, MASS, Matrix
VignetteBuilder R.rsp
License GPL-2
Encoding UTF-8
LazyData true
NeedsCompilation no
Author Zonglin He [aut],
Youyi Fong [cre]
Maintainer Youyi Fong <youyifong@gmail.com>
Repository CRAN
Date/Publication 2020-06-18 10:30:11 UTC

R topics documented:

asy.m.e .. 2
asy.m.v .. 2
entropy.weight ... 3
get.bw .. 4
mdw ... 4
pca.weight .. 5
tree.weight ... 5
var.weight ... 6

Index 8
asym.v.e Asymptotic variance for maximum entropy weights

Description
asym.v.e produces estimated asymptotic covariance matrix of the first p-1 maximum entropy weights (because the p weights sum to 1).

Usage
asym.v.e(X, w, h)

Arguments
X n by p matrix containing observations of p biomarkers of n subjects.
w maximum entropy weights for dataset X with bandwidth h used
h bandwidth for kernel density estimation.

Examples
library(MASS)
a three biomarkers dataset generated from independent normal(0,1)
X = mvrnorm(n = 100, mu=rep(0,3), Sigma=diag(3), tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
h = 1
w <- entropy.weight(X,h)
asym.v.e(X,w,h)

asym.v.v Asymptotic variance for maximum variance weights

Description
asym.v.v produces estimated asymptotic covariance matrix of the first p-1 maximum variance weights (because the p weights sum to 1).

Usage
asym.v.v(X, w)

Arguments
X n by p matrix containing observations of p biomarkers of n subjects.
w maximum variance weights for dataset X
entropy.weight

Examples

```R
library(MASS)
# a three biomarkers dataset generated from independent normal(0,1)
X = mvrnorm(n = 100, mu=rep(0,3), Sigma=diag(3), tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
w <- var.weight(X)
asym.v.v(X,w)
```

entropy.weight
Maximum entropy weights

Description

entropy.weight produces a set of weights that maximizes the total weighted entropy of the distribution of different biomarkers within each subject, values of biomarkers can be either continuous or categorical.

Usage

```R
entropy.weight(X, h)
```

Arguments

- **X**: n by p matrix containing observations of p biomarkers of n subjects.
- **h**: bandwidth for kernel density estimation. if data is categorical, set to 'na'.

Examples

```R
library(MASS)
# a three biomarkers dataset generated from independent normal(0,1)
set.seed(1)
X = mvrnorm(n = 100, mu=rep(0,3), Sigma=diag(3), tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
entropy.weight(X, h=1)
###
# a three categorical biomarkers dataset
set.seed(1)
tmp=mvrnorm(n=10,mu=c(0,0,0),Sigma = diag(3))
dat=t(apply(tmp, 1, function(x) cut(x,c(-Inf,-0.5,0.5,Inf),labels=1:3)))
entropy.weight(dat,h='na')
```
get.bw

Bandwidth Selection

Description

get.bw applies a specified bandwidth selection method to the dataset subject-wisely and return the median of the n selected bandwidths as the choice of bandwidth for entropy.weight.

Usage

get.bw(x, bw = c("nrd", "ucv", "bcv", "SJ"), nb)

Arguments

x n by p matrix containing observations of p biomarkers of n subjects.

bw bandwidth selectors of nrd, ucv, bcv, and SJ corresponding to R functions bw.nrd, bw.ucv, bw.bcv, and bw.SJ.

nb number of bins to use, 'na' if bw='nrd'

Examples

library(MASS)
a ten biomarkers dataset generated from independent normal(0,1)
x = mvrnorm(n = 100, mu=rep(0,10), Sigma=diag(10), tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
get.bw(x,bw='ucv',nb=100)
get.bw(x,bw='nrd',nb='na')
pca.weight

Weights based on PCA

Description

pca.weight produce the coefficients of the first principal component

Usage

pca.weight(emp.cor)

Arguments

emp.cor empirical correlation matrix of the dataset

Examples

library(MASS)
a three biomarkers dataset generated from independent normal(0,1)
X = mvrnorm(n = 100, mu=rep(0,3), Sigma=diag(3), tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
emp.cor <- cor(X)
pca.weight(emp.cor)

tree.weight

Weights based on GSC Tree Method

Description

tree.weight Produce a set of weights for different end points based on a correlation matrix using the GSC tree method

Usage

tree.weight (cor.mat, method="GSC", clustering.method="average", plot=TRUE, orientation=c("vertical","horizontal"), ...)

Arguments

cor.mat a matrix, correlation matrix
method a string. GSC, implementation of Gerstein et al., is the only implemented currently
clustering.method a string, how the bottom-up hierarchical clustering tree is built, is passed to hclust as the method parameter
plot a Boolean, whether to plot the tree
orientation vertical or horizontal
... additional args
Value

A vector of weights that sum to 1.

Author(s)

Youyi Fong <yfong@fhcrc.org>

References

Examples

```r
cor.mat=diag(rep(1,3))
cor.mat[1,2]<-cor.mat[2,1]<-0.9
cor.mat[1,3]<-cor.mat[3,1]<-0.1
cor.mat[2,3]<-cor.mat[3,2]<-0.1
tree.weight(cor.mat)
```

var.weight
Maximum variance weights

Description

var.weight produces a set of weights that maximizes the total weighted variance of the distribution of different biomarkers within each subject.

Usage

```r
var.weight(X, method = c("optim", "mosek"))
```

Arguments

- **X**: n by p matrix containing observations of p biomarkers of n subjects.
- **method**: optim (default) using R constrOptim function from stats package for optimization, mosek using mosek function from Rmosek package for optimization

Examples

```r
library(MASS)
# a three biomarkers dataset generated from independent normal(0,1)
X = mvrnorm(n = 100, mu=rep(0,3), Sigma=diag(3), tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
# compute maximum variance weights using constrOptim for optimization
var.weight(X)
```
Not run:
need mosek installed
compute maximum variance weights using mosek for optimization
library(Rmosek)
var.weight(X,'mosek')

End(Not run)
Index

*Topic **PCA**
 pca.weight, 5
*Topic **bandwidth**
 get.bw, 4
*Topic **distribution**
 mdw, 4
 tree.weight, 5
*Topic **selection**
 get.bw, 4
*Topic **weighting**
 asym.v.e, 2
 asym.v.v, 2
 entropy.weight, 3
 var.weight, 6

asym.v.e, 2
asym.v.v, 2

entropy.weight, 3
get.bw, 4
mdw, 4
pca.weight, 5
tree.weight, 5
var.weight, 6