Package ‘measurements’

October 29, 2016

Type Package
Title Tools for Units of Measurement
Version 1.1.0
Date 2016-10-28
Author Matthew A. Birk
Maintainer Matthew A. Birk <matthewabirk@gmail.com>
Description Collection of tools to make working with physical measurements easier. Convert between metric and imperial units, or calculate a dimension’s unknown value from other dimensions’ measurements.
License GPL-3
Encoding UTF-8
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-10-29 00:03:44

R topics documented:

 conv_dim .. 2
 conv_multunit .. 3
 conv_unit ... 4
 conv_unit_options 6
 measurements .. 7

Index 8
conv_dim

Convert Dimensions of Measurement

Description

Converts between dimensions of measurement given a transition dimension (the dimension that "bridges" x and y, e.g. liters per second, lbs per acre). Note that 2 of the 3 measurements (x, y, or trans) must be defined to calculate the 3rd. See conv_unit_options for all options.

Usage

conv_dim(x, x_unit, trans, trans_unit, y, y_unit)

Arguments

x
a numeric vector giving the measurement value in the first dimension.

x_unit
the unit in which x was measured.

trans
a numeric vector giving the measurement value in the transition dimension.

trans_unit
the unit in which trans was measured.

y
a numeric vector giving the measurement value in the second dimension.

y_unit
the unit in which y was measured.

Details

This function supports all dimensions in conv_unit_options except for coordinates. The conversion values have been defined based primarily from international weight and measurement authorities (e.g. General Conference on Weights and Measures, International Committee for Weights and Measures, etc.). While much effort was made to make conversions as accurate as possible, you should check the accuracy of conversions to ensure that conversions are precise enough for your applications.

Note

Duration Years are defined as 365.25 days and months are defined as 1/12 a year.

Energy cal is a thermochemical calorie (4.184 J) and Cal is 1000 cal (kcal or 4184 J).

Flow All gallon-based units are US gallons.

Mass All non-metric units are based on the avoirdupois system.

Power hp is mechanical horsepower, or 745.69 W.

Speed mach is calculated at sea level at 15 °C.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

See Also

conv_unit_options, conv_unit

Examples

```r  
# How many minutes does it take to travel 100 meters at 3 feet per second?  
conv_dim(x = 100, x_unit = "m", trans = 3, trans_unit = "ft_per_sec", y_unit = "min")  

# How many degrees does the temperature increase with an increase in 4 kPa  
# given 0.8 Celcius increase per psi?  
conv_dim(x_unit = "C", trans = 0.8, trans_unit = "C_per.psi", y = 4, y_unit = "kPa")  

# Find the densities given volume and mass measurements.  
conv_dim(x = c(60, 80), x_unit = "ft3", trans_unit = "kg_per_l", y = c(6e6, 4e6), y_unit = "g")  
```

conv_multiunit

Convert Units of Measurement Composed of Multiple Units

Description

Converts complex units of measurement that are joined by " / " or " * ". This function supports all dimensions in conv_unit_options except for coordinates.

Usage

```r  
conv_multiunit(x = 1, from, to)  
```

Arguments

- `x` a numeric vector giving the measurement value in its original units. Default is 1.
- `from, to` a string defining the multiunit with subunits separated by " / " or " * ".

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

See Also

conv_unit, conv_unit_options, conv_dim

Examples

```r  
conv_multiunit(x = 10, from = "ft/hr*F", to = "m/min*C")  
conv_multiunit(x = 1:100, from = "gal_per_min*ft/psi*hp", to = "l_per_hr*km/kPa*kW")  
```
Convert Units of Measurement

Description

Converts common units of measurement for a variety of dimensions. See `conv_unit_options` for all options.

Usage

```r
conv_unit(x, from, to)
```

Arguments

- `x` a numeric vector giving the measurement value in its original units.
- `from` the unit in which the measurement was made.
- `to` the unit to which the measurement is to be converted.

Details

- **Acceleration** mm_per_sec2, cm_per_sec2, m_per_sec2, km_per_sec2, grav, inch_per_sec2, ft_per_sec2, mi_per_sec2, kph_per_sec, mph_per_sec
- **Angle** degree, radian, grad, arcmin, arcsec, turn
- **Area** nm2, um2, mm2, cm2, m2, hectare, km2, inch2, ft2, yd2, acre, mi2, naut_mi2
- **Coordinate** dec_deg, deg_dec_min, deg_min_sec (see note)
- **Count** nmol, umol, mmol, mol
- **Duration** nsec, usec, msec, sec, min, hr, day, wk, mon, yr, dec, cen, mil, Ma
- **Energy** J, kJ, erg, cal, Cal, Wsec, kWh, MWh, BTU
- **Flow** ml_per_sec, ml_per_min, ml_per_hr, l_per_sec, l_per_min, l_per_hr, m3_per_sec, m3_per_min, m3_per_hr, gal_per_sec, gal_per_min, gal_per_hr, ft3_per_sec, ft3_per_min, ft3_per_hr, Sv
- **Length** angstrom, nm, um, mm, cm, dm, m, km, inch, ft, yd, fathom, mi, naut_mi, au, light_yr, parsec, point
- **Mass** ug, mg, g, kg, Pg, carat, metric_ton, oz, lbs, short_ton, long_ton, stone
- **Power** uW, mW, W, kW, MW, GW, erg_per_sec, cal_per_sec, cal_per_min, cal_per_hr, Cal_per_sec, Cal_per_min, Cal_per_hr, BTU_per_sec, BTU_per_min, BTU_per_hr, hp
- **Pressure** uatm, atm, Pa, hPa, kPa, torr, mmHg, inHg, mbar, bar, dbar, psi
- **Speed** mm_per_sec, cm_per_sec, m_per_sec, km_per_sec, inch_per_sec, ft_per_sec, kph, mph, km_per_day, mi_per_day, knot, mach, light
- **Temperature** C, F, K, R
Volume ul, ml, dl, l, cm³, dm³, m³, km³, us_tsp, us_tbsp, us_oz, us_cup, us_pint, us_quart, us_gal, inch³, ft³, mi³, imp_tsp, imp_tbsp, imp_oz, imp_cup, imp_pint, imp_quart, imp_gal

The conversion values have been defined based primarily from international weight and measurement authorities (e.g. General Conference on Weights and Measures, International Committee for Weights and Measures, etc.). While much effort was made to make conversions as accurate as possible, you should check the accuracy of conversions to ensure that conversions are precise enough for your applications.

Note

Duration Years are defined as 365.25 days and months are defined as 1/12 a year.

Coordinate Values must be entered as a string with one space between subunits (e.g. 70° 33’ 11” = "70 33 11").

Energy cal is a thermochemical calorie (4.184 J) and Cal is 1000 cal (kcal or 4184 J).

Flow All gallon-based units are US gallons.

Mass All non-metric units are based on the avoirdupois system.

Power hp is mechanical horsepower, or 745.69 W.

Speed mach is calculated at sea level at 15 °C.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

See Also

conv_unit_options, conv_dim

Examples

```r
conv_unit(2.54, "cm", "inch") # Result = 1 inch

conv_unit(seq(1, 10), "kg", "short_ton") # A vector of measurement values can be converted

# Convert 1, 10, and 100 meters to all other length units
sapply(conv_unit_options$length, function(x) conv_unit(c(1, 10, 100), "m", x))

conv_unit("33 1 1", "deg_min_sec", "dec_deg")

conv_unit(c("101 44.32", "3 19.453"), "deg_dec_min", "deg_min_sec")
```
Description

Shows what units of measurement can be converted with the function `conv_unit`.

Usage

```r
conv_unit_options
```

Format

A list with all units available for conversion using `conv_unit`.

Details

- **Duration** Years are defined as 365.25 days and months are defined as 1/12 a year.
- **Coordinate** Values must be entered as a string with one space between subunits (e.g. 70° 33’ 11” = "70 33 11").
- **Energy** cal is a thermochemical calorie (4.184 J) and Cal is 1000 cal (kcal or 4184 J).
- **Mass** All non-metric units are based on the avoirdupois system.
- **Power** hp is mechanical horsepower, or 745.69 W.
- **Speed** mach is calculated at sea level at 15 °C.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

Source

The conversion values have been defined based primarily from international weight and measurement authorities (e.g. General Conference on Weights and Measures, International Committee for Weights and Measures, etc.). While much effort was made to make conversions as accurate as possible, you should check the accuracy of conversions to ensure that conversions are precise enough for your applications.

See Also

`conv_unit`

Examples

```r
conv_unit_options
conv_unit_options$pressure
```
Tools for Units of Measurement

Description

Collection of tools to make working with physical measurements easier. Convert between metric and imperial units, or calculate a dimension's unknown value from other dimensions' measurements.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>
Index

*Topic datasets
 conv_unit_options, 6

conv_dim, 2, 3, 5
conv_multiunit, 3
conv_unit, 3, 4, 6
conv_unit_options, 2–5, 6

measurements, 7
measurements-package (measurements), 7