Package ‘melt’

May 6, 2022

Type Package

Title Multiple Empirical Likelihood Tests

Version 1.5.1

Description Performs multiple empirical likelihood tests for regression analysis. Much of its functionality and syntax mimics the corresponding base R functions. The core computational routines are implemented using the 'Eigen' C++ library and 'RcppEigen' interface, with OpenMP for parallel computation. Additional functions are available for multiple testing for the analysis of experimental designs. Details of the testing procedures are given in Kim et al. (2021) <arxiv:2112.09206>.

URL https://github.com/markean/melt

BugReports https://github.com/markean/melt/issues

License GPL (>= 2)

Depends R (>= 4.0.0)

Imports methods, Rcpp (>= 1.0.8), stats

LinkingTo Rcpp, RcppEigen, RcppProgress

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation yes

Suggests spelling, covr, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Language en-US

Author Eunseop Kim [aut, cre],
Steven MacEachern [aut, ths],
Mario Peruggia [aut, ths]

Maintainer Eunseop Kim <kim.7302@osu.edu>

Repository CRAN

Date/Publication 2022-05-06 09:30:02 UTC
CEL-class

S4 class CEL

Description

S4 class for constrained empirical likelihood. It inherits from EL class. Note that optim slot has constrained optimization results with respect to parameters, not the Lagrange multiplier.

Details

Let \(l(\theta) \) denote the minus twice the empirical log-likelihood ratio function. We consider a linear hypothesis of the form

\[
L\theta = r,
\]

where the left-hand-side \(L \) is a \(q \) by \(p \) matrix and the right-hand-side \(r \) is a \(q \)-dimensional vector. Under some regularity conditions, \(l(\theta) \) converges in distribution to \(\chi_q^2 \) under the constraint of hypothesis, i.e.,

\[
\min_{\theta: L\theta = r} l(\theta) \xrightarrow{d} \chi_q^2.
\]
Minimization of \(l(\theta) \) with respect to \(\theta \) is computationally expensive since it implicitly involves the evaluation step as described in \textit{EL}. Further, depending on the form of \(g(X_i, \theta) \) and the constraint, the optimization problem can be nonconvex and have multiple local minima. For this reason, \texttt{melt} only considers linear hypotheses and performs local minimization of \(l(\theta) \) using projected gradient descent method. With the orthogonal projection matrix \(P \) and a step size \(\gamma \), the algorithm updates \(\theta \) as

\[
\theta^{(k+1)} \leftarrow \theta^{(k)} - \gamma P \nabla l(\theta^{(k)}),
\]

where \(\nabla l(\theta^{(k)}) \) denotes the gradient of \(l \) at \(\theta^{(k)} \). The first order optimality condition is \(P \nabla l(\theta) = 0 \), which is used as the stopping criterion.

\textbf{Slots}

- \texttt{optim} A list with the following optimization results:
 - \texttt{method} Character for method dispatch in internal functions.
 - \texttt{par} Parameter value that minimizes the constrained empirical likelihood.
 - \texttt{lambda} Lagrange multiplier of the dual problem.
 - \texttt{iterations} Number of iterations performed.
 - \texttt{convergence} Convergence status.

- \texttt{logp} Log probabilities obtained from constrained empirical likelihood.
- \texttt{logl} Constrained empirical log-likelihood.
- \texttt{loglr} Constrained empirical log-likelihood ratio.
- \texttt{statistic} Minus twice the constrained empirical log-likelihood ratio statistic that has an asymptotic chi-square distribution.
- \texttt{df} Degrees of freedom of the statistic.
- \texttt{pval} \(p \)-value of the statistic.
- \texttt{npars} Number of parameters.
- \texttt{weights} Rescaled weights used for model fitting.
- \texttt{data} Data matrix used for model fitting.
- \texttt{coefficients} Maximum empirical likelihood estimates of the parameters.

\textbf{References}

\textbf{Examples}

\texttt{showClass("CEL")}
clothianidin
Clothianidin concentration in maize plants

Description
A dataset summarizing field experiments result of seed treatments on clothianidin concentration.

Usage
```r
data("clothianidin")
```

Format
A data frame with 102 rows and 3 variables:
- `blk` New blocks constructed from original data. The format is 'days post planting_original block_year'.
- `trt` Seed treatment.
- `clo` Log transformed clothianidin concentration (µg).

Details
The original data is provided by Alford and Krupke (2017). Only some of the shoot region observations are taken from the original data and processed for illustration.

Source

coef-method
Maximum empirical likelihood estimates

Description
Extracts model coefficients from a model.

Usage
```r
## S4 method for signature 'EL'
coef(object, ...)
```

Arguments
- `object` A fitted `EL` object.
- `...` Not used.
confint

Examples

```r
fit <- el_lm(formula = mpg ~ wt, data = mtcars)
coef(fit)
```

confint

Confidence intervals for model parameters

Description

Computes confidence intervals for one or more parameters in a fitted model. Package **melt** adds a method for objects inheriting from class **EL**.

Usage

```r
## S4 method for signature 'EL'
confint(
  object,
  parm,
  level = 0.95,
  ...,
  cv = qchisq(1L),
  control = el_control()
)
```

Arguments

- **object**: A fitted **EL** object.
- **parm**: A specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
- **level**: A confidence level required. Defaults to 0.95.
- **...**: Not used.
- **cv**: A critical value for calibration of empirical likelihood ratio statistic. Defaults to `qchisq(1L)`.
- **control**: A list of control parameters set by **el_control**.

Value

A matrix with columns giving lower and upper confidence limits for each parameter. In contrast to other methods that rely on studentization, the lower and upper limits obtained from empirical likelihood do not correspond to the \((1 - \text{level}) / 2\) and \(1 - (1 - \text{level}) / 2\) in %, respectively.
References

See Also

confreg, el_control, lht

Examples

```r
fit <- el_lm(formula = mpg ~ wt, data = mtcars)
confint(fit)
```

confreg | Confidence region for model parameters

Description

Computes boundary points of a two-dimensional confidence region for model parameters.

Usage

```r
## S4 method for signature 'EL'
confreg(
  object,
  parm,
  level = 0.95,
  cv = qchisq(level, 2L),
  npoints = 50L,
  control = el_control()
)
```

Arguments

- `object` | A fitted EL object.
- `parm` | A specification of which parameters are to be given a confidence region, either a vector of numbers or a vector of names. It should be a vector of length two of the form `c(x, y)`. If missing, the first two parameter in object are considered.
- `level` | A confidence level required. Defaults to 0.95.
- `cv` | A critical value for calibration of empirical likelihood ratio statistic. Defaults to `qchisq(level, 2L)`.
- `npoints` | The number of boundary points to compute. Defaults to 50.
- `control` | A list of control parameters set by `el_control`.
ConfregEL-class

Value

An object of class ConfregEL.

References

See Also

confint, el_control, lht, plot

Examples

par <- c(0, 0, 0)
x <- matrix(rnorm(90), ncol = 3)
fit <- el_mean(par, x)
confreg(fit, parm = c(1, 3))

confregEL-class S4 class ConfregEL

Description

S4 class for confidence region.

Slots

points A numeric matrix with two columns for boundary points of a confidence region.
estimates A numeric vector of length two for parameter estimates.
level A confidence level required.
cv A critical value for calibration of empirical likelihood ratio statistic.
pnames A character vector of length two for the name of parameters.

Examples

showClass("ConfregEL")
S4 class for details of computation of empirical likelihood.

Slots

maxit Maximum number of iterations for the optimization with respect to θ.
maxit_l Maximum number of iterations for the optimization with respect to λ.
tol Convergence tolerance denoted by ϵ. The iteration stops when

$$\| P \nabla l(\theta^{(k)}) \| < \epsilon.$$

tol_l Relative convergence tolerance denoted by δ. The iteration stops when

$$\| \lambda^{(k)} - \lambda^{(k-1)} \| < \delta \| \lambda^{(k-1)} \| + \delta^2.$$

step Step size γ for the projected gradient descent method.

th Threshold for the negative empirical log-likelihood ratio value. The iteration stops if the value exceeds the threshold. Defaults to NULL and sets the threshold to $200 \times d$, where d corresponds to the degrees of freedom of the limiting chi-squared distribution of the statistic.

nthreads Number of threads for parallel computation via OpenMP (if available). Defaults to the half of the available threads. For better performance, it is recommended to limit the number of threads to the number of physical cores. Note that it only applies to the following functions that involve multiple evaluations or minimizations:

- confreg
- el_lm
- el_glm
- eld

Examples

showClass("ControlEL")
S4 class for empirical likelihood.

Details

Let X_i be independent and identically distributed p-dimensional random variable from an unknown distribution F for $i = 1, \ldots, n$. For a parameter of interest $\theta(F) \in \mathbb{R}^p$, consider a p-dimensional smooth estimating function $g(X_i, \theta)$ with a moment condition

$$E[g(X_i, \theta)] = 0.$$

We assume that there exists an unique θ_0 that solves the above equation. Given a value of θ, the (profile) empirical likelihood ratio is defined by

$$R(\theta) = \max_{p_i} \left\{ \prod_{i=1}^{n} p_i : \sum_{i=1}^{n} p_i g(X_i, \theta) = 0, p_i \geq 0, \sum_{i=1}^{n} p_i = 1 \right\}.$$

The Lagrange multiplier $\lambda \equiv \lambda(\theta)$ of the dual problem leads to

$$p_i = \frac{1}{n} \frac{1}{1 + \lambda^T g(X_i, \theta)},$$

where λ solves

$$\frac{1}{n} \sum_{i=1}^{n} \frac{g(X_i, \theta)}{1 + \lambda^T g(X_i, \theta)} = 0.$$

Then the empirical log-likelihood ratio is given by

$$\log R(\theta) = \max_{\lambda} \sum_{i=1}^{n} \log(1 + \lambda^T g(X_i, \theta)).$$

This problem can be efficiently solved by the Newton-Raphson method when the zero vector is contained in the interior of the convex hull of $\{g(X_i, \theta)\}_{i=1}^{n}$.

Under some regularity conditions, it is known that $-2 \log R(\theta_0)$ converges in distribution to χ^2_p, where χ^2_p has a chi-square distribution with p degrees of freedom.

Slots

• method Character for method dispatch in internal functions.
• par Parameter value specified.
• lambda Lagrange multiplier of the dual problem.
• iterations Number of iterations performed.
eld

Empirical likelihood displacement

Description
Computes empirical likelihood displacement for model diagnostics and outlier detection.

Usage

```r
## S4 method for signature 'EL'
eld(object, control = el_control())
```

Arguments

- `object` A fitted EL object.
- `control` A list of control parameters set by `el_control`.

References

Details

Let $L(\theta)$ be the empirical log-likelihood function based on the full sample with n observations. The maximum empirical likelihood estimate is denoted by $\hat{\theta}$. Consider a reduced sample with the i^{th} observation deleted and the corresponding estimate $\hat{\theta}(i)$. The empirical likelihood displacement is defined by

$$\text{ELD}_i = 2\{L(\hat{\theta}) - L(\hat{\theta}(i))\}.$$

If ELD$_i$ is large, then the i^{th} observation is an influential point and can be inspected as a possible outlier. The i^{th} observation is an influential point and can be inspected as a possible outlier. eld computes ELD$_i$ for $i = 1, \ldots, n$.

Value

An object of class ELD.

References

See Also

el_control, el_eval, plot

Examples

```r
x <- rnorm(10L)
y <- 10
fit <- el_mean(0, c(x, y))
eld(fit)
```

ELD-class

S4 class ELD

Description

S4 class for empirical likelihood displacement.

Slots

eld A numeric vector of empirical likelihood displacement values.

Examples

```r
showClass("ELD")
```
el_control

Control parameters for computation

Description

Specifies details of computation of (constrained) empirical likelihood.

Usage

el_control(
 maxit = 200L,
 maxit_l = 25L,
 tol = 1e-06,
 tol_l = 1e-06,
 step = NULL,
 th = NULL,
 nthreads
)

Arguments

maxit Maximum number of iterations for constrained minimization of empirical likelihood. Defaults to 200.
maxit_l Maximum number of iterations of evaluation of empirical likelihood. Defaults to 25.
tol Convergence tolerance for the constrained minimization. Defaults to 1e-06.
tol_l Relative convergence tolerance for the evaluation. Defaults to 1e-06.
step Step size for projected gradient method. Defaults to NULL and set to the reciprocal of sample size.
th Threshold for negative empirical log-likelihood ratio value. The iteration stops if the value exceeds the threshold. Defaults to NULL.
nthreads Number of threads for parallel computation via OpenMP (if available).

Value

An object of class ControlEL.

See Also

el_eval, lht

Examples

optcfg <- el_control(maxit = 300L, th = 200, nthreads = 1L)
el_eval

Empirical likelihood for general estimating functions

Description

Computes empirical likelihood with general estimating functions.

Usage

el_eval(g, weights = NULL, control = el_control())

Arguments

g A numeric matrix, or an object that can be coerced to a numeric matrix. Each row corresponds to an observation of an estimating function.

weights An optional numeric vector of weights to be used in the fitting process. Defaults to NULL, corresponding to identical weights. If non-NULL, weighted empirical likelihood is computed.

control A list of control parameters set by el_control.

Details

el_eval evaluates empirical likelihood with a \(n \times p \) numeric matrix argument \(g \), whose \(i \)th row is \(g(X_i, \theta) \). Since the estimating function can be arbitrary, el_eval does not return an object of class EL, and the associated generics and methods are not applicable.

Value

A list with the following components:

optim A list with the following optimization results:

- lambda Lagrange multiplier of the dual problem.
- iterations Number of iterations performed.
- convergence Convergence status.

logp Log probabilities obtained from empirical likelihood.

logl Empirical log-likelihood.

loglr Empirical log-likelihood ratio.

statistic Minus twice the empirical log-likelihood ratio statistic that has an asymptotic chi-square distribution.

df Degrees of freedom of the statistic.

pval \(p \)-value of the statistic.

npar Number of parameters.

weights Rescaled weights used for model fitting.
References

See Also

el_control

Examples

test for variance with known mean
x <- rnorm(100L)
sigma <- 1
g <- x^2 - sigma^2
el_eval(g)

el_glm Empirical likelihood for generalized linear models

Description

Fits a generalized linear model with empirical likelihood.

Usage

el_glm(
 formula,
 family = gaussian,
 data,
 weights = NULL,
 na.action,
 control = el_control(),
 model = TRUE,
 start = NULL,
 etastart = NULL,
 mustart = NULL,
 ...
)

Arguments

formula An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
family A description of the error distribution and link function to be used in the model. Only the result of a call to a family function is supported. See ‘Details’.
el_glm

data An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the formula. If not found in data, the variables are taken from environment(formula).

weights An optional numeric vector of weights to be used in the fitting process. Defaults to NULL, corresponding to identical weights. If non-NULL, weighted empirical likelihood is computed.

na.action A function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options, and is na.fail if that is unset.

control A list of control parameters set by el_control.

model A logical. If TRUE the data matrix used for fitting is returned.

start Starting values for the parameters in the linear predictor. Defaults to NULL and is passed to glm.fit.

etastart Starting values for the linear predictor. Defaults to NULL and is passed to glm.fit.

mustart Starting values for the vector of means. Defaults to NULL and is passed to glm.fit.

... Additional arguments to be passed to glm.control.

Details

The available families and link functions are as follows:

- gaussian: identity, log, and inverse.
- binomial: logit, probit, and log.
- poisson: log, identity, and sqrt.

Included in the tests are the overall test with

\[H_0 : \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0, \]

and the tests for each parameter with

\[H_{0j} : \beta_j = 0, \ j = 0, \ldots, p - 1. \]

The test results are returned as optim and parTests, respectively.

Value

An object of class of GLM.

References

See Also

el_control, el_lm, lht
Examples

```r
n <- 50
dx <- rnorm(n)
x2 <- rnorm(n)
l <- -2 + 0.2 * x + 3 * x2
mu <- 1 / (1 + exp(-l))
y <- rbinom(n, 1, mu)
df <- data.frame(y, x, x2)
fit <- el_glm(y ~ x + x2, family = binomial, df)
summary(fit)
```

el_lm

Empirical likelihood for linear models

Description

Fits a linear model with empirical likelihood.

Usage

```r
el_lm(
  formula,
  data,
  weights = NULL,
  na.action,
  control = el_control(),
  model = TRUE,
  ...
)
```

Arguments

- `formula`: An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- `data`: An optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the formula. If not found in data, the variables are taken from `environment(formula)`.
- `weights`: An optional numeric vector of weights to be used in the fitting process. Defaults to NULL, corresponding to identical weights. If non-NULL, weighted empirical likelihood is computed.
- `na.action`: A function which indicates what should happen when the data contain NAs. The default is set by the `na.action` setting of `options`, and is `na.fail` if that is unset.
- `control`: A list of control parameters set by `el_control`.
- `model`: A logical. If TRUE the data matrix used for fitting is returned.
- `...`: Additional arguments to be passed to the low level regression fitting functions. See ‘Details’.
el_lm

Details

Suppose that we observe \(n \) independent random variables \((X_i, Y_i)\) from a common distribution, where \(X_i \) is the \(p \)-dimensional covariate (including the intercept if any) and \(Y_i \) is the response. We consider the following linear regression model:

\[
Y_i = X_i^T \beta + \epsilon_i,
\]

where \(\beta = (\beta_0, \ldots, \beta_{p-1}) \) is an unknown \(p \)-dimensional parameter and the errors \(\epsilon_i \) are independent random variables that satisfy \(E(\epsilon_i|X_i) = 0 \). We assume that the errors have finite conditional variance. Then the least square estimator of \(\beta \) solves the following estimating equation:

\[
\sum_{i=1}^{n} (Y_i - X_i^T \beta) X_i = 0.
\]

el_lm first computes the parameter estimates by calling \texttt{lm.fit} (with ... if any) since the maximum empirical likelihood estimator is the same as the least square estimator in our model. Next, it performs hypothesis tests based on asymptotic chi-squared distribution of empirical likelihood ratio statistics. Included in the tests are the overall test with

\(H_0 : \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0, \)

and the tests for each parameter with

\(H_{0j} : \beta_j = 0, \ j = 0, \ldots, p - 1. \)

The test results are returned as \texttt{optim} and \texttt{parTests}, respectively.

Value

An object of class of \texttt{LM}.

References

See Also

el_control, el_glm, lht

Examples

```r
fit <- el_lm(mpg ~ wt, mtcars)
summary(fit)
```
Empirical likelihood for the mean

Description

Computes empirical likelihood for the mean.

Usage

\texttt{el_mean(par, x, weights = NULL, control = el_control(), model = TRUE)}

Arguments

\texttt{par} \hspace{1em} A numeric vector of parameter values to be tested.

\texttt{x} \hspace{1em} A numeric matrix, or an object that can be coerced to a numeric matrix. Each row corresponds to an observation.

\texttt{weights} \hspace{1em} An optional numeric vector of weights to be used in the fitting process. Defaults to NULL, corresponding to identical weights. If non-NULL, weighted empirical likelihood is computed.

\texttt{control} \hspace{1em} A list of control parameters set by \texttt{el_control}.

\texttt{model} \hspace{1em} A logical. If TRUE the data matrix used for model fitting is returned.

Value

An object of class \texttt{EL}.

References

See Also

\texttt{el_control, el_eval, lht}

Examples

\begin{verbatim}
scalar mean
par <- 0
x <- rnorm(100)
el_mean(par, x)

vector mean
par <- c(0, 0)
x <- matrix(rnorm(100), ncol = 2)
el_mean(par, x)
\end{verbatim}
el_pairwise

weighted data
par <- c(0, 0)
x <- matrix(rnorm(100), ncol = 2)
w <- rep(c(1, 2), each = 25)
el_mean(par, x, w)

el_pairwise

Empirical likelihood pairwise comparisons

Description
Tests all pairwise comparisons or comparisons with control for general block designs. Two single step asymptotic k-FWER (generalized family-wise error rate) controlling procedures are available: asymptotic Monte Carlo (AMC) and nonparametric bootstrap (NB).

Usage

```r
el_pairwise(
  formula, 
  data, 
  control = NULL, 
  k = 1, 
  alpha = 0.05, 
  method = c("AMC", "NB"), 
  B, 
  nthread = 1, 
  progress = TRUE, 
  maxit = 10000, 
  abstol = 1e-08
)
```

Arguments

- **formula**: A formula object. It must specify variables for response, treatment, and block as `response ~ treatment | block`. Note that the use of vertical bar (|) separating treatment and block.
- **data**: A data frame containing the variables in the formula.
- **control**: Optional character specifying the treatment for comparisons with control.
- **k**: Single integer for k in k-FWER. Defaults to 1.
- **alpha**: Level of the test. Defaults to 0.05.
- **method**: Single character for the procedure to be used; either 'AMC' or 'NB' is supported. Defaults to 'AMC'.
- **B**: Number of Monte Carlo samples for the AMC (number of bootstrap replicates for the NB).
- **nthread**: Number of threads to be used with OpenMP. Only applied when the NB is chosen as the method. Defaults to 1.
el_test

progress
maxit
abstol

If TRUE, will show progress status.
Maximum number of iterations for optimization. Defaults to 10000.
Absolute convergence tolerance for optimization. Defaults to 1e-08.

Value

A list with class c("pairwise", "melt").

References

Examples

all pairwise comparisons
data("clothianidin")
el_pairwise(clo ~ trt | blk, clothianidin, B = 1000)

comparisons with control
el_pairwise(clo ~ trt | blk, clothianidin,
control = "Naked", method = "NB",
B = 500
)

el_test

Tests single hypothesis for general block designs

Description

This function is deprecated in favor of lht and will be removed in a future release.

Usage

el_test(formula, data, lhs, rhs = NULL, maxit = 10000, abstol = 1e-08)

Arguments

formula
A formula object. It must specify variables for response, treatment, and block as 'response ~ treatment | block'. Note that the use of vertical bar (|) separating treatment and block.

data
A data frame containing the variables in the formula.

lhs
Numeric matrix specifying linear hypothesis in terms of parameters.

rhs
Optional numeric vector for the right hand side of lhs. If not specified, it is set to 0 vector.

maxit
Maximum number of iterations for optimization. Defaults to 10000.

abstol
Absolute convergence tolerance for optimization. Defaults to 1e-08.
GLM-class

Value

A list of class c("el_test", "melt").

References

Examples

Not run:
test of no treatment effect
data("clothianidin")
el_test(clo ~ trt | blk, clothianidin,
 lhs = matrix(c(1, -1, 0, 0,
 0, 1, -1, 0,
 0, 0, 1, -1
), byrow = TRUE, nrow = 3)
)
End(Not run)

GLM-class

S4 class GLM

Description

S4 class for generalized linear models with empirical likelihood. It inherits from LM class.

Examples

showClass("GLM")

lht

Linear hypothesis test

Description

Tests a linear hypothesis for objects that inherit from class EL.

Usage

lht(object, rhs = NULL, lhs = NULL, control = el_control())
Arguments

- **object**
 A fitted `EL` object.

- **rhs**
 A numeric vector for the right-hand-side of hypothesis, with as many entries as the rows in `lhs`. Defaults to `NULL`. See ‘Details’.

- **lhs**
 A numeric matrix, or an object that can be coerced to a numeric matrix. It specifies the left-hand-side of hypothesis. Each row gives a linear combination of parameters. The number of columns should be equal to the number of parameters in `object`. Defaults to `NULL`. See ‘Details’.

- **control**
 A list of control parameters set by `el_control`.

Details

`lht` performs the constrained minimization of \(l(\theta) \) described in `CEL`. `rhs` and `lhs` cannot be both `NULL`. For non-`NULL` `lhs`, it is required that `lhs` have full row rank \(q \leq p \) and `p` be equal to `object$npar`, the number of parameters in the fitted model.

Depending on the specification of `rhs` and `lhs`, we have the following three cases:

1. If both `rhs` and `lhs` are non-`NULL`, the constrained minimization is performed with the right-hand-side `r` and the left-hand-side `L` as

 \[
 \min_{\theta: L \theta = r} l(\theta).
 \]

2. If `rhs` is `NULL`, `r` is set to the zero vector as

 \[
 \min_{\theta: L \theta = 0} l(\theta).
 \]

3. If `lhs` is `NULL`, `L` is set to the identity matrix and the problem reduces to evaluating at `r` as

 \[
 l(r).
 \]

Value

If `lhs` is `NULL`, an object of class `EL` is returned. Otherwise, an object of class `CEL` is returned.

References

See Also

- `el_control`
`LM-class`

Examples

```r
n <- 100L
x1 <- rnorm(n)
x2 <- rnorm(n)
y <- 1 + x1 + x2 + rnorm(n)
df <- data.frame(y, x1, x2)
fit <- el_lm(y ~ x1 + x2, df)
lhs <- matrix(c(0, 1, -1), nrow = 1L)
lht(fit, lhs = lhs)
```

```r
# test of no treatment effect
data("clothianidin")
lhs2 <- matrix(c(
  1, -1, 0, 0,
  0, 1, -1, 0,
  0, 0, 1, -1
), byrow = TRUE, nrow = 3L)
fit2 <- el_lm(clo ~ -1 + trt, clothianidin)
lht(fit2, lhs = lhs2)
```

LM-class

S4 class LM

Description

S4 class for linear models with empirical likelihood. It inherits from CEL class.

Details

If there is no intercept in a model, optim slot need to be understood in terms of EL class since constrained optimization is not involved in the overall test.

Slots

- `parTests` A list with the test results for each parameter:
 - statistic A numeric vector of chi-squared statistics.
 - convergence Convergence status of tests for each parameter.

- `misc` A list with miscellaneous outputs from a model fitting function. They are used in other generics and methods.

Examples

```
showClass("LM")
```
Description

Extracts empirical log-likelihood from a model evaluated at the estimated coefficients.

Usage

```r
## S4 method for signature 'EL'
logLik(object, ...)
```

Arguments

- `object` A fitted `EL` object.
- `...` Not used.

Value

An object of class `logLikEL`.

Examples

```r
fit <- el_lm(formula = mpg ~ wt, data = mtcars)
logLik(fit)
```

logLikEL-class

S4 class `logLikEL`

Description

S4 class for empirical log-likelihood.

Slots

- `logLik` Empirical log-likelihood.
- `df` Degrees of freedom or the number of (estimated) parameters in the model.

Examples

```r
showClass("logLikEL")
```
Description

Provides plot methods for objects that inherit from class `EL`.

Usage

```r
## S4 method for signature 'ConfregEL'
plot(x, y, ...)

## S4 method for signature 'ELD'
plot(x, y, ...)
```

Arguments

- `x`: An object to be plotted.
- `y`: Not used.
- `...`: Further graphical parameters (see `par`).

Methods (by class)

- `ConfregEL`: Plots a two-dimensional confidence region for model parameters.
- `ELD`: Plots empirical likelihood displacement values versus observation index.

See Also

`confreg`, `eld`

Description

Provides print methods for objects that inherit from class `EL`.
Usage

S4 method for signature 'EL'
print(x, digits = max(3L,getOption("digits") - 3L), ...)

S4 method for signature 'SummaryLM'
print(
 x,
 digits = max(3L,getOption("digits") - 3L),
 signif.stars = getOption("show.signif.stars"),
 ...
)

S4 method for signature 'logLikEL'
print(x, digits = getOption("digits"), ...)

Arguments

x
An object to be printed.

...Further arguments passed to other methods.
digitsThe number of significant digits to be passed to format.
signif.starsLogical. If TRUE, ‘significance stars’ are printed for each coefficient.

Description

Provides summary methods for objects that inherit from class EL.

Usage

S4 method for signature 'LM'
summary(object, ...)

Arguments

objectAn object for which a summary is desired.

...Additional arguments affecting the summary produced.

Functions

- summary,LM-method: Summarizes the results of the overall test and the tests for each parameter.
SummaryLM-class

S4 class SummaryLM

Description

S4 class for a summary of LM objects.

Slots

- **statistic** Minus twice the constrained empirical log-likelihood ratio for the overall test of the model.
- **df** Degrees of freedom of the statistic.
- **convergence** Convergence status of the minimization.
- **parMatrix** A numeric matrix of the test results of the parameters.
- **weighted** A logical for whether the given model is weighted or not.
- **na.action** Information returned by `model.frame` on the special handling of NAs.
- **call** Matched call.
- **terms** `terms` object used.
- **aliased** Named logical vector showing if the original coefficients are aliased.

Examples

```r
showClass("SummaryLM")
```
Index

* datasets
 clothianidin, 4
as.data.frame, 15, 16
CEL, 2, 22, 23
CEL-class, 2
clothianidin, 4
coef,EL-method (coef-method), 4
coef-method, 4
confint, 5, 7
confint,EL-method (confint), 5
confreg, 6, 6, 8, 25
confreg,EL-method (confreg), 6
ConfregEL, 7
ConfregEL-class, 7
ControlEL, 8, 12
ControlEL-class, 8
EL, 2–6, 9, 10, 13, 18, 21–26
EL-class, 9
el_control, 5–7, 10, 11, 12, 13–18, 22
el_eval, 11, 12, 13, 18
el_glm, 8, 14, 17
el_lm, 8, 15, 16, 17
el_mean, 18
el_pairwise, 19
el_test, 20
ELD, 11
e1d, 8, 10, 25
e1d,EL-method (eld), 10
ELD-class, 11
format, 26
formula, 14, 16
GLM, 15, 21
GLM-class, 21
glm.control, 15
glm.fit, 15
lht, 6, 7, 12, 15, 17, 18, 20, 21, 22
LM, 17, 21, 23, 27
LM-class, 23
lm.fit, 17
logLik, 24
logLik,EL-method (logLik), 24
logLikEL, 24
logLikEL-class, 24
model.frame, 27
options, 15, 16
par, 25
plot, 7, 11, 25
plot,ConfregEL-method (plot), 25
plot,ELD-method (plot), 25
print,EL-method (print-method), 25
print,logLikEL-method (print-method), 25
print,SummaryLM-method (print-method), 25
print-method, 25
summary,LM-method (summary-method), 26
summary-method, 26
SummaryLM, 27
SummaryLM-class, 27
terms, 27

28