Package ‘meta’

February 5, 2022

Title General Package for Meta-Analysis

Version 5.2-0

Date 2022-02-04

Depends R (>= 4.0.0)

Imports metafor (>= 3.0-0), grid, lme4, CompQuadForm, xml2

Suggests BiasedUrn

Author Guido Schwarzer [cre, aut] (<https://orcid.org/0000-0001-6214-9087>)

Maintainer Guido Schwarzer <sc@imbi.uni-freiburg.de>

URL https://github.com/guido-s/meta/

https://link.springer.com/book/10.1007/978-3-319-21416-0

Description User-friendly general package providing standard methods for meta-analysis and supporting Schwarzer, Carpenter, and Rücker <DOI:10.1007/978-3-319-21416-0>, "Meta-Analysis with R" (2015):

- fixed effect and random effects meta-analysis;
- several plots (forest, funnel, Galbraith / radial, L'Abbe, Baujat, bubble);
- statistical tests and trim-and-fill method to evaluate bias in meta-analysis;
- import data from ‘RevMan 5’;
- prediction interval, Hartung-Knapp method for random effects model;
- cumulative meta-analysis and leave-one-out meta-analysis;
- meta-regression;
- generalised linear mixed models;
- produce forest plot summarising several (subgroup) meta-analyses.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-02-05 01:10:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>meta-package</td>
<td>3</td>
</tr>
<tr>
<td>amlodipine</td>
<td>6</td>
</tr>
<tr>
<td>as.data.frame.meta</td>
<td>7</td>
</tr>
<tr>
<td>baujat.meta</td>
<td>8</td>
</tr>
<tr>
<td>bubble.metareg</td>
<td>11</td>
</tr>
<tr>
<td>ci</td>
<td>14</td>
</tr>
<tr>
<td>cisapride</td>
<td>15</td>
</tr>
<tr>
<td>drapery</td>
<td>16</td>
</tr>
<tr>
<td>Fleiss1993bin</td>
<td>21</td>
</tr>
<tr>
<td>Fleiss1993cont</td>
<td>21</td>
</tr>
<tr>
<td>forest.meta</td>
<td>22</td>
</tr>
<tr>
<td>forest.metabind</td>
<td>45</td>
</tr>
<tr>
<td>funnel.meta</td>
<td>48</td>
</tr>
<tr>
<td>gs</td>
<td>52</td>
</tr>
<tr>
<td>JAMAlabels</td>
<td>53</td>
</tr>
<tr>
<td>labbe.metabin</td>
<td>54</td>
</tr>
<tr>
<td>labels.meta</td>
<td>58</td>
</tr>
<tr>
<td>longarm</td>
<td>60</td>
</tr>
<tr>
<td>metabias.meta</td>
<td>62</td>
</tr>
<tr>
<td>metabias.rm5</td>
<td>67</td>
</tr>
<tr>
<td>metabin</td>
<td>69</td>
</tr>
<tr>
<td>metabind</td>
<td>84</td>
</tr>
<tr>
<td>metacont</td>
<td>86</td>
</tr>
<tr>
<td>metacor</td>
<td>100</td>
</tr>
<tr>
<td>metacr</td>
<td>110</td>
</tr>
<tr>
<td>metacum</td>
<td>113</td>
</tr>
<tr>
<td>metagen</td>
<td>116</td>
</tr>
<tr>
<td>metainc</td>
<td>131</td>
</tr>
<tr>
<td>metainf</td>
<td>143</td>
</tr>
<tr>
<td>metamean</td>
<td>146</td>
</tr>
<tr>
<td>metamerge</td>
<td>157</td>
</tr>
<tr>
<td>metaprop</td>
<td>161</td>
</tr>
<tr>
<td>metarate</td>
<td>176</td>
</tr>
<tr>
<td>metareg</td>
<td>187</td>
</tr>
<tr>
<td>nnt</td>
<td>190</td>
</tr>
<tr>
<td>Olkin1995</td>
<td>192</td>
</tr>
<tr>
<td>or2smd</td>
<td>193</td>
</tr>
<tr>
<td>Pagliaro1992</td>
<td>195</td>
</tr>
<tr>
<td>print.meta</td>
<td>196</td>
</tr>
<tr>
<td>print.rm5</td>
<td>199</td>
</tr>
<tr>
<td>print.summary.meta</td>
<td>201</td>
</tr>
<tr>
<td>radial.meta</td>
<td>204</td>
</tr>
<tr>
<td>read.mtv</td>
<td>206</td>
</tr>
<tr>
<td>read.rm5</td>
<td>208</td>
</tr>
<tr>
<td>settings.meta</td>
<td>211</td>
</tr>
<tr>
<td>smd2or</td>
<td>215</td>
</tr>
</tbody>
</table>

Details

R package `meta` (Schwarzer, 2007; Balduzzi et al., 2019) provides the following statistical methods for meta-analysis.

1. Fixed effect and random effects model:
 - Meta-analysis of continuous outcome data (`metacont`)
 - Meta-analysis of binary outcome data (`metabin`)
 - Meta-analysis of incidence rates (`metainc`)
 - Generic inverse variance meta-analysis (`metagen`)
 - Meta-analysis of single correlations (`metacor`)
 - Meta-analysis of single means (`metamean`)
 - Meta-analysis of single proportions (`metaprop`)
 - Meta-analysis of single incidence rates (`metarate`)

2. Several plots for meta-analysis:
 - Forest plot (`forest.meta`, `forest.metabind`)
 - Funnel plot (`funnel.meta`)
 - Galbraith plot / radial plot (`radial.meta`)
 - L’Abbe plot for meta-analysis with binary outcome data (`labbe.metabin`, `labbe.default`)
 - Baujat plot to explore heterogeneity in meta-analysis (`baujat.meta`)
 - Bubble plot to display the result of a meta-regression (`bubble.metareg`)

3. Statistical tests for funnel plot asymmetry (`metabias.meta`, `metabias.rm5`) and trim-and-fill method (`trimfill.meta`, `trimfill.default`) to evaluate bias in meta-analysis

4. Cumulative meta-analysis (`metacum`) and leave-one-out meta-analysis (`metainf`)

5. Meta-regression (`metareg`)
6. Import data from Review Manager 5 (*read.rm5*); see also `metacr` to conduct meta-analysis for a single comparison and outcome from a Cochrane review.

7. Prediction interval for the treatment effect of a new study (Higgins et al., 2009); see argument `prediction` in meta-analysis functions, e.g., `metagen`.

8. Hartung-Knapp method for random effects meta-analysis (Hartung & Knapp, 2001a,b); see argument `hakn` in meta-analysis functions, e.g., `metagen`.

9. Various estimators for the between-study variance τ^2 in a random effects model (Veroniki et al., 2016); see argument `method.tau` in meta-analysis functions, e.g., `metagen`.

10. Generalised linear mixed models (*metabin*, *metainc*, *metaprop*, and *metarate*)

The following more advanced statistical methods are provided by add-on R packages:

- Frequentist methods for network meta-analysis (R package `netmeta`)
- Advanced methods to model and adjust for bias in meta-analysis (R package `metasens`)

Results of several meta-analyses can be combined with `metabind`. This is, for example, useful to generate a forest plot with results of subgroup analyses.

See `settings.meta` to learn how to print and specify default meta-analysis methods used during your R session. For example, the function can be used to specify general settings:

- `settings.meta("revman5")`
- `settings.meta("jama")`
- `settings.meta("iqwig5")`
- `settings.meta("iqwig6")`
- `settings.meta("geneexpr")`

The first command can be used to reproduce meta-analyses from Cochrane reviews conducted with Review Manager 5 (RevMan 5, https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman) and specifies to use a RevMan 5 layout in forest plots.

The second command can be used to generate forest plots following instructions for authors of the Journal of the American Medical Association (https://jamanetwork.com/journals/jama/pages/instructions-for-authors/). Study labels according to JAMA guidelines can be generated using `labels.meta`.

The next two commands implement the recommendations of the Institute for Quality and Efficiency in Health Care (IQWiG), Germany according to General Methods 5 and 6, respectively (https://www.iqwig.de/en/about-us/methods/methods-paper/).

The last setting can be used to print p-values in scientific notation and to suppress the calculation of confidence intervals for the between-study variance.

In addition, `settings.meta` can be used to change individual settings. For example, the following R command specifies the use of the Hartung-Knapp and Paule-Mandel methods, and the printing of prediction intervals in the current R session for any meta-analysis generated after execution of this command:

- `settings.meta(hakn=TRUE,method.tau="PM",prediction=TRUE)`
Type `help(package = "meta")` for a listing of R functions and datasets available in `meta`.

Balduzzi et al. (2019) is the preferred citation in publications for `meta`. Type `citation("meta")` for a BibTeX entry of this publication.

To report problems and bugs

- type `bug.report(package = "meta")` if you do not use RStudio,
- send an email to Guido Schwarzer <sc@imbi.uni-freiburg.de> if you use RStudio.

The development version of `meta` is available on GitHub https://github.com/guido-s/meta/.

Note

R package `meta` imports R functions from `metafor` (Viechtbauer, 2010) to

- estimate the between-study variance \(\tau^2 \),
- conduct meta-regression,
- estimate generalised linear mixed models.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Amlodipine for Work Capacity

Description

Meta-analysis on the effect of amlodipine on work capacity.

This meta-analysis is used as a data example in Hartung and Knapp (2001).

Format

A data frame with the following columns:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>study</td>
<td>study label</td>
</tr>
<tr>
<td>n.amlo</td>
<td>number of observations in amlodipine group</td>
</tr>
<tr>
<td>mean.amlo</td>
<td>estimated mean in amlodipine group</td>
</tr>
<tr>
<td>var.amlo</td>
<td>variance in amlodipine group</td>
</tr>
<tr>
<td>n.plac</td>
<td>number of observations in placebo group</td>
</tr>
<tr>
<td>mean.plac</td>
<td>estimated mean in placebo group</td>
</tr>
<tr>
<td>var.plac</td>
<td>variance in placebo group</td>
</tr>
</tbody>
</table>

Source

See Also

metacont

Examples

data(amlodipine)

```r
m <- metacont(n.amlo, mean.amlo, sqrt(var.amlo), n.plac, mean.plac, sqrt(var.plac),
  data = amlodipine, studlab = study)
m.hakn <- update(m, hakn = TRUE)

# Same results for mean difference as in Table III in Hartung and Knapp (2001)
#
vars.fixed <- c("TE.fixed", "lower.fixed", "upper.fixed")
vars.random <- c("TE.random", "lower.random", "upper.random")
#
res.fixed <- as.data.frame(m[vars.fixed])
names(res.fixed) <- vars.random
#
res.md <- rbind(res.fixed,
  as.data.frame(m[vars.random]),
  as.data.frame(m.hakn[vars.random]))
```

as.data.frame.meta

```r
as.data.frame(m.hakn[vars.random])
# res.md <- round(res.md, 5)
# row.names(res.md) <- c("FE", "RE", "RE (HaKn)")
names(res.md) <- c("Absolute difference", "CI lower", "CI upper")
# res.md
```

as.data.frame.meta Additional functions for objects of class meta

Description

The `as.data.frame` method returns a data frame containing information on individual studies, e.g., estimated treatment effect and its standard error.

Usage

```r
## S3 method for class 'meta'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

- **x**
 - An object of class `meta`.
- **row.names**
 - `NULL` or a character vector giving the row names for the data frame.
- **optional**
 - Logical. If `TRUE`, setting row names and converting column names (to syntactic names) is optional.
- **...**
 - Other arguments

Value

A data frame is returned by the function `as.data.frame`.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

- `metabin`
- `metacont`
- `metagen`
- `forest.meta`
Examples

data(Fleiss1993cont)
 #
 # Generate additional variable with grouping information
 #
 Fleiss1993cont$group <- c(1, 2, 1, 1, 2)
 #
 # Do meta-analysis without grouping information
 #
 m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 data = Fleiss1993cont, sm = "SMD", studlab = paste(study, year))
 #
 # Update meta-analysis object and do subgroup analyses
 #
 update(m1, subgroup = group)

 # Same result using metacont function directly
 #
 m2 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 data = Fleiss1993cont, sm = "SMD", studlab = paste(study, year),
 subgroup = group)

 m2

 # Compare printout of the following two commands
 #
 as.data.frame(m1)
 m1$data

baujat.meta
Baujat plot to explore heterogeneity in meta-analysis

Description

Draw a Baujat plot to explore heterogeneity in meta-analysis.

Usage

```r
## S3 method for class 'meta'
baujat(
  x,
  yscale = 1,
  xlim,
  ylim,
  xlab = "Contribution to overall heterogeneity",
  ylab = "Influence on overall result",
  pch = 21,
  cex = 1,
  col = "black",
```

bg = "darkgray",
studlab = TRUE,
cex.studlab = 0.8,
pos.studlab = 2,
offset = 0.5,
xmin = 0,
ymin = 0,
grid = TRUE,
col.grid = "lightgray",
lty.grid = "dotted",
lwd.grid = par("lwd"),
pty = "s",
...
)

Arguments

 x An object of class meta.
 yscale Scaling factor for values on y-axis.
 xlim The x limits (min,max) of the plot.
 ylim The y limits (min,max) of the plot.
 xlab A label for the x-axis.
 ylab A label for the y-axis.
 pch The plotting symbol used for individual studies.
 cex The magnification to be used for plotting symbol.
 col A vector with colour of plotting symbols.
 bg A vector with background colour of plotting symbols (only used if pch in 21:25).
 studlab A logical indicating whether study labels should be printed in the graph. A vector with study labels can also be provided (must be of same length as x$TE then).
 cex.studlab The magnification for study labels.
 pos.studlab Position of study labels, see argument pos in text.
 offset Offset for study labels (see text).
 xmin A numeric specifying minimal value to print study labels (on x-axis).
 ymin A numeric specifying minimal value to print study labels (on y-axis).
 grid A logical indicating whether a grid is printed in the plot.
 col.grid Colour for grid lines.
 lty.grid The line type for grid lines.
 lwd.grid The line width for grid lines.
 pty A character specifying type of plot region (see par).
 ... Graphical arguments as in par may also be passed as arguments.
Details

Baujat et al. (2002) introduced a scatter plot to explore heterogeneity in meta-analysis. On the x-axis the contribution of each study to the overall heterogeneity statistic (see list object Q of the meta-analysis object x) is plotted. On the y-axis the standardised difference of the overall treatment effect with and without each study is plotted; this quantity describes the influence of each study on the overall treatment effect.

Internally, the `metainf` function is used to calculate the values on the y-axis.

Value

A data.frame with the following variables:

- **x**: Coordinate on x-axis (contribution to heterogeneity statistic)
- **y**: Coordinate on y-axis (influence on overall treatment effect)

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`metagen`, `metainf`

Examples

data(Olkin1995)

m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
 data = Olkin1995, sm = "OR", method = "I", studlab = paste(author, year))

 # Generate Baujat plot
 baujat(m1)

 ## Not run:
 # Do not print study labels if the x-value is smaller than 4 and
 # the y-value is smaller than 1
 baujat(m1, yscale = 10, xmin = 4, ymin = 1)

 # Change position of study labels
 baujat(m1, yscale = 10, xmin = 4, ymin = 1,
 pos = 1, xlim = c(0, 6.5))

 # Generate Baujat plot and assign x- and y- coordinates to R object
 # b1
 b1 <- baujat(m1)
bubble.metareg

Description

Draw a bubble plot to display the result of a meta-regression.

Usage

S3 method for class 'metareg'
bubble(
x, xlim, ylim, xlab, ylab, cex, min.cex = 0.5, max.cex = 5, pch = 21, col = "black", bg = "darkgray", lty = 1, lwd = 1, col.line = "black", studlab = FALSE, cex.studlab = 0.8, pos.studlab = 2, offset = 0.5, regline = TRUE, backtransf = x$.meta$x$backtransf, ref, col.ref = "lightgray", lty.ref = 1, lwd.ref = 1, axes = TRUE, box = TRUE,
...)

bubble(x, ...)

Calculate overall heterogeneity statistic
sum(b1$x)
m1$Q

End(Not run)
Arguments

x An object of class `metareg`.
xlim The x limits (min,max) of the plot.
ylim The y limits (min,max) of the plot.
xlab A label for the x-axis.
ylab A label for the y-axis.
cex The magnification to be used for plotting symbols.
min.cex Minimal magnification for plotting symbols.
max.cex Maximal magnification for plotting symbols.
pch The plotting symbol used for individual studies.
col A vector with colour of plotting symbols.
bg A vector with background colour of plotting symbols (only used if `pch` in 21:25).
lty The line type for the meta-regression line.
lwd The line width for the meta-regression line.
col.line Colour for the meta-regression line.
studlab A logical indicating whether study labels should be printed in the graph. A vector with study labels can also be provided (must be of same length as the number of studies in the meta-analysis then).
cex.studlab The magnification for study labels.
pos.studlab Position of study labels, see argument `pos` in `text`.
offset Offset for study labels (see `text`).
regline A logical indicating whether a regression line should be added to the bubble plot.
backtransf A logical indicating whether results for relative summary measures (argument `sm` equal to "OR", "RR", "HR", or "IRR") should be back transformed. If `backtransf=TRUE`, results for `sm="OR"` are printed as odds ratios rather than log odds ratios, for example.
ref A numerical giving the reference value to be plotted as a line in the bubble plot. No reference line is plotted if argument `ref` is equal to `NA`.
col.ref Colour of the reference line.
lty.ref The line type for the reference line.
lwd.ref The line width for the reference line.
axes A logical indicating whether axes should be printed.
box A logical indicating whether a box should be printed.
... Graphical arguments as in `par` may also be passed as arguments.
Details

A bubble plot can be used to display the result of a meta-regression. It is a scatter plot with the treatment effect for each study on the y-axis and the covariate used in the meta-regression on the x-axis. Typically, the size of the plotting symbol is inversely proportional to the variance of the estimated treatment effect (Thompson & Higgins, 2002).

Argument cex specifies the plotting size for each individual study. If this argument is missing the weights from the meta-regression model will be used (which typically is a random effects model). Use cex="fixed" in order to utilise weights from a fixed effect model to define the size of the plotted symbols (even for a random effects meta-regression). If a vector with individual study weights is provided, the length of this vector must be of the same length as the number of studies.

Arguments min.cex and max.cex can be used to define the size of the smallest and largest plotting symbol. The plotting size of the most precise study is set to max.cex whereas the plotting size of all studies with a plotting size smaller than min.cex will be set to min.cex.

For a meta-regression with more than one covariate. Only a scatter plot of the first covariate in the regression model is shown. In this case the effect of the first covariate adjusted for other covariates in the meta-regression model is shown.

For a factor or categorical covariate separate bubble plots for each group compared to the baseline group are plotted.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

metagen, metainf

Examples

data(Fleiss1993cont)

Add some (fictitious) grouping variables:
Fleiss1993cont$age <- c(95, 65, 52, 65, 58)
Fleiss1993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")

m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 data = Fleiss1993cont, sm = "MD")

mr1 <- metareg(m1, region)
mr1

bubble(mr1)
bubble(mr1, lwd = 2, col.line = "blue")
mr2 <- metareg(m1, age)

bubble(mr2, lwd = 2, col.line = "blue", xlim = c(50, 70))
bubble(mr2, lwd = 2, col.line = "blue", xlim = c(50, 70), cex = "fixed")

Do not print regression line
#
bubble(mr2, lwd = 2, col.line = "blue", xlim = c(50, 70), regline = FALSE)

ci
Calculation of confidence intervals (based on normal approximation or t-distribution)

Description
Calculation of confidence intervals; based on normal approximation or t-distribution.

Usage
ci(TE, seTE, level = 0.95, df = NULL, null.effect = 0)

Arguments
- **TE**: Estimated treatment effect.
- **seTE**: Standard error of treatment estimate.
- **level**: The confidence level required.
- **df**: Degrees of freedom (for confidence intervals based on t-distribution).
- **null.effect**: A numeric value specifying the effect under the null hypothesis.

Value
List with components
- **TE**: Estimated treatment effect
- **seTE**: Standard error of treatment estimate
- **lower**: Lower confidence limits
- **upper**: Upper confidence limits
- **statistic**: Test statistic (either z-score or t-score)
- **p**: P-value of text with null hypothesis TE=0
- **level**: The confidence level required
- **df**: Degrees of freedom (t-distribution)
cisapride

Note

This function is primarily called from other functions of the library meta, e.g. forest.meta, summary.meta.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

Examples

data.frame(ci(170, 10))
data.frame(ci(170, 10, 0.99))
data.frame(ci(1.959964, 1))
data.frame(ci(2.2621571628, 1, df = 9))

cisapride Cisapride in Non-Ulcer Dispepsia

Description

Meta-analysis on cisapride in non-ulcer dispepsia.

This meta-analysis is used as a data example in Hartung and Knapp (2001).

Format

A data frame with the following columns:

<table>
<thead>
<tr>
<th>study</th>
<th>event.cisa</th>
<th>n.cisa</th>
<th>event.plac</th>
<th>n.plac</th>
</tr>
</thead>
<tbody>
<tr>
<td>study label</td>
<td>number of events in cisapride group</td>
<td>number of observations in cisapride group</td>
<td>number of events in placebo group</td>
<td>number of observations in placebo group</td>
</tr>
</tbody>
</table>

Source

See Also

metabin

Examples

data(cisapride)

m.or <- metabin(event.cisa, n.cisa, event.plac, n.plac,
data = cisapride, sm = "OR", method = "Inverse",
studlab = study, addincr = TRUE)

m.or.hkn <- update(m.or, hakn = TRUE)
m.rr <- update(m.or, sm = "RR")
m.rr.hkn <- update(m.or, sm = "RR", hakn = TRUE)

vars.fixed <- c("TE.fixed", "lower.fixed", "upper.fixed")
vars.random <- c("TE.random", "lower.random", "upper.random")

res.fixed.or <- as.data.frame(m.or[vars.fixed])
names(res.fixed.or) <- vars.random
res.fixed.rr <- as.data.frame(m.rr[vars.fixed])
names(res.fixed.rr) <- vars.random

Results for log risk ratio – see Table VII in Hartung and Knapp (2001)
res.rr <- rbind(res.fixed.rr,
as.data.frame(m.rr[vars.random]),
as.data.frame(m.rr.hkn[vars.random]))
row.names(res.rr) <- c("FE", "RE", "RE (HaKn)"
names(res.rr) <- c("Log risk ratio", "CI lower", "CI upper")
res.rr

Results for log odds ratio (Table VII in Hartung and Knapp 2001)
res.or <- rbind(res.fixed.or,
as.data.frame(m.or[vars.random]),
as.data.frame(m.or.hkn[vars.random]))
row.names(res.or) <- c("FE", "RE", "RE (HaKn)"
names(res.or) <- c("Log odds ratio", "CI lower", "CI upper")
res.or

drapery

Draper plot

Description

Draw a drapery plot with (scaled) p-value curves for individual studies and meta-analysis estimates.

Usage

drapery(
 x,
type = "zvalue",
layout = "grayscale",
study.results = TRUE,
lty.study = 1,
lwd.study = 1,
col.study = "darkgray",
labels,
col.labels = "black",
cex.labels = 0.7,
subset.labels,
srt.labels,
fixed = x$fixed,
random = x$random,
lty.fixed = 1,
lwd.fixed = max(3, lwd.study),
col.fixed = "blue",
lty.random = 1,
lwd.random = lwd.fixed,
col.random = "red",
sign = NULL,
lty.sign = 1,
lwd.sign = 1,
col.sign = "black",
prediction = random,
col.predict = "lightblue",
alpha = if (type == "zvalue") c(0.001, 0.01, 0.05, 0.1) else c(0.01, 0.05, 0.1),
lty.alpha = 2,
lwd.alpha = 1,
col.alpha = "black",
cex.alpha = 0.7,
col.null.effect = "black",
legend = TRUE,
pos.legend = "topleft",
bg = "white",
bty = "o",
backtransf = x$backtransf,
xlab,
ylab,
xlim,
ylim,
lwd.max = 2.5,
lwd.study.weight = if (random) "random" else "fixed",
at = NULL,
n.grid = if (type == "zvalue") 10000 else 1000,
mar = c(5.1, 4.1, 4.1, 4.1),
plot = TRUE,
...
Arguments

x An object of class meta.

type A character string indicating whether to plot test statistics ("zvalue") or p-values ("pvalue"), can be abbreviated.

layout A character string for the line layout of individual studies: "grayscale", "equal", or "linewidth" (see Details), can be abbreviated.

study.results A logical indicating whether results for individual studies should be shown in the figure.

lty.study Line type for individual studies.
lwd.study Line width for individual studies.
col.study Colour of lines for individual studies.

labels A logical or character string indicating whether study labels should be shown at the top of the drapery plot; either FALSE, "id", or "stulab"; see Details.

col.labels Colour of study labels.
cex.labels The magnification for study labels.

subset.labels A vector specifying which study labels should be shown in the drapery plot.
srt.labels A numerical vector or single numeric (between 0 and 90) specifying the angle to rotate study labels; see Details.

fixed A logical indicating whether to show result for the fixed effect / common effect model.

random A logical indicating whether to show result for the random effects model.
lty.fixed Line type for fixed effect meta-analysis.
lwd.fixed Line width for fixed effect meta-analysis.
col.fixed Colour of lines for fixed effect meta-analysis.
lty.random Line type for random effects meta-analysis.
lwd.random Line width for random effects meta-analysis.
col.random Colour of lines for random effects meta-analysis.

sign Significance level used to highlight significant values in curves.
lty.sign Line type for significant values.
lwd.sign Line width for significant values.
col.sign Line colour for significant values.

prediction A logical indicating whether to show prediction region.
col.predict Colour of prediction region.

alpha Horizontal lines are printed for the specified alpha values.
lty.alpha Line type of horizontal lines for alpha values.
lwd.alpha Line width of horizontal lines for alpha values.
col.alpha Colour of horizontal lines for alpha values.
cex.alpha The magnification for the text of the alpha
col.null.effect

Colour of vertical line indicating null effect.

legend

A logical indicating whether a legend should be printed.

pos.legend

A character string with position of legend (see legend).

gbg

Background colour of legend (see legend).

bty

Type of the box around the legend; either "o" or "n" (see legend).

backtransf

A logical indicating whether results should be back transformed on the x-axis. For example, if backtransf = FALSE, log odds ratios instead of odds ratios are shown on the x-axis.

xlab

A label for the x-axis.

ylab

A label for the y-axis.

xlim

The x limits (min, max) of the plot.

ylim

The y limits (min, max) of the plot (ignored if type = "pvalue").

lwd.max

The maximum line width (only considered if argument layout is equal to "linewidth").

lwd.study.weight

A character string indicating whether to determine line width for individual studies using weights from fixed effect ("fixed") or random effects model ("random"), can be abbreviated (only considered if argument layout is equal to "linewidth").

at

Points at which tick-marks are to be drawn on the x-axis.

n.grid

The number of grid points to calculate the p-value or test statistic functions.

mar

Physical plot margin, see par.

plot

A logical indicating whether to generate a figure.

...

Graphical arguments as in par may also be passed as arguments.

details

The concept of a p-value function, also called confidence curve, goes back to Birnbaum (1961). A drapery plot, showing p-value functions (or a scaled version based on the corresponding test statistics) for individual studies as well as meta-analysis estimates, is drawn in the active graphics window. Furthermore, a prediction region for a single future study is shown as a shaded area. In contrast to a forest plot, a drapery plot does not provide information for a single confidence level however for any confidence level.

Argument type can be used to either show p-value functions (Birnbaum, 1961) or a scaled version (Infanger, 2019) with test statistics (default).

Argument layout determines how curves for individual studies are presented:

• darker gray tones with increasing precision (layout = "grayscale")
• thicker lines with increasing precision (layout = "linewidth")
• equal lines (layout = "equal")

Argument labels determines how curves of individual studies are labelled:

• number of the study in the (unsorted) forest plot / printout of a meta-analysis (labels = "id")
• study labels provided by argument studlab in meta-analysis functions (labels = "studlab")
• no study labels (labels = FALSE)

By default, study labels are used (labels = "studlab") if no label has more than three characters; otherwise IDs are used (labels = "id"). The connection between IDs and study labels (among other information) is part of a data frame which is invisibly returned (if argument study.results = TRUE).

Argument srt.labels can be used to change the rotation of IDs or study labels. By default, study labels are rotated by +/- 45 degrees if at least one study label has more than three characters; otherwise labels are not rotated.

If labels = "studlab", labels are rotated by -45 degrees for studies with a treatment estimate below the fixed effect estimate and otherwise by 45 degrees.

Author(s)

Gerta Rücker <sc@imbi.uni-freiburg.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Infanger D and Schmidt-Trucksäss A (2019): P value functions: An underused method to present research results and to promote quantitative reasoning *Statistics in Medicine, 38*, 4189–97

See Also

`forest`, `radial`

Examples

data("lungcancer")
m1 <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
data = lungcancer, studlab = study)

Drapery plot
#
drapery(m1, xlim = c(0.5, 50))

Not run:
data(Fleiss1993bin)
m2 <- metabin(d.asp, n.asp, d.plac, n.plac,
data = Fleiss1993bin, studlab = paste(study, year),
sm = "OR", random = FALSE)

Produce drapery plot and print data frame with connection between
IDs and study labels
#
(drapery(m2))

For studies with a significant effect (p < 0.05), show
Aspirin after Myocardial Infarction

Description
Meta-analysis on aspirin in preventing death after myocardial infarction.
Data example in Fleiss (1993) for meta-analysis with binary outcomes.

Format
A data frame with the following columns:

- **study**: study label
- **year**: year of publication
- **d.asp**: number of deaths in aspirin group
- **n.asp**: number of observations in aspirin group
- **d.plac**: number of deaths in placebo group
- **n.plac**: number of observations in placebo group

Source

Examples
```r
data(Fleiss1993bin)
metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin,
       studlab = paste(study, year), sm = "OR", random = FALSE)
```

Mental Health Treatment

Description
Meta-analysis on the Effect of Mental Health Treatment on Medical Utilisation.
Data example in Fleiss (1993) for meta-analysis with continuous outcomes.
Format

A data frame with the following columns:

- **study**: study label
- **year**: year of publication
- **n.psyc**: number of observations in psychotherapy group
- **mean.psyc**: estimated mean in psychotherapy group
- **sd.psyc**: standard deviation in psychotherapy group
- **n.cont**: number of observations in control group
- **mean.cont**: estimated mean in control group
- **sd.cont**: standard deviation in control group

Source

See Also

Fleiss1993bin

Examples

```r
data(Fleiss1993cont)
metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, studlab = paste(study, year),
random = FALSE)
```

Description

Draws a forest plot in the active graphics window (using grid graphics system).

Usage

```r
## S3 method for class 'meta'
forest(
  x,
sortvar,
studlab = TRUE,
layout = gs("layout"),
fixed = x$fixed,
random = x$random,
overall = x$overall,
text.fixed = x$text.fixed,
```
text.random = x$text.random,
lty.fixed = 2,
lty.random = 3,
col.fixed = "black",
col.random = "black",
text.w.fixed = x$text.w.fixed,
text.w.random = x$text.w.random,
prediction = x$prediction,
text.predict = x$text.predict,
subgroup = TRUE,
subgroup.hetstat = subgroup & (is.character(hetstat) || hetstat),
print.subgroup.labels = TRUE,
subgroup.name = x$subgroup.name,
print.subgroup.name = x$print.subgroup.name,
sep.subgroup = x$sep.subgroup,
text.fixed.w = text.fixed,
text.random.w = text.random,
text.predict.w = text.predict,
bysort = FALSE,
pooled.totals = fixed | random,
pooled.events = FALSE,
pooled.times = FALSE,
study.results = TRUE,
xlab = "",
xlab.pos,
smlab = NULL,
smlab.pos,
xlim = "symmetric",
allstudies = TRUE,
weight.study = NULL,
weight.subgroup,
pscale = x$pscale,
irscale = x$irscale,
irunit = x$irunit,
ref = ifelse(backtransf & is.relative.effect(x$sm), 1, 0),
lower.equi = NA,
upper.equi = NA,
lty.equi = 1,
col.equi = "blue",
fill.equi = "transparent",
leftcols = NULL,
rightcols = NULL,
leftlabs = NULL,
rightlabs = NULL,
label.e = x$label.e,
label.c = x$label.c,
label.e.attach = NULL,
label.c.attach = NULL,
label.right = x$label.right,
label.left = x$label.left,
bottom.lr = TRUE,
lab.NA = ".",
lab.NA.effect = "",
lab.NA.weight = "--",
lwd = 1,
at = NULL,
label = TRUE,
type.study = "square",
type.fixed = "diamond",
type.random = type.fixed,
type.subgroup = ifelse(study.results, "diamond", "square"),
type.subgroup.fixed = type.subgroup,
type.subgroup.random = type.subgroup,
col.study = "black",
col.square = "gray",
col.square.lines = col.square,
col.inside = "white",
col.inside.fixed = col.inside,
col.inside.random = col.inside,
col.diamond = "gray",
col.diamond.fixed = col.diamond,
col.diamond.random = col.diamond,
col.diamond.lines = "black",
col.diamond.lines.fixed = col.diamond.lines,
col.diamond.lines.random = col.diamond.lines,
col.predict = "red",
col.predict.lines = "black",
col.by = "darkgray",
col.label.right = "black",
col.label.left = "black",
hetstat = fixed | random | overall.hetstat,
overall.hetstat = x$overall.hetstat,
hetlab = "Heterogeneity: ",
resid.hetstat,
resid.hetlab = "Residual heterogeneity: ",
print.I2,
print.I2.ci = FALSE,
print.tau2,
print.tau2.ci = FALSE,
print.tau = FALSE,
print.tau.ci = FALSE,
print.Q = FALSE,
print.pval.Q,
print.Rb = FALSE,
print.Rb.ci = FALSE,
text.subgroup.nohet = "not applicable",
LRT = FALSE,
test.overall = gs("test.overall"),
test.overall.fixed = fixed & overall & test.overall,
test.overall.random = random & overall & test.overall,
label.test.overall.fixed,
label.test.overall.random,
print.stat = TRUE,
test.subgroup = x$test.subgroup,
test.subgroup.fixed = test.subgroup & fixed,
test.subgroup.random = test.subgroup & random,
prediction.subgroup = x$prediction.subgroup,
print.Q.subgroup = TRUE,
label.test.subgroup.fixed,
label.test.subgroup.random,
test.effect.subgroup = gs("test.effect.subgroup"),
test.effect.subgroup.fixed,
test.effect.subgroup.random,
label.test.effect.subgroup.fixed,
label.test.effect.subgroup.random,
text.addline1,
text.addline2,
fontsize = 12,
fontfamily = NULL,
fs.heading = fontsize,
fs.fixed,
fs.random,
fs.predict,
fs.fixed.labels,
fs.random.labels,
fs.predict.labels,
fs.study = fontsize,
fs.study.labels = fs.study,
fs.hetstat,
fs.test.overall,
fs.test.subgroup,
fs.test.effect.subgroup,
fs.addline,
fs.axis = fontsize,
fs.smlab = fontsize,
fs.xlab = fontsize,
fs.lr = fontsize,
ff.heading = "bold",
ff.fixed,
ff.random,
ff.predict,
ff.fixed.labels,
ff.random.labels,
ff.predict.labels,
ff.study = "plain",
ff.study.labels = ff.study,
ff.hetstat,
ff.test.overall,
ff.test.subgroup,
ff.test.effect.subgroup,
ff.addline,
ff.axis = "plain",
ff.smlab = "bold",
ff.xlab = "plain",
ff.lr = "plain",
squaresize = 0.8/spacing,
plotwidth = if (layout == "JAMA") "8cm" else "6cm",
colgap = "2mm",
colgap.left = colgap,
colgap.right = colgap,
colgap.studlab = colgap.left,
colgap.forest = colgap,
colgap.forest.left = colgap.forest,
colgap.forest.right = colgap.forest,
calcwidth.pooled = (fixed | random) & (overall | !is.null(x$subgroup)),
calcwidth.fixed = calcwidth.pooled,
calcwidth.random = calcwidth.pooled,
calcwidth.predict = FALSE,
calcwidth.hetstat = FALSE,
calcwidth.tests = FALSE,
calcwidth.subgroup = FALSE,
calcwidth.addline = FALSE,
just = if (layout == "JAMA") "left" else "right",
just.studlab = "left",
just.addcols = "center",
just.addcols.left = just.addcols,
just.addcols.right = just.addcols,
spacing = 1,
addrow,
addrow.overall,
addrow.subgroups,
addrows.below.overall = 0,
new = TRUE,
backtransf = x$backtransf,
digits = gs("digits.forest"),
digits.se = gs("digits.se"),
digits.stat = gs("digits.stat"),
digits.pval = max(gs("digits.pval") - 2, 2),
digits.pval.Q = max(gs("digits.pval.Q") - 2, 2),
digits.Q = gs("digits.Q"),
digits.tau2 = gs("digits.tau2"),
digits.tau = gs("digits.tau"),
digits.I2 = max(gs("digits.I2") - 1, 0),
digits.weight = gs("digits.weight"),
digits.mean = digits,
digits.sd = digits.se,
digits.cor = digits,
digits.time = digits,
digits.addcols = digits,
digits.addcols.right = digits.addcols,
digits.addcols.left = digits.addcols,
scientific.pval = gs("scientific.pval"),
big.mark = gs("big.mark"),
zero.pval = if (layout == "JAMA") FALSE else gs("zero.pval"),
JAMA.pval = if (layout == "JAMA") TRUE else gs("JAMA.pval"),
...
)

Arguments

x An object of class meta.

sortvar An optional vector used to sort the individual studies (must be of same length as x$TE).

studlab A logical indicating whether study labels should be printed in the graph. A vector with study labels can also be provided (must be of same length as x$TE then).

layout A character string specifying the layout of the forest plot (see Details).

fixed A logical indicating whether fixed effect / common effect estimate should be plotted.

random A logical indicating whether random effects estimate should be plotted.

overall A logical indicating whether overall summaries should be plotted. This argument is useful in a meta-analysis with subgroups if summaries should only be plotted on group level.

text.fixed A character string used in the plot to label the pooled fixed effect estimate.

text.random A character string used in the plot to label the pooled random effects estimate.

lty.fixed Line type (pooled fixed effect estimate).

lty.random Line type (pooled random effects estimate).

col.fixed Line colour (pooled fixed effect estimate).

col.random Line colour (pooled random effects estimate).

text.w.fixed A character string used to label weights of fixed effect model.

text.w.random A character string used to label weights of random effects model.

prediction A logical indicating whether a prediction interval should be printed.

text.predict A character string used in the plot to label the prediction interval.

subgroup A single logical or logical vector indicating whether / which subgroup results should be shown in forest plot. This argument is useful in a meta-analysis with subgroups if summaries should not be plotted for (some) subgroups.
subgroup.hetstat
A single logical or logical vector indicating whether / which information on heterogeneity in subgroups should be shown in forest plot. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should not be printed for (some) subgroups.

print.subgroup.labels
A logical indicating whether subgroup label should be printed.

subgroup.name
A character string with a label for the grouping variable.

print.subgroup.name
A logical indicating whether the name of the grouping variable should be printed in front of the group labels.

sep.subgroup
A character string defining the separator between label and levels of grouping variable.

text.fixed.w
A character string to label the pooled fixed effect estimate within subgroups, or a character vector of same length as number of subgroups with corresponding labels.

text.random.w
A character string to label the pooled random effect estimate within subgroups, or a character vector of same length as number of subgroups with corresponding labels.

text.predict.w
A character string to label the prediction interval within subgroups, or a character vector of same length as number of subgroups with corresponding labels.

bysort
A logical indicating whether groups should be ordered alphabetically.

pooled.totals
A logical indicating whether total number of observations should be given in the figure.

pooled.events
A logical indicating whether total number of events should be given in the figure.

pooled.times
A logical indicating whether total person time at risk should be given in the figure.

study.results
A logical indicating whether results for individual studies should be shown in the figure (useful to only plot subgroup results).

xlab
A label for the x-axis.

xlab.pos
A numeric specifying the center of the label on the x-axis.

smlab
A label for the summary measure (printed at top of figure).

smlab.pos
A numeric specifying the center of the label for the summary measure.

xlim
The x limits (min,max) of the plot, or the character "s" to produce symmetric forest plots.

allstudies
A logical indicating whether studies with inestimable treatment effects should be included in the forest plot.

weight.study
A character string indicating weighting used to determine size of squares or diamonds (argument type.study) to plot individual study results. One of missing, "same", "fixed", or "random", can be abbreviated. Plot symbols have the same size for all studies or represent study weights from fixed effect or random effects model.
weight.subgroup
A character string indicating weighting used to determine size of squares or
diamonds (argument type.subgroup) to plot subgroup results. One of missing,
"same", or "weight", can be abbreviated. Plot symbols have the same size for
all subgroup results or represent subgroup weights from fixed effect or random
effects model.

pscale
A numeric giving scaling factor for printing of single event probabilities or risk
differences, i.e. if argument sm is equal to "PLOGIT", "PLN", "PRAW", "PAS",
"PFT", or "RD".

irscale
A numeric defining a scaling factor for printing of single incidence rates or in-
cidence rate differences, i.e. if argument sm is equal to "IR", "IRLN", "IRS",
"IRFT", or "IRD".

irunit
A character specifying the time unit used to calculate rates, e.g., person-years.

ref
A numerical giving the reference value to be plotted as a line in the forest plot.
No reference line is plotted if argument ref is equal to NA.

lower.equi
A numerical giving the lower limit of equivalence to be plotted as a line in the
forest plot. No line is plotted if argument lower.equi is equal to NA.

upper.equi
A numerical giving the upper limit of equivalence to be plotted as a line in the
forest plot. No line is plotted if argument upper.equi is equal to NA.

lty.equi
Line type (limits of equivalence).

col.equi
Line colour (limits of equivalence).

fill.equi
Colour of area between limits of equivalence.

leftcols
A character vector specifying (additional) columns to be printed on the left side
of the forest plot or a logical value (see Details).

rightcols
A character vector specifying (additional) columns to be printed on the right
side of the forest plot or a logical value (see Details).

leftlabs
A character vector specifying labels for (additional) columns on left side of the
forest plot (see Details).

rightlabs
A character vector specifying labels for (additional) columns on right side of the
forest plot (see Details).

label.e
Label to be used for experimental group in table heading.

label.c
Label to be used for control group in table heading.

label.e.attach
A character specifying the column name where label label.e should be at-
tached to in table heading.

label.c.attach
A character specifying the column name where label label.c should be at-
tached to in table heading.

label.right
Graph label on right side of forest plot.

label.left
Graph label on left side of forest plot.

bottom.lr
A logical indicating whether labels on right and left side should be printed at
bottom or top of forest plot.

lab.NA
A character string to label missing values.
lab.NA.effect A character string to label missing values in individual treatment estimates and confidence intervals.

lab.NA.weight A character string to label missing weights.

lwd The line width, see `par`.

at The points at which tick-marks are to be drawn, see `grid.xaxis`.

label A logical value indicating whether to draw the labels on the tick marks, or an expression or character vector which specify the labels to use. See `grid.xaxis`.

type.study A character string or vector specifying how to plot treatment effects and confidence intervals for individual studies (see Details).

type.fixed A character string specifying how to plot treatment effect and confidence interval for fixed effect meta-analysis (see Details).

type.random A character string specifying how to plot treatment effect and confidence interval for random effects meta-analysis (see Details).

type.subgroup A character string specifying how to plot treatment effect and confidence interval for subgroup results (see Details).

type.subgroup.fixed A character string specifying how to plot treatment effect and confidence interval for subgroup results (fixed effect model).

type.subgroup.random A character string specifying how to plot treatment effect and confidence interval for subgroup results (random effects model).

col.study The colour for individual study results and confidence limits.

col.square The colour for squares reflecting study's weight in the meta-analysis.

col.square.lines The colour for the outer lines of squares reflecting study's weight in the meta-analysis.

col.inside The colour for individual study results and confidence limits if confidence limits are completely within squares.

col.inside.fixed The colour for result of fixed effect meta-analysis if confidence limit lies completely within square.

col.inside.random The colour for result of random effects meta-analysis if confidence limit lies completely within square.

col.diamond The colour of diamonds representing the results for fixed effect and random effects models.

col.diamond.fixed The colour of diamonds for fixed effect estimates.

col.diamond.random The colour of diamonds for random effects estimates.

col.diamond.lines The colour of the outer lines of diamonds representing the results for fixed effect and random effects models.
col.diamond.lines.fixed
The colour of the outer lines of diamond for fixed effect estimate.

col.diamond.lines.random
The colour of the outer lines of diamond for random effects estimate.

col.predict
Background colour of prediction interval.

col.predict.lines
Colour of outer lines of prediction interval.

col.by
The colour to print information on subgroups.

col.label.right
The colour for label on right side of null effect.

col.label.left
The colour for label on left side of null effect.

hetstat
Either a logical value indicating whether to print results for heterogeneity measures at all or a character string (see Details).

overall.hetstat
A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

hetlab
Label printed in front of results for heterogeneity measures.

resid.hetstat
A logical value indicating whether to print measures of residual heterogeneity in a meta-analysis with subgroups.

resid.hetlab
Label printed in front of results for residual heterogeneity measures.

print.I2
A logical value indicating whether to print the value of the I-squared statistic.

print.I2.ci
A logical value indicating whether to print the confidence interval of the I-squared statistic.

print.tau2
A logical value indicating whether to print the value of the between-study variance τ^2.

print.tau2.ci
A logical value indicating whether to print the confidence interval of τ^2.

print.tau
A logical value indicating whether to print τ, the square root of the between-study variance τ^2.

print.tau.ci
A logical value indicating whether to print the confidence interval of τ.

print.Q
A logical value indicating whether to print the value of the heterogeneity statistic Q.

print.pval.Q
A logical value indicating whether to print the p-value of the heterogeneity statistic Q.

print.Rb
A logical value indicating whether to print the value of the I-squared statistic.

print.Rb.ci
A logical value indicating whether to print the confidence interval of the I-squared statistic.

text.subgroup.nohet
A logical value or character string which is printed to indicate subgroups with less than two studies contributing to meta-analysis (and thus without heterogeneity). If FALSE, heterogeneity statistics are printed (with NAs).

LRT
A logical value indicating whether to report Likelihood-Ratio or Wald-type test of heterogeneity for generalized linear mixed models.
test.overall A logical value indicating whether to print results of test for overall effect.

test.overall.fixed A logical value indicating whether to print results of test for overall effect (fixed effect model).

test.overall.random A logical value indicating whether to print results of test for overall effect (random effects model).

label.test.overall.fixed Label printed in front of results of test for overall effect (fixed effect model).

label.test.overall.random Label printed in front of results of test for overall effect (random effects model).

print.stat A logical value indicating whether z- or t-value for test of treatment effect should be printed.

test.subgroup A logical value indicating whether to print results of test for subgroup differences.

test.subgroup.fixed A logical value indicating whether to print results of test for subgroup differences (fixed effect model).

test.subgroup.random A logical value indicating whether to print results of test for subgroup differences (random effects model).

prediction.subgroup A single logical or logical vector indicating whether / which prediction intervals should be printed for subgroups.

print.Q.subgroup A logical value indicating whether to print the value of the heterogeneity statistic Q (test for subgroup differences).

label.test.subgroup.fixed Label printed in front of results of test for subgroup differences (fixed effect model).

label.test.subgroup.random Label printed in front of results of test for subgroup differences (random effects model).

test.effect.subgroup A single logical or logical vector indicating whether / which tests for effect in subgroups should be printed.

test.effect.subgroup.fixed A single logical or logical vector indicating whether / which tests for effect in subgroups should be printed (fixed effect model).

test.effect.subgroup.random A single logical or logical vector indicating whether / which tests for effect in subgroups should be printed (random effects model).

label.test.effect.subgroup.fixed Label printed in front of results of test for effect in subgroups (fixed effect model).
label.test.effect.subgroup.random
 Label printed in front of results of test for effect in subgroups (random effects model).

text.addline1
 Text for first additional line (below meta-analysis results).
text.addline2
 Text for second additional line (below meta-analysis results).

fontsize
 The size of text (in points), see \texttt{gpar}.

fontfamily
 The font family, see \texttt{gpar}.

fs.heading
 The size of text for column headings, see \texttt{gpar}.

fs.fixed
 The size of text for results of fixed effect model, see \texttt{gpar}.

fs.random
 The size of text for results of random effects model, see \texttt{gpar}.

fs.predict
 The size of text for results of prediction interval, see \texttt{gpar}.

fs.fixed.labels
 The size of text for label of fixed effect model, see \texttt{gpar}.

fs.random.labels
 The size of text for label of random effects model, see \texttt{gpar}.

fs.predict.labels
 The size of text for label of prediction interval, see \texttt{gpar}.

fs.study
 The size of text for results of individual studies, see \texttt{gpar}.

fs.study.labels
 The size of text for labels of individual studies, see \texttt{gpar}.

fs.hetstat
 The size of text for heterogeneity measures, see \texttt{gpar}.

fs.test.overall
 The size of text of test for overall effect, see \texttt{gpar}.

fs.test.subgroup
 The size of text of test of subgroup differences, see \texttt{gpar}.

fs.test.effect.subgroup
 The size of text of test of effect in subgroups, see \texttt{gpar}.

fs.addline
 The size of text for additional lines, see \texttt{gpar}.

fs.axis
 The size of text on x-axis, see \texttt{gpar}.

fs.smlab
 The size of text of label for summary measure, see \texttt{gpar}.

fs.xlab
 The size of text of label on x-axis, see \texttt{gpar}.

fs.lr
 The size of text of label on left and right side of forest plot, see \texttt{gpar}.

ff.heading
 The fontface for column headings, see \texttt{gpar}.

ff.fixed
 The fontface of text for results of fixed effect model, see \texttt{gpar}.

ff.random
 The fontface of text for results of random effects model, see \texttt{gpar}.

ff.predict
 The fontface of text for results of prediction interval, see \texttt{gpar}.

ff.fixed.labels
 The fontface of text for label of fixed effect model, see \texttt{gpar}.

ff.random.labels
 The fontface of text for label of random effects model, see \texttt{gpar}.
ff.predict.labels
 The fontface of text for label of prediction interval, see \texttt{gpar}.

ff.study
 The fontface of text for results of individual studies, see \texttt{gpar}.

ff.study.labels
 The fontface of text for labels of individual studies, see \texttt{gpar}.

ff.hetstat
 The fontface of text for heterogeneity measures, see \texttt{gpar}.

ff.test.overall
 The fontface of text of test for overall effect, see \texttt{gpar}.

ff.test.subgroup
 The fontface of text for test of subgroup differences, see \texttt{gpar}.

ff.test.effect.subgroup
 The fontface of text for test of effect in subgroups, see \texttt{gpar}.

ff.addline
 The fontface of text for additional lines, see \texttt{gpar}.

ff.axis
 The fontface of text on x-axis, see \texttt{gpar}.

ff.smlab
 The fontface of text of label for summary measure, see \texttt{gpar}.

ff.xlab
 The fontface of text of label on x-axis, see \texttt{gpar}.

ff.lr
 The fontface of text of label on left and right side of forest plot, see \texttt{gpar}.

squaresize
 A numeric used to increase or decrease the size of squares in the forest plot.

plotwidth
 Either a character string, e.g., "8cm", "60mm", or "3inch", or a \texttt{unit} object specifying width of the forest plot.

colgap
 Either a character string or a \texttt{unit} object specifying gap between columns printed on left and right side of forest plot.

colgap.left
 Either a character string or a \texttt{unit} object specifying gap between columns printed on left side of forest plot.

colgap.right
 Either a character string or a \texttt{unit} object specifying gap between columns printed on right side of forest plot.

colgap.studlab
 Either a character string or a \texttt{unit} object specifying gap between column with study labels and subsequent column.

colgap.forest
 Either a character string or a \texttt{unit} object specifying gap between column adjacent to forest plot and the forest plot.

colgap.forest.left
 Either a character string or a \texttt{unit} object specifying gap between column on the left side of forest plot and the forest plot.

colgap.forest.right
 Either a character string or a \texttt{unit} object specifying gap between column on the right side of forest plot and the forest plot.

calcwidth.pooled
 A logical indicating whether text for fixed effect and random effects model should be considered to calculate width of the column with study labels.

calcwidth.fixed
 A logical indicating whether text given in arguments \texttt{text.fixed} and \texttt{text.fixed.w} should be considered to calculate width of the column with study labels.
calcwidth.random
A logical indicating whether text given in arguments text.random and text.random.w should be considered to calculate width of the column with study labels.

calcwidth.predict
A logical indicating whether text given in argument text.predict and text.predict.w should be considered to calculate width of the column with study labels.

calcwidth.hetstat
A logical indicating whether text for heterogeneity statistics should be considered to calculate width of the column with study labels.

calcwidth.tests
A logical indicating whether text for tests of overall effect or subgroup differences should be considered to calculate width of the column with study labels.

calcwidth.subgroup
A logical indicating whether text with subgroup labels should be considered to calculate width of the column with study labels.

calcwidth.addline
A logical indicating whether text for additional lines should be considered to calculate width of the column with study labels.

just
Justification of text in all columns but columns with study labels and additional variables (possible values: "left", "right", "center").

just.studlab
Justification of text for study labels (possible values: "left", "right", "center").

just.addcols
Justification of text for additional columns (possible values: "left", "right", "center").

just.addcols.left
Justification of text for additional columns on left side of forest plot (possible values: "left", "right", "center"). Can be of same length as number of additional columns on left side of forest plot.

just.addcols.right
Justification of text for additional columns on right side of forest plot (possible values: "left", "right", "center"). Can be of same length as number of additional columns on right side of forest plot.

spacing
A numeric determining line spacing in a forest plot.

addrow
A logical value indicating whether an empty row is printed above and below study results.

addrow.overall
A logical value indicating whether an empty row is printed above overall meta-analysis results.

addrow.subgroups
A logical value indicating whether an empty row is printed between results for subgroups.

addrows.below.overall
A numeric value indicating how many empty rows are printed between meta-analysis results and heterogeneity statistics and test results.

new
A logical value indicating whether a new figure should be printed in an existing graphics window.
backtransf A logical indicating whether results should be back transformed in forest plots.
If `backtransf = TRUE`, results for `sm = "OR"` are presented as odds ratios rather
than log odds ratios and results for `sm = "ZCOR"` are presented as correlations
rather than Fisher's z transformed correlations, for example.
digits Minimal number of significant digits for treatment effects, see `print.default`.
digits.se Minimal number of significant digits for standard errors, see `print.default`.
digits.stat Minimal number of significant digits for z- or t-statistic for test of overall effect,
see `print.default`.
digits.pval Minimal number of significant digits for p-value of overall treatment effect, see
`print.default`.
digits.pval.Q Minimal number of significant digits for p-value of heterogeneity test, see `print.default`.
digits.Q Minimal number of significant digits for heterogeneity statistic Q, see `print.default`.
digits.tau2 Minimal number of significant digits for between-study variance, see `print.default`.
digits.tau Minimal number of significant digits for square root of between-study variance,
see `print.default`.
digits.I2 Minimal number of significant digits for I-squared statistic, see `print.default`.
digits.weight Minimal number of significant digits for weights, see `print.default`.
digits.mean Minimal number of significant digits for means; only applies to `metacomp` ob-
jects.
digits.sd Minimal number of significant digits for standard deviations; only applies to
`metacomp` objects.
digits.cor Minimal number of significant digits for correlations; only applies to `metacomp`
objects.
digits.time Minimal number of significant digits for times; only applies to `metainc` and
`metarate` objects.
digits.addcols A vector or scalar with minimal number of significant digits for additional columns.
digits.addcols.right A vector or scalar with minimal number of significant digits for additional columns
on right side of forest plot.
digits.addcols.left A vector or scalar with minimal number of significant digits for additional columns
on left side of forest plot.
scientific.pval A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.
big.mark A character used as thousands separator.
zero.pval A logical specifying whether p-values should be printed with a leading zero.
JAMA.pval A logical specifying whether p-values for test of overall effect should be printed
according to JAMA reporting standards.
... Additional graphical arguments.
Details

A forest plot, also called confidence interval plot, is drawn in the active graphics window. The forest functions in R package meta are based on the grid graphics system. In order to print the forest plot, resize the graphics window and either use dev.copy2eps or dev.copy2pdf. Another possibility is to create a file using pdf, png, or svg and to specify the width and height of the graphic (see Examples).

Default layout for studies and pooled effects:

By default, treatment estimates and confidence intervals are plotted in the following way:

- For an individual study, a square with treatment estimate in the center and confidence interval as line extending either side of the square (type.study = "square")
- For meta-analysis results, a diamond with treatment estimate in the center and right and left side corresponding to lower and upper confidence limits (type.fixed = "diamond", type.random = "diamond", and type.subgroup = "diamond")

In a forest plot, size of the squares typically reflects the precision of individual treatment estimates based either on the fixed effect (weight.study = "fixed") or random effects meta-analysis (weight.study = "random"). Information from meta-analysis object x is utilised if argument weight.study is missing. Weights from the fixed effect model are used if argument x$fixed is TRUE; weights from the random effects model are used if argument x$random is TRUE and x$fixed is FALSE. The same square sizes are used if weight.study = "same".

A prediction interval for treatment effect of a new study (Higgins et al., 2009) is given in the forest plot if arguments prediction and random are TRUE. For graphical presentation of prediction intervals the approach by Guddat et al. (2012) is used.

Columns printed on left side of forest plot:

Argument leftcols can be used to specify columns which are printed on the left side of the forest plot. By default, i.e. if argument leftcols is NULL and layout = "meta", and depending on the class of the meta-analysis object (which is defined by the R function used to generate the object) a different set of columns is printed on the left side of the forest plot:

<table>
<thead>
<tr>
<th>Function</th>
<th>Value of argument leftcols</th>
</tr>
</thead>
<tbody>
<tr>
<td>metabin</td>
<td>c("studlab", "event.e", "n.e", "event.c", "n.c")</td>
</tr>
<tr>
<td>metacont</td>
<td>c("studlab", "n.e", "mean.e", "sd.e", "n.c", "mean.c", "sd.c")</td>
</tr>
<tr>
<td>metacor</td>
<td>c("studlab", "n")</td>
</tr>
<tr>
<td>metagen</td>
<td>c("studlab", "TE", "seTE")</td>
</tr>
<tr>
<td>metainc</td>
<td>c("studlab", "event.e", "time.e", "event.c", "time.c")</td>
</tr>
<tr>
<td>metamean</td>
<td>c("studlab", "n", "mean", "sd")</td>
</tr>
<tr>
<td>metaprop</td>
<td>c("studlab", "event", "n")</td>
</tr>
<tr>
<td>metarate</td>
<td>c("studlab", "event", "time", "n")</td>
</tr>
<tr>
<td>metacum</td>
<td>"studlab"</td>
</tr>
<tr>
<td>metainf</td>
<td>"studlab"</td>
</tr>
</tbody>
</table>

Note, “studlab” must be provided for study labels in argument leftcols or rightcols instead of the variable name used in the meta-analysis command. If, for example, “id” is provided in argument leftcols as this variable was used to define study labels in the meta-analysis function, this variable will be treated as an additional variable, not as study labels.
Overlapping information on left side of forest plot:
Depending on the number of columns printed on the left side of the forest plot, information on heterogeneity measures or statistical tests (see below) can be overlapping with the x-axis. Argument `addrows.below.overall` can be used to specify the number of empty rows that are printed between meta-analysis results and information on heterogeneity measures and statistical tests. By default, no additional rows are added to the forest plot. If `addrows.below.overall = NULL`, the function tries to add a sufficient number of empty rows to prevent overlapping text. Another possibility is to manually increase the space between the columns on the left side (argument `colgap.left`) or between the columns on the left side and the forest plot (argument `colgap.forest.left`).

Columns printed on right side of forest plot:
Argument `rightcols` can be used to specify columns which are printed on the right side of the forest plot. If argument `rightcols` is `FALSE`, no columns will be printed on the right side. By default, i.e. if argument `rightcols` is `NULL` and `layout = "meta"`, the following columns will be printed on the right side of the forest plot:

<table>
<thead>
<tr>
<th>Meta-analysis results</th>
<th>Value of argument rightcols</th>
</tr>
</thead>
<tbody>
<tr>
<td>No summary</td>
<td>c("effect","ci")</td>
</tr>
<tr>
<td>Only fixed effect model</td>
<td>c("effect","ci","w.fixed")</td>
</tr>
<tr>
<td>Only random effects model</td>
<td>c("effect","ci","w.random")</td>
</tr>
<tr>
<td>Both models</td>
<td>c("effect","ci","w.fixed","w.random")</td>
</tr>
</tbody>
</table>

By default, estimated treatment effect and corresponding confidence interval will be printed. Depending on arguments `fixed` and `random`, weights of the fixed effect and/or random effects model will be given too. For an object of class `metacum` or `metainf` only the estimated treatment effect with confidence interval are plotted.

Column names:
The arguments `leftlabs` and `rightlabs` can be used to specify column headings which are printed on left or right side of the forest plot. For certain columns predefined labels exist which are used by default, i.e., if arguments `leftlabs` and `rightlabs` are `NULL`:

<table>
<thead>
<tr>
<th>Column</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>studlab</td>
<td>"Study"</td>
</tr>
<tr>
<td>TE</td>
<td>"TE"</td>
</tr>
<tr>
<td>seTE</td>
<td>"seTE"</td>
</tr>
<tr>
<td>n.e</td>
<td>"Total"</td>
</tr>
<tr>
<td>n.c</td>
<td>"Total"</td>
</tr>
<tr>
<td>n</td>
<td>"Total"</td>
</tr>
<tr>
<td>event.e</td>
<td>"Events"</td>
</tr>
<tr>
<td>event.c</td>
<td>"Events"</td>
</tr>
<tr>
<td>event</td>
<td>"Mean"</td>
</tr>
<tr>
<td>mean.e</td>
<td>"Mean"</td>
</tr>
<tr>
<td>mean.c</td>
<td>"Mean"</td>
</tr>
<tr>
<td>sd.e</td>
<td>"SD"</td>
</tr>
<tr>
<td>sd.c</td>
<td>"SD"</td>
</tr>
<tr>
<td>time.e</td>
<td>"Time"</td>
</tr>
<tr>
<td>time.c</td>
<td>"Time"</td>
</tr>
<tr>
<td>effect</td>
<td>x$sm</td>
</tr>
<tr>
<td>ci</td>
<td>x$level"%-CI"</td>
</tr>
<tr>
<td>effect.ci</td>
<td>"effect+ci"</td>
</tr>
<tr>
<td>w.fixed</td>
<td>"(W(fixed))"</td>
</tr>
<tr>
<td>w.random</td>
<td>"(W(random))"</td>
</tr>
</tbody>
</table>

For other columns, the column name will be used as a label if no column label is defined. It is possible to only provide labels for new columns (see Examples). Otherwise the length of `leftlabs` and `rightlabs` must be the same as the number of printed columns. The value `NA` can
be used to specify columns which should use default labels (see Examples).

In pairwise meta-analysis comparing two groups (i.e., `metabin`, `metacont`, `metainc`, and `metagen` depending on the outcome), arguments `label.e` and `label.c` are used to label columns belonging to the two treatment groups. By default, labels defined in the meta-analysis object are used. The columns where treatment labels are attached can be changed using arguments `label.e.attach` and `label.c.attach`.

Information on heterogeneity and statistical tests:

Argument `hetstat` can be a character string to specify where to print heterogeneity information:

- row with results for fixed effect model (`hetstat = "fixed"`),
- row with results for random effects model (`hetstat = "random"`).

Otherwise, information on heterogeneity measures is printed below the meta-analysis results if argument `overall.hetstat = TRUE` (default). The heterogeneity measures to print can be specified (see list of arguments following `overall.hetstat`).

In addition, the following arguments can be used to print results for various statistical tests:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Statistical test</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>test.overall.fixed</code></td>
<td>Test for overall effect (fixed effect model)</td>
</tr>
<tr>
<td><code>test.overall.random</code></td>
<td>Test for overall effect (random effects model)</td>
</tr>
<tr>
<td><code>test.effect.subgroup.fixed</code></td>
<td>Test for effect in subgroup (FE model)</td>
</tr>
<tr>
<td><code>test.effect.subgroup.random</code></td>
<td>Test for effect in subgroup (RE model)</td>
</tr>
<tr>
<td><code>test.subgroup.fixed</code></td>
<td>Test for subgroup differences (FE model)</td>
</tr>
<tr>
<td><code>test.subgroup.random</code></td>
<td>Test for subgroup differences (RE model)</td>
</tr>
</tbody>
</table>

By default, these arguments are `FALSE` with exception of tests for subgroup differences which are `TRUE`. R function `settings.meta` can be used to change this default for the entire R session. For example, use the following command to always print results of tests for an overall effect:

```
settings.meta(test.overall = TRUE)
```

Flexible printing of subgroup results:

Argument `subgroup` determines whether summary results are printed for subgroups. A logical vector of length equal to the number of subgroups can be provided to determine which subgroup summaries are printed. By default, only subgroup results based on at least two studies are printed which is identical to use argument `subgroup = k.w > 1`. The order of the logical vector corresponds to the order of subgroups in list element `bylevs` of a meta-analysis object. Argument `subgroup = k.w >= 1` can be used to show results for all subgroups (including those with a single study).

The following arguments can be used in a similar way:

- `subgroup.hetstat` (heterogeneity statistic in subgroups),
- `prediction.subgroup` (prediction interval in subgroups),
- `test.effect.subgroup` (test for effect in subgroups),
- `test.effect.subgroup.fixed` (test for effect in subgroups, fixed effect model),
- `test.effect.subgroup.random` (test for effect in subgroups, random effects model).

Additional general settings:
Arguments `text.fixed`, `text.random`, and `text.predict` can be used to change the label to identify overall results (fixed effect and random effects model as well as prediction interval). By default the following text is printed:

- "Common effect model" (argument `text.fixed`)
- "Random effects model" (text.random)
- "Prediction interval" (text.predict)

If confidence interval levels are different for individual studies, meta-analysis, and prediction interval (arguments `level`, `level.ma`, `level.predict` in meta-analysis functions, e.g., `metabin`), additional information is printed, e.g., "(99%-CI)" for a 99% confidence interval in the meta-analysis.

Argument `pscale` can be used to rescale single proportions or risk differences, e.g., `pscale = 1000` means that proportions are expressed as events per 1000 observations. This is useful in situations with (very) low event probabilities.

Argument `irscale` can be used to rescale single rates or rate differences, e.g., `irscale = 1000` means that rates are expressed as events per 1000 time units, e.g., person-years. This is useful in situations with (very) low rates. Argument `irunit` can be used to specify the time unit used in individual studies (default: "person-years"). This information is printed in summaries and forest plots if argument `irscale` is not equal to 1.

Forest plots in RevMan5 layout:

If argument `layout = "RevMan5"` (and arguments `leftcols` and `rightcols` are NULL), the layout for forest plots used for Cochrane reviews (which are generated with Review Manager 5, https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman) is reproduced:

1. All columns are printed on the left side of the forest plot (see arguments `leftcols` and `rightcols`)
2. Tests for overall effect and subgroup differences are printed (test.overall, test.effect.subgroup, test.subgroup)
3. Diamonds representing meta-analysis results are printed in black (diamond.fixed, diamond.random)
4. Colour of squares depends on the meta-analysis object (col.square, col.square.lines)
5. Information on effect measure and meta-analysis method is printed above the forest plot (smlab)
6. Label "Study or Subgroup" is printed for meta-analysis with subgroups (leftlabs)

Forest plots in JAMA layout:

If argument `layout = "JAMA"` (and arguments `leftcols` and `rightcols` are NULL), instructions for authors of the *Journal of the American Medical Association*, see https://jamanetwork.com/journals/jama/pages/instructions-for-authors/, are taken into account:

1. Graph labels on right and left side are printed in bold font at top of forest plot (see arguments `bottom.lr` and `ff.lr`)
2. Information on effect measure and level of confidence interval is printed at bottom of forest plot (`xlab`)
3. Tests for overall effect are printed (test.overall)
4. Diamonds representing meta-analysis results are printed in lightblue (diamond.fixed, diamond.random)
5. Squares representing individual study results are printed in darkblue (col.square, col.square.lines)
6. Between-study variance τ^2 is not printed
7. Empty rows are omitted (addrow)
8. Label "Source" is printed instead of "Study" (leftlabs)
9. P-values are printed without leading zeros (zero.pval)
10. P-values are rounded to three digits (for $0.001 < p \leq 0.01$) or two digits ($p > 0.01$) (JAMA.pval)

Study labels according to JAMA guidelines can be generated using labels.meta.

Forest plots showing results of subgroups:
The following changes are conducted if argument layout = "subgroup" (and arguments leftcols and rightcols are NULL) and a subgroup analysis was conducted:
1. Individual study results are omitted (see argument study.results)
2. Total number of observations is not printed (pooled.totals)
3. Label "Subgroup" is printed instead of "Study" (leftlabs)

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also
metabin, metacont, metagen, forest.metabind, settings.meta, labels.meta

Examples
data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, subset = c(41, 47, 51, 59),
sm = "RR", method = "I",
studlab = paste(author, year))

Not run:
Do standard (symmetric) forest plot
#
forest(m1)
End(Not run)

Layout of forest plot similar to Review Manager 5
#
Furthermore, add labels on both sides of forest plot and
prediction interval
forest(m1, layout = "RevMan5", fixed = FALSE,
label.right = "Favours control", col.label.right = "red",
label.left = "Favours experimental", col.label.left = "green",
prediction = TRUE)

Not run:
Create a PDF file forest-m1.pdf with the forest plot
pdf("forest-m1.pdf", width = 10, height = 3)
forest(m1)
dev.off()

Conduct subgroup meta-analysis
#
m2 <- update(m1,
 subgroup = ifelse(year < 1987, "Before 1987", "1987 and later"),
 print.subgroup.name = FALSE)

Show summary results for subgroups with at least two studies
#
forest(m2, sortvar = -TE, random = FALSE)

Show results for all subgroups
#
forest(m2, sortvar = -TE, random = FALSE, subgroup = k.w >= 1)

Forest plot specifying argument xlim
#
forest(m1, xlim = c(0.01, 10))

Print results of test for overall effect
#
forest(m1, test.overall.fixed = TRUE, test.overall.random = TRUE)

Forest plot with 'classic' layout used in R package meta,
version < 1.6-0
#
forest(m1, col.square = "black", hetstat = FALSE)

Change set of columns printed on left side of forest plot
(resulting in overlapping text)
#
forest(m1, random = FALSE, leftcols = "studlab")

Use argument 'calcwidth.hetstat' to consider text for heterogeneity
measures in width of column with study labels
#
forest(m1, random = FALSE, leftcols = "studlab",
calcwidth.hetstat = TRUE)

Use argument 'addrows.below.overall' to manually add two empty
```r
# rows
# forest(m1, random = FALSE, leftcols = "studlab", addrows = 2)

# Do not print columns on right side of forest plot
# forest(m1, rightcols = FALSE)

# Change study label to "Author"
# forest(m1, random = FALSE, leftlabs = c("Author", NA, NA, NA, NA))

# Just give effect estimate and 95% confidence interval on right
# side of forest plot (in one column)
# forest(m1, rightcols = c("effect.ci"))

# Just give effect estimate and 95% confidence interval on right
# side of forest plot
# forest(m1, rightcols = c("effect", "ci"))

# 1. Change order of columns on left side
# 2. Attach labels to columns 'event.e' and 'event.c' instead of
#    columns 'n.e' and 'n.c'

# forest(m1,
# leftcols = c("studlab", "n.e", "event.e", "n.c", "event.c"),
# label.e.attach = "event.e", label.c.attach = "event.c")

# Specify column labels only for variables 'year' and 'author'
# (and define digits for additional variables)
# forest(m1,
# leftcols = c("studlab", "event.e", "n.e", "event.c", "n.c", "author", "year"),
# leftlabs = c("Author", "Year of Publ"))

# Center text in all columns
# forest(m1,
# leftcols = c("studlab", "event.e", "n.e", "event.c", "n.c",
# "author", "year"),
# leftlabs = c("Author", "Year of Publ"), hetstat = FALSE,
# just = "center", just.addcols = "center", just.studlab = "center")

# Same result
# forest(m1,
# leftcols = c("studlab", "event.e", "n.e", "event.c", "n.c",
# "author", "year"),
# leftlabs = c("Author", "Year of Publ"), hetstat = FALSE,
# just = "c", just.addcols = "c", just.studlab = "c")
```
Change some fontsizes and fontfaces
#
forest(m1,
 fs.study = 10, ff.study = "italic",
 fs.study.label = 11, ff.study.label = "bold",
 fs.axis = 5, ff.axis = "italic",
 ff.smlab = "bold.italic",
 ff.fixed = "plain", ff.hetstat = "plain")

Change some colours
#
forest(m1,
 col.diamond = "green", col.diamond.lines = "red",
 col.study = c("green", "blue", "red", "orange"),
 col.square = "pink", col.square.lines = "black")

Sort by weight in fixed effect model
#
forest(m1, sortvar = 1 / w.fixed, random = FALSE)

Sort by decreasing weight in fixed effect model
#
forest(m1, sortvar = -1 / w.fixed, random = FALSE)

Sort by size of treatment effect
#
forest(m1, sortvar = TE, random = FALSE)

Sort by size of treatment effect
#
forest(m1, sortvar = -TE, random = FALSE)

Sort by decreasing year of publication
#
forest(m1, sortvar = -year, random = FALSE)

Print results of test for subgroup differences (random effects
model)
#
forest(m2, sortvar = -TE, fixed = FALSE)

Print only subgroup results
#
forest(m2, layout = "subgroup", addrows = NULL)

Print only subgroup results (and consider text for tests of
subgroup differences in width of subgroup column)
#
forest(m2, layout = "subgroup", calcwidth.tests = TRUE)

Print only subgroup results (and consider text for heterogeneity
in width of subgroup column)
#
forest.m2, layout = "subgroup", calcwidth.hetstat = TRUE)

End(Not run)

Forest plot to display the result of a meta-analysis

Description

Draws a forest plot in the active graphics window (using grid graphics system).

Usage

S3 method for class 'metabind'
forest(
x,
leftcols,
leftlabs,
rightcols = c("effect", "ci"),
rightlabs,
overall = FALSE,
subgroup = FALSE,
hetstat = FALSE,
overall.hetstat = FALSE,
lab.NA = "",
digits = gs("digits.forest"),
digits.se = gs("digits.se"),
digits.stat = gs("digits.stat"),
digits.pval = max(gs("digits.pval") - 2, 2),
digits.pval.Q = max(gs("digits.pval.Q") - 2, 2),
digits.Q = gs("digits.Q"),
digits.tau2 = gs("digits.tau2"),
digits.tau = gs("digits.tau"),
digits.I2 = max(gs("digits.I2") - 1, 0),
scientific.pval = gs("scientific.pval"),
big.mark = gs("big.mark"),
print.subgroup.labels = if (any(x$.meta$is.subgroup)) TRUE else FALSE,
addrow.subgroups = print.subgroup.labels,
smlab,
calcwidth.pooled = overall,
warn.deprecated = gs("warn.deprecated"),
...
)
Arguments

x An object of class `metabind`.
leftcols A character vector specifying (additional) columns to be plotted on the left side of the forest plot or a logical value (see Details).
leftlabs A character vector specifying labels for (additional) columns on left side of the forest plot (see Details).
rightcols A character vector specifying (additional) columns to be plotted on the right side of the forest plot or a logical value (see Details).
rightlabs A character vector specifying labels for (additional) columns on right side of the forest plot (see Details).
overall A logical indicating whether overall summaries should be plotted. This argument is useful in a meta-analysis with subgroups if summaries should only be plotted on group level.
subgroup A logical indicating whether subgroup results should be shown in forest plot. This argument is useful in a meta-analysis with subgroups if summaries should not be plotted on group level.
hetstat Either a logical value indicating whether to print results for heterogeneity measures at all or a character string (see Details).
overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.
lab.NA A character string to label missing values.
digits Minimal number of significant digits for treatment effects, see `print.default`.
digits.se Minimal number of significant digits for standard errors, see `print.default`.
digits.stat Minimal number of significant digits for z- or t-statistic for test of overall effect, see `print.default`.
digits.pval Minimal number of significant digits for p-value of overall treatment effect, see `print.default`.
digits.pval.Q Minimal number of significant digits for p-value of heterogeneity test, see `print.default`.
digits.Q Minimal number of significant digits for heterogeneity statistic Q, see `print.default`.
digits.tau2 Minimal number of significant digits for between-study variance, see `print.default`.
digits.tau Minimal number of significant digits for square root of between-study variance, see `print.default`.
digits.I2 Minimal number of significant digits for I-squared statistic, see `print.default`.
scientific.pval A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.
big.mark A character used as thousands separator.
print.subgroup.labels A logical indicating whether subgroup label should be printed.
addrow.subgroups
A logical value indicating whether an empty row is printed between results for subgroups.

smlab
A label for the summary measure (printed at top of figure).

calcwidth.pooled
A logical indicating whether text for fixed effect and random effects model should be considered to calculate width of the column with study labels.

warn.deprecated
A logical indicating whether warnings should be printed if deprecated arguments are used.

...
Additional graphical arguments (passed on to `forest.meta`).

Details

A forest plot, also called confidence interval plot, is drawn in the active graphics window. The forest functions in R package `meta` are based on the grid graphics system. In order to print the forest plot, resize the graphics window and either use `dev.copy2eps` or `dev.copy2pdf`. Another possibility is to create a file using `pdf`, `png`, or `svg` and to specify the width and height of the graphic (see `forest.meta` examples).

The arguments `leftcols` and `rightcols` can be used to specify columns which are plotted on the left and right side of the forest plot, respectively.

The arguments `leftlabs` and `rightlabs` can be used to specify column headings which are plotted on left and right side of the forest plot, respectively. For certain columns predefined labels exist. For other columns, the column name will be used as a label. It is possible to only provide labels for new columns (see `forest.meta` examples). Otherwise the length of `leftlabs` and `rightlabs` must be the same as the number of printed columns, respectively. The value `NA` can be used to specify columns which should use default labels.

Argument `hetstat` can be a character string to specify where to print heterogeneity information:

- row with results for fixed effect model (`hetstat = "fixed"`),
- row with results for random effects model (`hetstat = "random"`),
- rows with 'study' information (`hetstat = "study"`).

Otherwise, information on heterogeneity is printed in dedicated rows.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

`forest.meta`, `metabin`, `metacont`, `metagen`, `metabind`, `settings.meta`
funnel.meta

Examples

data(Fleiss1993cont)

Add some (fictitious) grouping variables:
#
Fleiss1993cont$age <- c(55, 65, 55, 65, 55)
Fleiss1993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")

m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 data = Fleiss1993cont, sm = "MD")

Conduct two subgroup analyses
#
mu1 <- update(m1, subgroup = age, bylab = "Age group")
mu2 <- update(m1, subgroup = region, bylab = "Region")

Combine subgroup meta-analyses and show forest plot with subgroup
results
#
mb1 <- metabind(mu1, mu2)
mb1
forest(mb1)

funnel.meta

Funnel plot

Description

Draw a funnel plot which can be used to assess small study effects in meta-analysis. A contour-enhanced funnel plot can also be produced to assess causes of funnel plot asymmetry.

Usage

S3 method for class 'meta'
funnel(
 x,
 xlim = NULL,
 ylim = NULL,
 xlab = NULL,
 ylab = NULL,
 fixed = x$fixed,
 random = x$random,
 axes = TRUE,
 pch = if (!inherits(x, "trimfill")) 21 else ifelse(x$trimfill, 1, 21),
 text = NULL,
 cex = 1,
 lty.fixed = 2,
funnel.meta

lty.random = 9,
lwd = 1,
lwd.fixed = lwd,
lwd.random = lwd,
col = "black",
bg = "darkgray",
col.fixed = "black",
col.random = "black",
log,
yaxis,
contour.levels = NULL,
col.contour,
ref = ifelse(is.relative.effect(x$sm), 1, 0),
level = if (fixed | random) x$level else NULL,
studlab = FALSE,
cex.studlab = 0.8,
pos.studlab = 2,
ref.triangle = FALSE,
lty.ref = 1,
lwd.ref = lwd,
col.ref = "black",
lty.ref.triangle = 5,
backtransf = x$backtransf,
...

Arguments

x An object of class meta.
xlim The x limits (min,max) of the plot.
ylim The y limits (min,max) of the plot.
xlab A label for the x-axis.
ylab A label for the y-axis.
fixed A logical indicating whether the fixed effect / common effect estimate should be plotted.
random A logical indicating whether the random effects estimate should be plotted.
axes A logical indicating whether axes should be drawn on the plot.
pch The plotting symbol used for individual studies.
text A character vector specifying the text to be used instead of plotting symbol.
cex The magnification to be used for plotting symbol.
lty.fixed Line type (fixed effect estimate).
lty.random Line type (random effects estimate).
lwd The line width for confidence intervals (if level is not NULL).
lwd.fixed The line width for fixed effect estimate (if fixed is not NULL).
lwd.random The line width for random effects estimate (if random is not NULL).
col A vector with colour of plotting symbols.
bg A vector with background colour of plotting symbols (only used if pch in 21:25).
col.fixed Colour of line representing fixed effect estimate.
col.random Colour of line representing random effects estimate.
log A character string which contains "x" if the x-axis is to be logarithmic, "y" if the y-axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.
yaxis A character string indicating which type of weights are to be used. Either "se", "invvar", "invse", code"size", code"invsqrtsize", or code"ess".
contour.levels A numeric vector specifying contour levels to produce contour-enhanced funnel plot.
col.contour Colour of contours.
ref Reference value (null effect) used to produce contour-enhanced funnel plot.
level The confidence level utilised in the plot. For the funnel plot, confidence limits are not drawn if yaxis="size" or yaxis="invsqrtsize".
studlab A logical indicating whether study labels should be printed in the graph. A vector with study labels can also be provided (must be of same length as x$TE then).
cex.studlab Size of study labels, see argument cex in text.
pos.studlab Position of study labels, see argument pos in text.
ref.triangle A logical indicating whether approximate confidence limits should be printed around reference value (null effect).
lty.ref Line type (reference value).
lwd.ref The line width for the reference value and corresponding confidence intervals (if ref.triangle is TRUE and level is not NULL).
col.ref Colour of line representing reference value.
lty.ref.triangle Line type (confidence intervals of reference value).
backtransf A logical indicating whether results for relative summary measures (argument sm equal to "OR", "RR", "HR", or "IRR") should be back transformed in funnel plots. If backtransf=TRUE, results for sm="OR" are printed as odds ratios rather than log odds ratios, for example.

Details

A funnel plot (Light & Pillemer, 1984) is drawn in the active graphics window. If fixed is TRUE, the estimate of the fixed effect model is plotted as a vertical line. Similarly, if random is TRUE, the estimate of the random effects model is plotted. If level is not NULL, the corresponding approximate confidence limits are drawn around the fixed effect estimate (if fixed is TRUE) or the random effects estimate (if random is TRUE and fixed is FALSE).

In the funnel plot, the standard error of the treatment estimates is plotted on the y-axis by default (yaxis = "se") which is likely to be the best choice (Sterne & Egger, 2001). Only exception
is meta-analysis of diagnostic test accuracy studies (Deeks et al., 2005) where the inverse of the square root of the effective study size is used (yaxis = "ess"). Other possible choices for yaxis are "invvar" (inverse of the variance), "invse" (inverse of the standard error), "size" (study size), and "invsqrtsize" (1 / sqrt(study size)). If argument yaxis is not equal to "size", "invsqrtsize" or "ess", contour-enhanced funnel plots can be produced (Peters et al., 2008) by specifying the contour levels (argument contour.levels). By default (argument col.contour missing), suitable gray levels will be used to distinguish the contours. Different colours can be chosen by argument col.contour.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>, Petra Graham <pgraham@efs.mq.edu.au>

References
Deeks JJ, Macaskill P, Irwig L (2005): The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. *Journal of Clinical Epidemiology*, **58**:882–93

See Also
metabias, *metabin*, *metagen*, *radial*

Examples
```r
data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
  data = Olkin1995, subset = c(41, 47, 51, 59),
  studlab = paste(author, year),
  sm = "RR", method = "I")
oldpar <- par(mfrow = c(2, 2))

# Standard funnel plot
#
funnel(m1)

# Funnel plot with confidence intervals, fixed effect estimate and
# contours
#
cc <- funnel(m1, fixed = TRUE,
  level = 0.95, contour = c(0.9, 0.95, 0.99))$col.contour
legend(0.05, 0.05, #
```


c("0.1 > p > 0.05", "0.05 > p > 0.01", "< 0.01"), fill = cc)

Contour-enhanced funnel plot with user-chosen colours
#
funnel(m1, fixed = TRUE,
 level = 0.95, contour = c(0.9, 0.95, 0.99),
 col.contour = c("darkgreen", "green", "lightgreen"),
 lwd = 2, cex = 2, pch = 16, studlab = TRUE, cex.studlab = 1.25)
legend(0.05, 0.05,
 c("0.1 > p > 0.05", "0.05 > p > 0.01", "< 0.01"),
 fill = c("darkgreen", "green", "lightgreen"))

par(oldpar)
Examples

```r
# Get default setting for Hartung-Knapp method
#
gs("hakn")

# Get default setting for summary measure in metabin()
#
gs("smbin")
```

JAMAlabels

Create study labels in JAMA layout (deprecated function)

Description

Deprecated function to create study labels in JAMA layout (for forest plot). Replaced by `labels.meta`.

Usage

`JAMAlabels(author, year, citation, data = NULL)`

Arguments

- `author`: A vector providing study authors.
- `year`: A vector providing year of publication.
- `citation`: A vector providing citation numbers.
- `data`: An optional data frame containing the study information.

Details

This auxiliary function can be used to create study labels in JAMA layout which can be added to a forest plot using argument `studlab`.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

`labels.meta, forest.meta`
Examples

```r
data(Fleiss1993bin)

refs <- 20 + 1:7

Fleiss1993bin$mylabs <-
  JAMAlabels(study, year, refs, data = Fleiss1993bin)

m <- metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin,
  studlab = paste(study, year),
  sm = "OR", random = FALSE)

forest(m, studlab = mylabs, layout = "JAMA",
       fontfamily = "Times", fontsize = 10)
```

labbe.metabin
L’Abbé plot for meta-analysis with binary outcomes

Description

Draw a L’Abbé plot for meta-analysis with binary outcomes.

Usage

```r
## S3 method for class 'metabin'
labbe(
  x,
  xlim,
  ylim,
  xlab = NULL,
  ylab = NULL,
  TE.fixed = x$TE.fixed,
  TE.random = x$TE.random,
  fixed = x$fixed,
  random = x$random,
  backtransf = x$backtransf,
  axes = TRUE,
  pch = 21,
  text = NULL,
  cex = 1,
  col = "black",
  bg = "lightgray",
  lwd = 1,
  lwd.fixed = lwd,
  lwd.random = lwd,
  lty.fixed = 2,
  lty.random = 9,
```

labbe.metabin

col.fixed = col,
col.random = col,
nulleffect = TRUE,
lwd.nulleffect = lwd,
col.nulleffect = "lightgray",
sm = x$sm,
weight,
studlab = FALSE,
cex.studlab = 0.8,
pos.studlab = 2,
label.e = x$label.e,
label.c = x$label.c,
...
)

Default S3 method:
labbe(
x,
y,
xlim,
ylim,
xlab = NULL,
ylab = NULL,
TE.fixed = NULL,
TE.random = NULL,
fixed = !is.null(TE.fixed),
random = !is.null(TE.random),
backtransf = TRUE,
axes = TRUE,
pch = 21,
text = NULL,
cex = 1,
col = "black",
bg = "lightgray",
lwd = 1,
lwd.fixed = lwd,
lwd.random = lwd,
lty.fixed = 2,
lty.random = 9,
col.fixed = col,
col.random = col,
nulleffect = TRUE,
lwd.nulleffect = lwd,
col.nulleffect = "lightgray",
sm = "",
weight,
studlab = FALSE,
cex.studlab = 0.8,
pos.studlab = 2,
label.e = NULL,
label.c = NULL,
...
)

Arguments

x
An object of class metabin. Alternatively, the x coordinates of points of the L'Abbé plot.
xlim
The x limits (min, max) of the plot.
ylim
The y limits (min, max) of the plot.
xlab
A label for the x-axis.
ylab
A label for the y-axis.
TE.fixed
A numeric or vector specifying combined fixed effect estimate(s).
TE.random
A numeric or vector specifying combined random effects estimate(s).
fixed
A logical indicating whether the fixed effect estimate should be plotted.
random
A logical indicating whether the random effects estimate should be plotted.
backtransf
A logical indicating which values should be printed on x- and y-axis (see Details).
axes
A logical indicating whether axes should be drawn on the plot.
pch
The plotting symbol used for individual studies.
text
A character vector specifying the text to be used instead of plotting symbol.
cex
The magnification to be used for plotting symbol.
col
A vector with colour of plotting symbols.
bg
A vector with background colour of plotting symbols (only used if pch in 21:25).
lwd
The line width.
lwd.fixed
The line width(s) for fixed effect estimate(s) (if fixed is not NULL or FALSE).
lwd.random
The line width(s) for random effects estimate(s) (if random is not NULL or FALSE).
lty.fixed
Line type(s) for fixed effect estimate(s).
lty.random
Line type(s) for random effects estimate(s).
col.fixed
Colour of line(s) for fixed effect estimate(s).
col.random
Colour of line(s) for random effects estimate(s).
nulleffect
A logical indicating whether line for null effect should be added to the plot.
lwd.nulleffect
Width of line for null effect.
col.nulleffect
Colour of line for null effect.
sm
A character string indicating underlying summary measure, i.e., "RD", "RR", "OR", or "ASD".
weight

Either a numeric vector specifying relative sizes of plotting symbols or a character string indicating which type of plotting symbols is to be used for individual treatment estimates. One of missing (see Details), "same", "fixed", or "random", can be abbreviated. Plot symbols have the same size for all studies or represent study weights from fixed effect or random effects model.

studlab

A logical indicating whether study labels should be printed in the graph. A vector with study labels can also be provided (must be of same length as x$event.e then).

cex.studlab

Size of study labels.

pos.studlab

Position of study labels, see argument pos in text.

label.e

Label for experimental group.

label.c

Label for control group.

...

Graphical arguments as in par may also be passed as arguments.

y

The y coordinates of the L’Abbé plot, if argument x is not an object of class metabin.

Details

A L’Abbé plot is a scatter plot with the risk in the control group on the x-axis and the risk in the experimental group on the y-axis (L'Abbé et al., 1987). It can be used to evaluate heterogeneity in meta-analysis. Furthermore, this plot can aid to choose a summary measure (odds ratio, risk ratio, risk difference) that will result in more consistent results (Jiménez et al., 1997; Deeks, 2002).

If argument backtransf is TRUE (default), event probabilities will be printed on x- and y-axis. Otherwise, transformed event probabilities will be printed as defined by the summary measure, i.e., log odds of probabilities for odds ratio as summary measure (sm = "OR"), log probabilities for sm = "RR", and arcsine-transformed probabilities for sm = "ASD".

If fixed is TRUE, the estimate of the fixed effect / common effect model is plotted as a line. If random is TRUE, the estimate of the random effects model is plotted as a line.

Information from object x is utilised if argument weight is missing. Weights from the fixed effect model are used (weight = "fixed") if argument x$fixed is TRUE; weights from the random effects model are used (weight = "random") if argument x$random is TRUE and x$fixed is FALSE.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

metabin

Examples

data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
 data = Olkin1995, studlab = paste(author, year),
 sm = "RR", method = "I")

 # L'Abbe plot for risk ratio
 #
 labbe(m1)

 # L'Abbe plot for odds ratio
 #
 labbe(m1, sm = "OR")
 # same plot
 labbe(update(m1, sm = "OR"))

 # L'Abbe plot for risk difference
 #
 labbe(m1, sm = "RD")

 # L'Abbe plot on log odds scale
 #
 labbe(m1, sm = "OR", backtransf = FALSE)

 # L'Abbe plot for odds ratio with coloured lines for various
 # treatment effects (defined as log odds ratios)
 #
 mycols <- c("blue", "yellow", "green", "red", "green", "yellow", "blue")
 labbe(m1, sm = "OR", random = FALSE,
 TE.fixed = log(c(1 / 10, 1 / 5, 1 / 2, 1, 2, 5, 10)),
 col.fixed = mycols, lwd.fixed = 2)

 # L'Abbe plot on log odds scale with coloured lines for various
 # treatment effects (defined as log odds ratios)
 #
 labbe(m1, sm = "OR", random = FALSE, backtransf = FALSE,
 TE.fixed = log(c(1 / 10, 1 / 5, 1 / 2, 1, 2, 5, 10)),
 col.fixed = mycols, lwd.fixed = 2)

labels.meta | Create study labels for forest plot

Description

Create study labels for forest plot.
Usage

```r
## S3 method for class 'meta'
labels(
  object,
  author = object$studlab,
  year = "",
  citation = NULL,
  layout = "JAMA",
  data = object$data,
  ...
)
```

Arguments

- `object`: An object of class `meta`.
- `author`: An optional vector providing study authors.
- `year`: An optional vector providing year of publication.
- `citation`: An optional vector providing citation numbers.
- `layout`: A character string specifying layout. Either "JAMA" or "Lancet".
- `data`: An optional data frame containing the study information.
- `...`: Additional arguments (ignored at the moment).

Details

This auxiliary function can be used to create study labels in JAMA or Lancet layout which can be added to a forest plot using argument 'studlab'.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

- `forest.meta`

Examples

```r
data(Fleiss1993bin)
refs <- 20 + 1:7

m <- metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin,
  studlab = study, sm = "OR", random = FALSE)

forest(m,
  studlab = labels(m, year = year, citation = refs, layout = "JAMA"),
  layout = "JAMA", fontfamily = "Times", fontsize = 10)
```
longarm

Transform data from pairwise comparisons to long arm-based format

Description

This function transforms data from pairwise comparisons to a long arm-based format, i.e., two rows for a pairwise comparison.

Usage

```r
longarm(
  treat1,
  treat2,
  event1,
  n1,
  event2,
  n2,
  mean1,
  sd1,
  mean2,
  sd2,
  time1,
  time2,
  data = NULL,
  studlab,
  append = TRUE,
  keep.duplicated = FALSE,
  keep.internal = FALSE
)
```

Arguments

treat1 Either label for first treatment or a meta-analysis or pairwise object (see Details).
treat2 Label for second treatment.
event1 Number of events (first treatment).
n1 Number of observations (first treatment).
event2 Number of events (second treatment).
n2 Number of observations (second treatment)
mean1 Estimated mean (first treatment).
sd1 Standard deviation (first treatment).
mean2 Estimated mean (second treatment).
sd2 Standard deviation (second treatment).
time1 Person time at risk (first treatment)
time2 Person time at risk (second treatment)
data An optional data frame containing the study information.
studlab A vector with study labels (optional).
append A logical indicating if data frame provided in argument 'data' should be returned.
keep.duplicated A logical indicating if duplicated rows should be returned (see Details).
keep.internal A logical indicating if variables generated internally should be returned (typically only relevant for data checking).

Details

This function transforms data given as one pairwise comparison per row to a long arm-based format with one row per treatment arm. The long arm-based format is, for example, the required input format for WinBUGS.

The function can be used to transform data with a binary, continuous or count outcome. The corresponding meta-analysis functions are \texttt{metabin}, \texttt{metacont} and \texttt{metainc}. Accordingly, a meta-analysis object created with one of these functions can be provided as argument \texttt{treat1}. It is also possible to use the longarm function with an R object created with \texttt{pairwise} from R package \texttt{netmeta}.

Otherwise, arguments \texttt{treat1} and \texttt{treat2} are mandatory to identify the individual treatments and, depending on the outcome, the following additional arguments are mandatory:

- event1, n1, event2, n2 (binary outcome);
- n1, mean1, sd1, n2, mean2, sd2 (continuous outcome);
- time1, n1, time2, n2 (count outcome).

Argument \texttt{studlab} must be provided if several pairwise comparisons come from a single study with more than two treatments.

The following variables will be returned:

- \texttt{studlab} study label
- \texttt{treat} treatment label
- \texttt{n} group sample size (count outcome only if provided)
- \texttt{events} number of events (binary or count outcome)
- \texttt{nonevents} number of non-events (binary outcome)
- \texttt{mean} estimated mean (continuous outcome)
- \texttt{sd} standard deviation (continuous outcome)
- \texttt{time} person time at risk (count outcome)

In addition, the data set provided in argument \texttt{data} will be returned if argument \texttt{append = TRUE} (default).
Argument keep.duplicated can be used to keep duplicated rows from the data set. Duplicated rows can occur, for example, in a three-arm study comparing treatments A and B with placebo. In this situation, the placebo arm will be returned twice in the data set in long arm-based format if keep.duplicated = TRUE. By default, duplicated rows with not be kept in the data set.

Value
A data frame in long arm-based format.

Note
R function to.long from R package metafor is called internally.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also
metabin, metacont, metainc, pairwise

Examples
Artificial example with three studies
m <- metabin(1:3, 100:102, 4:6, 200:202, studlab = LETTERS[1:3])
Transform data to long arm-based format
longarm(m)
Keep internal variables
longarm(m, keep.internal = TRUE)
S3 method for class 'metabias'
print(
 x,
 digits = gs("digits"),
 digits.stat = gs("digits.stat"),
 digits.pval = max(gs("digits.pval"), 2),
 digits.se = gs("digits.se"),
 digits.tau2 = gs("digits.tau2"),
 scientific.pval = gs("scientific.pval"),
 big.mark = gs("big.mark"),
 zero.pval = gs("zero.pval"),
 JAMA.pval = gs("JAMA.pval"),
 text.tau2 = gs("text.tau2"),
 ...
)

metabias(x, ...)

Default S3 method:
metabias(
 x,
 seTE,
 method.bias = "Egger",
 plotit = FALSE,
 correct = FALSE,
 k.min = 10,
 ...
)

Arguments

- **x**: An object of class `meta` or estimated treatment effect in individual studies.
- **method.bias**: A character string indicating which test is to be used (see Details), can be abbreviated.
- **plotit**: A logical indicating whether a plot should be produced (see Details).
- **correct**: A logical indicating whether a continuity corrected statistic is used for rank correlation tests.
- **k.min**: Minimum number of studies to perform test for funnel plot asymmetry.
- **...**: Additional arguments passed on to `rma.uni`.
- **digits**: Minimal number of significant digits for estimates, see `print.default`.
- **digits.stat**: Minimal number of significant digits for z- or t-value of test for test of funnel plot asymmetry, see `print.default`.
- **digits.pval**: Minimal number of significant digits for p-value of test for test of funnel plot asymmetry, see `print.default`.
- **digits.se**: Minimal number of significant digits for standard errors, see `print.default`.
digits.tau2 Minimal number of significant digits for residual heterogeneity variance, see print.default.

scientific.pval A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.

big.mark A character used as thousands separator.

zero.pval A logical specifying whether p-values should be printed with a leading zero.

JAMA.pval A logical specifying whether p-values for test of overall effect should be printed according to JAMA reporting standards.

text.tau2 Text printed to identify residual heterogeneity variance τ^2.

seTE Standard error of estimated treatment effect (mandatory if x not of class meta).

Details

Functions to conduct rank correlation or linear regression tests for funnel plot asymmetry.

Classic generic tests: The following tests are generic tests for funnel plot asymmetry which only require estimates of the treatment effect and corresponding standard errors. Accordingly, these are the only tests provided by R function metabias.default.

If argument method.bias is "Begg", the test statistic is based on the rank correlation between standardised treatment estimates and variance estimates of estimated treatment effects; Kendall’s tau is used as correlation measure (Begg & Mazumdar, 1994). The test statistic follows a standard normal distribution. By default (if correct is FALSE), no continuity correction is utilised (Kendall & Gibbons, 1990).

If argument method.bias is "Egger", the test statistic is based on a weighted linear regression of the treatment effect on its standard error (Egger et al., 1997). The test statistic follows a t distribution with number of studies -2 degrees of freedom.

If argument method.bias is "Thompson", the test statistic is based on a weighted linear regression of the treatment effect on its standard error using an additive between-study variance component denoted as methods (3a) - (3d) in Thompson & Sharp (1999). The test statistic follows a t distribution with number of studies -2 degrees of freedom.

Tests for meta-analysis with binary outcomes: The following tests for funnel plot asymmetry are only available for meta-analyses comparing two binary outcomes, i.e. meta-analyses generated with the metabin function. The only exception is the test by Peters et al. (2006) which can also be used in a meta-analysis of single proportions generated with metaprop.

If argument method.bias is "Harbord", the test statistic is based on a weighted linear regression utilising efficient score and score variance (Harbord et al., 2006, 2009). The test statistic follows a t distribution with number of studies -2 degrees of freedom.

In order to calculate an arcsine test for funnel plot asymmetry (Rücker et al., 2008), one has to use the metabin function with argument sm = "ASD" as input to the metabias command. The three arcsine tests described in Rücker et al. (2008) can be calculated by setting method.bias to "Begg", "Egger" and "Thompson", respectively.

If argument method.bias is "Macaskill", the test statistic is based on a weighted linear regression of the treatment effect on the total sample size with weights reciprocal to the variance of the average event probability (Macaskill et al., 2001, method FPV). The test statistic follows a t distribution with number of studies -2 degrees of freedom.
If argument `method.bias` is "Peters", the test statistic is based on a weighted linear regression of the treatment effect on the inverse of the total sample size with weights reciprocal to the variance of the average event probability (Peters et al., 2006). The test statistic follows a t distribution with number of studies -2 degrees of freedom. Note, this test is a variant of Macaskill et al. (2001), method FPV, using the inverse sample size as covariate.

If argument `method.bias` is "Schwarzer", the test statistic is based on the rank correlation between a standardised cell frequency and the inverse of the variance of the cell frequency; Kendall’s tau is used as correlation measure (Schwarzer et al., 2007). The test statistic follows a standard normal distribution. By default (if `correct` is FALSE), no continuity correction is utilised (Kendall & Gibbons, 1990).

Finally, for meta-analysis of diagnostic test accuracy studies, if argument `method.bias` is "Deeks", the test statistic is based on a weighted linear regression of the log diagnostic odds ratio on the inverse of the squared effective sample size using the effective sample size as weights (Deeks et al., 2005). The test statistic follows a t distribution with number of studies -2 degrees of freedom.

Test for the standardised mean difference: If argument `method.bias` is "Pustejovsky", the test statistic is based on a weighted linear regression of the treatment effect on the square root of the sum of the inverse group sample sizes using the treatment effect variance as weights (Pustejovsky & Rodgers, 2019). The test statistic follows a t distribution with number of studies -2 degrees of freedom.

Recommendations and default settings: Following recommendations by Sterne et al. (2011), by default, a test for funnel plot asymmetry is only conducted if the number of studies is ten or larger (argument `k.min = 10`). This behaviour can be changed by setting a smaller value for argument `k.min`. Note, the minimum number of studies is three.

If argument `method.bias` is missing, the Harbord test (`method.bias = "Harbord"`) is used in meta-analysis of binary outcomes for the odds ratio as effect measure and the Egger test (`method.bias = "Egger"`) in all other settings (Sterne et al., 2011).

No test for funnel plot asymmetry is conducted in meta-analyses with subgroups.

If argument `plotit` = TRUE, a scatter plot is shown if argument `method.bias` is equal to "Begg", "Egger", "Thompson", "Harbord", or "Deeks".

Value

A list with class metabias containing the following components if a test for funnel plot asymmetry is conducted:

- **statistic**: Test statistic.
- **df**: The degrees of freedom of the test statistic in the case that it follows a t distribution.
- **pval**: The p-value for the test.
- **estimate**: Estimates used to calculate test statistic.
- **method**: A character string indicating what type of test was used.
- **title**: Title of Cochrane review.
- **complab**: Comparison label.
- **outclab**: Outcome label.
metabias.meta

```
var.model  A character string indicating whether none, multiplicative, or additive residual
          heterogeneity variance was assumed.
method.bias  As defined above.
x  Meta-analysis object.
version  Version of R package meta used to create object.

Or a list with the following elements if test is not conducted due to the number of studies:

k  Number of studies in meta-analysis.
k.min  Minimum number of studies to perform test for funnel plot asymmetry.
version  Version of R package meta used to create object.
```

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Begg CB & Mazumdar M (1994): Operating characteristics of a rank correlation test for publication
bias. Biometrics, 50, 1088–101

Deeks JJ, Macaskill P, Irwig L (2005): The performance of tests of publication bias and other
sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of
Clinical Epidemiology, 58:882–93

Egger M, Smith GD, Schneider M & Minder C (1997): Bias in meta-analysis detected by a simple,

of controlled trials with binary endpoints. Statistics in Medicine, 25, 3443–57

The Stata Journal, 9, 197–210

Macaskill P, Walter SD, Irwig L (2001): A comparison of methods to detect publication bias in
meta-analysis. Statistics in Medicine, 20, 641–54

Pustejovsky JE, Rodgers MA (2019): Testing for funnel plot asymmetry of standardized mean
differences. Research Synthesis Methods, 10, 57–71

Rücker G, Schwarzer G, Carpenter JR (2008): Arcsine test for publication bias in meta-analyses
with binary outcomes. Statistics in Medicine, 27, 746–63

Schwarzer G, Antes G & Schumacher M (2007): A test for publication bias in meta-analysis with
sparse binary data. Statistics in Medicine, 26, 721–33

Sterne, JAC et al. (2011): Recommendations for examining and interpreting funnel plot asymmetry
in meta-analyses of randomised controlled trials. BMJ (Clinical research ed.), 343, 1

Thompson SG & Sharp, SJ (1999): Explaining heterogeneity in meta-analysis: a comparison of
methods, Statistics in Medicine, 18, 2693–708
See Also

funnel, funnel.meta, metabin, metacont, metagen

Examples

```r
data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
  data = Olkin1995, subset = 1:10, sm = "RR", method = "I")

metabias(m1)
metabias(m1, plotit = TRUE)

metabias(m1, method.bias = "Begg")
metabias(m1, method.bias = "Begg", correct = TRUE)

metabias(m1, method.bias = "Schwarzer")
metabias(m1, method.bias = "Egger")$pval

# Arcsine test (based on linear regression)
#
m1.as <- update(m1, sm = "ASD")
metabias(m1.as)
# Same result (using function metabias.default)
metabias(m1.as$TE, m1.as$seTE)

# No test for funnel plot asymmetry calculated
#
m2 <- update(m1, subset = 1:5)
metabias(m2)

m3 <- update(m1, subset = 1:2)
metabias(m3)

# Test for funnel plot asymmetry calculated (use of argument k.min)
#
metabias(m2, k.min = 5)
```

metabias.rm5

Cochrane review: Test for funnel plot asymmetry

Description

Conduct a test for funnel plot asymmetry for all outcomes in a Cochrane review

Usage

```r
## S3 method for class 'rm5'
metabias()
```
Arguments

- **x**: An object of class `rm5`.
- **comp.no**: Comparison number.
- **outcome.no**: Outcome number.
- **method.bias**: A character string indicating which test for small-study effects is to be used for all outcomes. Either "rank", "linreg", or "mm", can be abbreviated. See function `metabias`.
- **method.bias.binary**: A character string indicating which test is to be used for binary outcomes. Either "rank", "linreg", "mm", "count", "score", or "peters", can be abbreviated. See function `metabias`.
- **method.bias.or**: A character string indicating which test is to be used for binary outcomes with odds ratio as summary measure. Either "rank", "linreg", "mm", "count", "score", or "peters", can be abbreviated. See function `metabias`.
- **k.min**: Minimum number of studies to perform test for small-study effects.
- **...**: Additional arguments (ignored at the moment)

Details

This function can be used to conduct a test for funnel plot asymmetry for all or selected meta-analyses in a Cochrane Review.

Review Manager 5 (RevMan 5) is the current software used for preparing and maintaining Cochrane Reviews (https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman). In RevMan 5, subgroup analyses can be defined and data from a Cochrane review can be imported to R using the function `read.rm5`.

The R function `metacr` is called internally.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`metabias, metacr, read.rm5, summary.rm5`

Examples

```r
# Locate export data file "Fleiss1993_CR.csv" in sub-directory of
# package "meta"
#
filename <- system.file("extdata", "Fleiss1993_CR.csv", package = "meta")
Fleiss1993_CR <- read.rm5(filename)

# Print results for all tests of small-study effects
#
metabias(Fleiss1993_CR, k.min = 5)

# Print result of test of small-study effects for second outcome in
# first comparison
#
metabias(Fleiss1993_CR, comp.no = 1, outcome.no = 2, k.min = 5)
```

metabin

Meta-analysis of binary outcome data

Description

Calculation of fixed effect and random effects estimates (risk ratio, odds ratio, risk difference, arc-sine difference, or diagnostic odds ratio) for meta-analyses with binary outcome data. Mantel-Haenszel, inverse variance, Peto method, generalised linear mixed model (GLMM), and sample size method are available for pooling. For GLMMs, the `rma.glmm` function from R package `metafor` (Viechtbauer, 2010) is called internally.

Usage

```r
metabin(
  event.e,
  n.e,
  event.c,
  n.c,
  studlab,
  data = NULL,
  subset = NULL,
  exclude = NULL,
  method = ifelse(tau.common, "Inverse", gs("method")),
  sm = ifelse(!is.na(charmatch(tolower(method), c("peto", "glmm", "ssw"), nomatch = NA)), "OR", gs("smbin")),
  incr = gs("incr"),
  allincr = gs("allincr"),
```
addincr = gs("addincr"),
allstudies = gs("allstudies"),
MH.exact = gs("MH.exact"),
RR.Cochrane = gs("RR.Cochrane"),
Q.Cochrane = gs("Q.Cochrane") & method == "MH" & method.tau == "DL",
model.glmm = gs("model.glmm"),
level = gs("level"),
level.ma = gs("level.ma"),
fixed = gs("fixed"),
random = gs("random") | !is.null(tau.preset),
overall = fixed | random,
overall.hetstat = fixed | random,
hakn = gs("hakn"),
adhoc.hakn = gs("adhoc.hakn"),
method.tau = ifelse(!is.na(charmatch(tolower(method),"glmm",nomatch = NA)), "ML",
gs("method.tau")),
method.tau.ci = gs("method.tau.ci"),
tau.preset = NULL,
TE.tau = NULL,
tau.common = gs("tau.common"),
prediction = gs("prediction"),
level.predict = gs("level.predict"),
method.bias = ifelse(sm == "OR", "Harbord", ifelse(sm == "DOR", "Deeks",
gs("method.bias"))),
backtransf = gs("backtransf"),
pscale = 1,
text.fixed = gs("text.fixed"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.fixed = gs("text.w.fixed"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
label.e = gs("label.e"),
label.c = gs("label.c"),
label.left = gs("label.left"),
label.right = gs("label.right"),
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
print.CMH = gs("print.CMH"),
keepdata = gs("keepdata"),
warn = gs("warn"),
Arguments

event.e Number of events in experimental group or true positives in diagnostic study.
n.e Number of observations in experimental group or number of ill participants in diagnostic study.

event.c Number of events in control group or false positives in diagnostic study.
n.c Number of observations in control group or number of healthy participants in diagnostic study.

studlab An optional vector with study labels.
data An optional data frame containing the study information, i.e., event.e, n.e, event.c, and n.c.

subset An optional vector specifying a subset of studies to be used.
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.

method A character string indicating which method is to be used for pooling of studies. One of "Inverse", "MH", "Peto", "GLMM", or "SSW", can be abbreviated.

sm A character string indicating which summary measure ("RR", "OR", "RD", "ASD", or "DOR") is to be used for pooling of studies, see Details.

incr Could be either a numerical value which is added to each cell frequency for studies with a zero cell count or the character string "TACC" which stands for treatment arm continuity correction, see Details.

allincr A logical indicating if incr is added to each cell frequency of all studies if at least one study has a zero cell count. If FALSE (default), incr is added only to each cell frequency of studies with a zero cell count.

addincr A logical indicating if incr is added to each cell frequency of all studies irrespective of zero cell counts.

allstudies A logical indicating if studies with zero or all events in both groups are to be included in the meta-analysis (applies only if sm is equal to "RR", "OR", or "DOR").

MH.exact A logical indicating if incr is not to be added to all cell frequencies for studies with a zero cell count to calculate the pooled estimate based on the Mantel-Haenszel method.

RR.Cochrane A logical indicating if 2*incr instead of 1*incr is to be added to n.e and n.c in the calculation of the risk ratio (i.e., sm="RR") for studies with a zero cell. This is used in RevMan 5, the program for preparing and maintaining Cochrane reviews.

Q.Cochrane A logical indicating if the Mantel-Haenszel estimate is used in the calculation of the heterogeneity statistic Q which is implemented in RevMan 5, the program for preparing and maintaining Cochrane reviews.
model.glmm A character string indicating which GLMM should be used. One of "UM.FS", "UM.RS", "CM.EL", and "CM.AL", see Details.

level The level used to calculate confidence intervals for individual studies.

level.ma The level used to calculate confidence intervals for meta-analysis estimates.

fixed A logical indicating whether a fixed effect / common effect meta-analysis should be conducted.

random A logical indicating whether a random effects meta-analysis should be conducted.

overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

hakn A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.

adhoc.hakn A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate, see Details.

method.tau A character string indicating which method is used to estimate the between-study variance τ^2 and its square root τ. Either "DL", "PM", "REML", "ML", "HS", "SJ", "HE", or "EB", can be abbreviated.

method.tau.ci A character string indicating which method is used to estimate the confidence interval of τ^2 and τ. Either "QP", "BJ", or "J", or "", can be abbreviated.

tau.preset Prespecified value for the square root of the between-study variance τ^2.

TE.tau Overall treatment effect used to estimate the between-study variance τ^2.

tau.common A logical indicating whether tau-squared should be the same across subgroups.

prediction A logical indicating whether a prediction interval should be printed.

level.predict The level used to calculate prediction interval for a new study.

method.bias A character string indicating which test for funnel plot asymmetry is to be used. Either "Begg", "Egger", "Thompson", "Schwarzer", "Hartbord", "Peters", or "Deeks", can be abbreviated. See function metabias.

backtransf A logical indicating whether results for odds ratio (sm="OR"), risk ratio (sm="RR"), or diagnostic odds ratio (sm="DOR") should be back transformed in printouts and plots. If TRUE (default), results will be presented as odds ratios and risk ratios; otherwise log odds ratios and log risk ratios will be shown.

pscale A numeric defining a scaling factor for printing of risk differences.

text.fixed A character string used in printouts and forest plot to label the pooled fixed effect estimate.

text.random A character string used in printouts and forest plot to label the pooled random effects estimate.
text.predict A character string used in printouts and forest plot to label the prediction interval.
text.w.fixed A character string used to label weights of fixed effect model.
text.w.random A character string used to label weights of random effects model.
title Title of meta-analysis / systematic review.
complab Comparison label.
outclab Outcome label.
label.e Label for experimental group.
label.c Label for control group.
label.left Graph label on left side of forest plot.
label.right Graph label on right side of forest plot.
subgroup An optional vector to conduct a meta-analysis with subgroups.
subgroup.name A character string with a name for the subgroup variable.
print.subgroup.name A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.
sep.subgroup A character string defining the separator between name of subgroup variable and subgroup label.
test.subgroup A logical value indicating whether to print results of test for subgroup differences.
prediction.subgroup A logical indicating whether prediction intervals should be printed for subgroups.
byvar Deprecated argument (replaced by 'subgroup').
print.CMH A logical indicating whether result of the Cochran-Mantel-Haenszel test for overall effect should be printed.
keepdata A logical indicating whether original data (set) should be kept in meta object.
warn A logical indicating whether warnings should be printed (e.g., if incr is added to studies with zero cell frequencies).
warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.
control An optional list to control the iterative process to estimate the between-study variance τ^2. This argument is passed on to rma.uni or rma.glmm, respectively.
... Additional arguments passed on to rma.glmm function.

Details
Calculation of fixed and random effects estimates for meta-analyses with binary outcome data.
The following measures of treatment effect are available (Rücker et al., 2009):

- Risk ratio ($sm = "RR")
• Odds ratio (sm = "OR")
• Risk difference (sm = "RD")
• Arcsine difference (sm = "ASD")
• Diagnostic Odds ratio (sm = "DOR")

Note, mathematically, odds ratios and diagnostic odds ratios are identical, however, the labels in printouts and figures differ.

Default settings are utilised for several arguments (assignments using gs function). These defaults can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings.

Meta-analysis method:

By default, both fixed effect (also called common effect) and random effects models are considered (see arguments fixed and random). If method is "MH" (default), the Mantel-Haenszel method (Greenland & Robins, 1985; Robins et al., 1986) is used to calculate the fixed effect estimate; if method is "Inverse", inverse variance weighting is used for pooling (Fleiss, 1993); if method is "Peto", the Peto method is used for pooling (Yussuf et al., 1985); if method is "SSW", the sample size method is used for pooling (Bakbergenuly et al., 2020).

While the Mantel-Haenszel and Peto method are defined under the fixed effect model, random effects variants based on these methods are also implemented in metabin. Following RevMan 5, the Mantel-Haenszel estimator is used in the calculation of the between-study heterogeneity statistic Q which is used in the DerSimonian-Laird estimator. Accordingly, the results for the random effects meta-analysis using the Mantel-Haenszel or inverse variance method are typically very similar. For the Peto method, Peto’s log odds ratio, i.e. \((O-E) / V\) and its standard error \(\sqrt{1 / V}\) with \(O-E\) and \(V\) denoting "Observed minus Expected" and its variance, are utilised in the random effects model. Accordingly, results of a random effects model using sm = "Peto" can be different to results from a random effects model using sm = "MH" or sm = "Inverse".

A distinctive and frequently overlooked advantage of binary endpoints is that individual patient data (IPD) can be extracted from a two-by-two table. Accordingly, statistical methods for IPD, i.e., logistic regression and generalised linear mixed models, can be utilised in a meta-analysis of binary outcomes (Stijnen et al., 2010; Simmonds et al., 2016). These methods are available (argument method = "GLMM") for the odds ratio as summary measure by calling the rma.glmm function from R package metafor internally.

Four different GLMMs are available for meta-analysis with binary outcomes using argument model.glmm (which corresponds to argument model in the rma.glmm function):

1. Logistic regression model with fixed study effects (default) (model.glmm = "UM.FS", i.e., Unconditional Model - Fixed Study effects)
2. Mixed-effects logistic regression model with random study effects (model.glmm = "UM.RS", i.e., Unconditional Model - Random Study effects)
3. Generalised linear mixed model (conditional Hypergeometric-Normal) (model.glmm = "CM.EL", i.e., Conditional Model - Exact Likelihood)
4. Generalised linear mixed model (conditional Binomial-Normal) (model.glmm = "CM.AL", i.e., Conditional Model - Approximate Likelihood)

Details on these four GLMMs as well as additional arguments which can be provided using argument ‘...’ in metabin are described in rma.glmm where you can also find information on
the iterative algorithms used for estimation. Note, regardless of which value is used for argument `model.glm`, results for two different GLMMs are calculated: fixed effect model (with fixed treatment effect) and random effects model (with random treatment effects).

Continuity correction:
For studies with a zero cell count, by default, 0.5 is added to all cell frequencies of these studies; if `incr` is "TACC" a treatment arm continuity correction is used instead (Sweeting et al., 2004; Diamond et al., 2007). For odds ratio and risk ratio, treatment estimates and standard errors are only calculated for studies with zero or all events in both groups if `allstudies` is TRUE. This continuity correction is used both to calculate individual study results with confidence limits and to conduct meta-analysis based on the inverse variance method. For Peto method and GLMMs no continuity correction is used. For the Mantel-Haenszel method, by default (if `MH.exact` is FALSE), `incr` is added to all cell frequencies of a study with a zero cell count in the calculation of the pooled risk ratio or odds ratio as well as the estimation of the variance of the pooled risk difference, risk ratio or odds ratio. This approach is also used in other software, e.g., RevMan 5 and the Stata procedure metan. According to Fleiss (in Cooper & Hedges, 1994), there is no need to add 0.5 to a cell frequency of zero to calculate the Mantel-Haenszel estimate and he advocates the exact method (`MH.exact` = TRUE). Note, estimates based on exact Mantel-Haenszel method or GLMM are not defined if the number of events is zero in all studies either in the experimental or control group.

Estimation of between-study variance:
The following methods to estimate the between-study variance τ^2 are available for the inverse variance method:

- DerSimonian-Laird estimator (`method.tau = "DL"`)
- Paule-Mandel estimator (`method.tau = "PM"`)
- Restricted maximum-likelihood estimator (`method.tau = "REML"`)
- Maximum-likelihood estimator (`method.tau = "ML"`)
- Hunter-Schmidt estimator (`method.tau = "HS"`)
- Sidik-Jonkman estimator (`method.tau = "SJ"`)
- Hedges estimator (`method.tau = "HE"`)
- Empirical Bayes estimator (`method.tau = "EB"`)

See `metagen` for more information on these estimators. Note, the maximum-likelihood method is utilized for GLMMs.

Confidence interval for the between-study variance:
The following methods to calculate a confidence interval for τ^2 and τ are available.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>method.tau.ci = "J"</code></td>
<td>Method by Jackson</td>
</tr>
<tr>
<td><code>method.tau.ci = "BJ"</code></td>
<td>Method by Biggerstaff and Jackson</td>
</tr>
<tr>
<td><code>method.tau.ci = "QP"</code></td>
<td>Q-Profile method</td>
</tr>
</tbody>
</table>

See `metagen` for more information on these methods. For GLMMs, no confidence intervals for τ^2 and τ are calculated. Likewise, no confidence intervals for τ^2 and τ are calculated if `method.tau.ci = ""`.
Hartung-Knapp method:
Hartung and Knapp (2001a,b) proposed an alternative method for random effects meta-analysis based on a refined variance estimator for the treatment estimate. Simulation studies (Hartung and Knapp, 2001a,b; IntHout et al., 2014; Langan et al., 2019) show improved coverage probabilities compared to the classic random effects method.

In rare settings with very homogeneous treatment estimates, the Hartung-Knapp variance estimate can be arbitrarily small resulting in a very narrow confidence interval (Knapp and Hartung, 2003; Wiksten et al., 2016). In such cases, an ad hoc variance correction has been proposed by utilising the variance estimate from the classic random effects model with the HK method (Knapp and Hartung, 2003; IQWiQ, 2020). An alternative approach is to use the wider confidence interval of classic fixed or random effects meta-analysis and the HK method (Wiksten et al., 2016; Jackson et al., 2017).

Argument adhoc.hakn can be used to choose the ad hoc method:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Ad hoc method</th>
</tr>
</thead>
<tbody>
<tr>
<td>adhoc.hakn = ""</td>
<td>not used</td>
</tr>
<tr>
<td>adhoc.hakn = "se"</td>
<td>use variance correction if HK standard error is smaller than standard error from classic random effects meta-analysis (Knapp and Hartung, 2003)</td>
</tr>
<tr>
<td>adhoc.hakn = "iqwig6"</td>
<td>use variance correction if HK confidence interval is narrower than CI from classic random effects model with DerSimonian-Laird estimator (IQWiG, 2020)</td>
</tr>
<tr>
<td>adhoc.hakn = "ci"</td>
<td>use wider confidence interval of classic random effects and HK meta-analysis (Hybrid method 2 in Jackson et al., 2017)</td>
</tr>
</tbody>
</table>

For GLMMs, a method similar to Knapp and Hartung (2003) is implemented, see description of argument tdist in rma.glmm, and the ad hoc variance correction is not available.

Prediction interval:
A prediction interval for the proportion in a new study (Higgins et al., 2009) is calculated if arguments prediction and random are TRUE. Note, the definition of prediction intervals varies in the literature. This function implements equation (12) of Higgins et al., (2009) which proposed a t distribution with K-2 degrees of freedom where K corresponds to the number of studies in the meta-analysis.

Subgroup analysis:
Argument subgroup can be used to conduct subgroup analysis for a categorical covariate. The metareg function can be used instead for more than one categorical covariate or continuous covariates.

Exclusion of studies from meta-analysis:
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples in metagen). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both fixed effect and random effects models are calculated regardless of values chosen for arguments fixed and random. Accordingly, the estimate for the random effects model can be extracted from component TE.random of an object of class "meta" even if argument random = FALSE. However, all functions in R package meta will adequately consider the values for fixed and random. E.g. function print.meta will not print results for the random effects model if random = FALSE.

Value

An object of class c("metabin","meta") with corresponding print, summary, and forest functions. The object is a list containing the following components:

- event.e, n.e, event.c, n.c, studlab, exclude
 - As defined above.
- sm, method, incr, allincr, addincr
 - As defined above.
- allstudies, MH.exact, RR.Cochrane, Q.Cochrane, model.glmm
 - As defined above.
- warn, level, level.ma, fixed, random
 - As defined above.
- overall, overall.hetstat
 - As defined above.
- hakn, adhoc.hakn, method.tau, method.tau.ci
 - As defined above.
- tau.preset, TE.tau, method.bias
 - As defined above.
- tau.common, title, complab, outclab
 - As defined above.
- label.e, label.c, label.left, label.right
 - As defined above.
- subgroup, subgroup.name
 - As defined above.
- print.subgroup.name, sep.subgroup, warn
 - As defined above.
- TE, seTE
 - Estimated treatment effect and standard error of individual studies.
- lower, upper
 - Lower and upper confidence interval limits for individual studies.
- zval, pval
 - z-value and p-value for test of treatment effect for individual studies.
- w.fixed, w.random
 - Weight of individual studies (in fixed and random effects model).
- TE.fixed, seTE.fixed
 - Estimated overall treatment effect, e.g., log risk ratio or risk difference, and standard error (fixed effect model).
- lower.fixed, upper.fixed
 - Lower and upper confidence interval limits (fixed effect model).
- statistic.fixed, pval.fixed
 - z-value and p-value for test of overall treatment effect (fixed effect model).
TE.random, seTE.random
 Estimated overall treatment effect, e.g., log risk ratio or risk difference, and
 standard error (random effects model).
lower.random, upper.random
 Lower and upper confidence interval limits (random effects model).
statistic.random, pval.random
 z-value or t-value and corresponding p-value for test of overall treatment effect
 (random effects model).
prediction, level.predict
 As defined above.
seTE.predict
 Standard error utilised for prediction interval.
lower.predict, upper.predict
 Lower and upper limits of prediction interval.
k
 Number of studies combined in meta-analysis.
Q
 Heterogeneity statistic Q.
df.Q
 Degrees of freedom for heterogeneity statistic.
pval.Q
 P-value of heterogeneity test.
Q.LRT
 Heterogeneity statistic for likelihood-ratio test (only if method = "GLMM").
df.Q.LRT
 Degrees of freedom for likelihood-ratio test.
pval.Q.LRT
 P-value of likelihood-ratio test.
tau2
 Between-study variance \(\tau^2 \).
se.tau2
 Standard error of \(\tau^2 \).
lower.tau2, upper.tau2
 Lower and upper limit of confidence interval for \(\tau^2 \).
tau
 Square-root of between-study variance \(\tau \).
lower.tau, upper.tau
 Lower and upper limit of confidence interval for \(\tau \).
H
 Heterogeneity statistic H.
lower.H, upper.H
 Lower and upper confidence limit for heterogeneity statistic H.
I2
 Heterogeneity statistic I^2.
lower.I2, upper.I2
 Lower and upper confidence limit for heterogeneity statistic I^2.
Rb
 Heterogeneity statistic R_b.
lower.Rb, upper.Rb
 Lower and upper confidence limit for heterogeneity statistic R_b.
Q.CMH
 Cochran-Mantel-Haenszel test statistic for overall effect.
df.Q.CMH
 Degrees of freedom for Cochran-Mantel-Haenszel test statistic.
pval.Q.CMH
 P-value of Cochran-Mantel-Haenszel test.
incr.e, incr.c
 Increment added to cells in the experimental and control group, respectively.
sparse
 Logical flag indicating if any study included in meta-analysis has any zero cell
 frequencies.
doublezeros

Logical flag indicating if any study has zero cell frequencies in both treatment groups.

df.hakn

Degrees of freedom for test of treatment effect for Hartung-Knapp method (only if hakn = TRUE).

k.MH

Number of studies combined in meta-analysis using Mantel-Haenszel method.

bylevs

Levels of grouping variable - if subgroup is not missing.

TE.fixed.w, seTE.fixed.w

Estimated treatment effect and standard error in subgroups (fixed effect model) - if subgroup is not missing.

lower.fixed.w, upper.fixed.w

Lower and upper confidence interval limits in subgroups (fixed effect model) - if subgroup is not missing.

statistic.fixed.w, pval.fixed.w

z-value and p-value for test of treatment effect in subgroups (fixed effect model) - if subgroup is not missing.

TE.random.w, seTE.random.w

Estimated treatment effect and standard error in subgroups (random effects model) - if subgroup is not missing.

lower.random.w, upper.random.w

Lower and upper confidence interval limits in subgroups (random effects model) - if subgroup is not missing.

statistic.random.w, pval.random.w

z-value or t-value and corresponding p-value for test of treatment effect in subgroups (random effects model) - if subgroup is not missing.

w.fixed.w, w.random.w

Weight of subgroups (in fixed and random effects model) - if subgroup is not missing.

df.hakn.w

Degrees of freedom for test of treatment effect for Hartung-Knapp method in subgroups - if subgroup is not missing and hakn = TRUE.

event.e.w

Number of events in experimental group in subgroups - if subgroup is not missing.

n.e.w

Number of observations in experimental group in subgroups - if subgroup is not missing.

event.c.w

Number of events in control group in subgroups - if subgroup is not missing.

n.c.w

Number of observations in control group in subgroups - if subgroup is not missing.

k.w

Number of studies combined within subgroups - if subgroup is not missing.

k.all.w

Number of all studies in subgroups - if subgroup is not missing.

Q.w.fixed

Overall within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

Q.w.random

Overall within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing (only calculated if argument tau.common is TRUE).
df.Q.w Degrees of freedom for test of overall within subgroups heterogeneity - if subgroup is not missing.

pval.Q.w.fixed P-value of within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

pval.Q.w.random P-value of within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

Q.b.fixed Overall between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

Q.b.random Overall between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

df.Q.b Degrees of freedom for test of overall between subgroups heterogeneity - if subgroup is not missing.

pval.Q.b.fixed P-value of between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

pval.Q.b.random P-value of between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

tau.w Square-root of between-study variance within subgroups - if subgroup is not missing.

H.w Heterogeneity statistic H within subgroups - if subgroup is not missing.

lower.H.w, upper.H.w Lower and upper confidence limit for heterogeneity statistic H within subgroups - if subgroup is not missing.

I2.w Heterogeneity statistic I^2 within subgroups - if subgroup is not missing.

lower.I2.w, upper.I2.w Lower and upper confidence limit for heterogeneity statistic I^2 within subgroups - if subgroup is not missing.

keepdata As defined above.

data Original data (set) used in function call (if keepdata = TRUE).

subset Information on subset of original data used in meta-analysis (if keepdata = TRUE).

.glmm.fixed GLMM object generated by call of rma.glmm function (fixed effect model).

.glmm.random GLMM object generated by call of rma.glmm function (random effects model).

call Function call.

version Version of R package meta used to create object.

version.metafor Version of R package metafor used for GLMMs.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>
References

Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration, 2020

StataCorp. 2011. *Stata Statistical Software: Release 12*. College Station, TX: StataCorp LP.

See Also

update.meta, forest, funnel, metabias, metacont, metagen, metareg, print.meta

Examples

Calculate odds ratio and confidence interval for a single study
#
metabin(10, 20, 15, 20, sm = "OR")

Different results (due to handling of studies with double zeros)
#
metabin(0, 10, 0, 10, sm = "OR")
metabin(0, 10, 0, 10, sm = "OR", allstudies = TRUE)

Use subset of Olkin (1995) to conduct meta-analysis based on
inverse variance method (with risk ratio as summary measure)
#
data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, subset = c(41, 47, 51, 59), method = "Inverse")
m1
Show results for individual studies
summary(m1)

Use different subset of Olkin (1995)
#
m2 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, subset = year < 1970, studlab = author,
method = "Inverse")
m2
forest(m2)

Meta-analysis with odds ratio as summary measure
#
m3 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, subset = year < 1970,
sm = "OR", method = "Inverse", studlab = author)
Same meta-analysis result using 'update.meta' function
m3 <- update(m2, sm = "OR")
m3

Meta-analysis based on Mantel-Haenszel method (with odds ratio as
summary measure)
#
m4 <- update(m3, method = "MH")
m4
Meta-analysis based on Peto method (only available for odds ratio as summary measure)
#
m5 <- update(m3, method = "Peto")
m5

Not run:
Meta-analysis using generalised linear mixed models
(only if R package 'lme4' is available)
#
Logistic regression model with (k = 4) fixed study effects
(default: model.glmm = "UM.FS")
#
m6 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, subset = year < 1970, method = "GLMM")
Same results:
m6 <- update(m2, method = "GLMM")
m6

Mixed-effects logistic regression model with random study effects
(warning message printed due to argument 'nAGQ')
#
m7 <- update(m6, model.glmm = "UM.RS")
#
Use additional argument 'nAGQ' for internal call of 'rma.glmm' function
#
m7 <- update(m6, model.glmm = "UM.RS", nAGQ = 1)
m7

Generalised linear mixed model (conditional Hypergeometric-Normal)
(R package 'BiasedUrn' must be available)
#
m8 <- update(m6, model.glmm = "CM.EL")
m8

Generalised linear mixed model (conditional Binomial-Normal)
#
m9 <- update(m6, model.glmm = "CM.AL")
m9

Logistic regression model with (k = 70) fixed study effects
(about 18 seconds with Intel Core i7-3667U, 2.0GHz)
#
m10 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, method = "GLMM")
m10

Mixed-effects logistic regression model with random study effects
- about 50 seconds with Intel Core i7-3667U, 2.0GHz
- several warning messages, e.g. "failure to converge, ..."
Conditional Hypergeometric-Normal GLMM
- long computation time (about 12 minutes with Intel Core i7-3667U, 2.0GHz)
- estimation problems for this very large dataset:
* warning that Choleski factorization of Hessian failed
* confidence interval for treatment effect smaller in random effects model compared to fixed effect model
system.time(m11 <- update(m10, model.glmm = "CM.EL"))

m11

Generalised linear mixed model (conditional Binomial-Normal)
(less than 1 second with Intel Core i7-3667U, 2.0GHz)
update(m10, model.glmm = "CM.AL")

End(Not run)

metabind

Combine and summarize meta-analysis objects

Description

This function can be used to combine meta-analysis objects and is, for example, useful to summarize results of various meta-analysis methods or to generate a forest plot with results of several subgroup analyses.

Usage

```r
metabind(..., name = NULL, pooled = NULL, backtransf = NULL, outclab = NULL)
```

Arguments

- `...` Any number of meta-analysis objects or a single list with meta-analyses.
- `name` An optional character vector providing descriptive names for the meta-analysis objects.
- `pooled` A character string or vector indicating whether results of a fixed effect or random effects model should be considered. Either "fixed" or "random", can be abbreviated.
- `backtransf` A logical indicating whether results should be back transformed in printouts and plots. If `backtransf=TRUE` (default), results for `sm="OR"` are printed as odds ratios rather than log odds ratios, for example.
- `outclab` Outcome label for all meta-analysis objects.
Details

This function can be used to combine any number of meta-analysis objects which is useful, for example, to summarize results of various meta-analysis methods or to generate a forest plot with results of several subgroup analyses (see Examples).

Individual study results are not retained with `metabind`. This is possible using R function `metamerger` which, however, can only be used to combine results of two meta-analyses.

Value

An object of class `c("metabind","meta")` with corresponding `print`, `summary`, and `forest` functions. See `metagen` for more information on list elements.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

`metagen`, `forest.metabind`, `metamerger`

Examples

data(fleiss1993cont)

Add some (fictitious) grouping variables:
#
fleiss1993cont$age <- c(55, 65, 55, 65, 55)
fleiss1993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")

m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = fleiss1993cont, sm = "MD")

Conduct two subgroup analyses
#
mu1 <- update(m1, subgroup = age, subgroup.name = "Age group")
mu2 <- update(m1, subgroup = region, subgroup.name = "Region")

Combine subgroup meta-analyses and show forest plot with subgroup
results
#
m1 <- metabind(mu1, mu2)
m1
forest(m1)

Use various estimation methods for between-study heterogeneity
variance
#
m1.pm <- update(m1, method.tau = "PM")
m1.dl <- update(m1, method.tau = "DL")
m1.ml <- update(m1, method.tau = "ML")
m1.hs <- update(m1, method.tau = "HS")
```r
m1.sj <- update(m1, method.tau = "SJ")
m1.he <- update(m1, method.tau = "HE")
m1.eb <- update(m1, method.tau = "EB")

# Combine meta-analyses and show results

#
taus <- c("Restricted maximum-likelihood estimator",
"Paule-Mandel estimator",
"DerSimonian-Laird estimator",
"Hunter-Schmidt estimator",
"Sidik-Jonkman estimator",
"Hedges estimator",
"Empirical Bayes estimator")

#
m1.taus <- metabind(m1, m1.pm, m1.dl, m1.ml, m1.hs, m1.sj, m1.he, m1.eb,
        name = taus, pooled = "random")
m1.taus
forest(m1.taus, print.I2 = FALSE, print.pval.Q = FALSE)
```

metacont

Meta-analysis of continuous outcome data

Description

Calculation of fixed and random effects estimates for meta-analyses with continuous outcome data; inverse variance weighting is used for pooling.

Usage

```r
metacont(
  n.e,
  mean.e,
  sd.e,
  n.c,
  mean.c,
  sd.c,
  studlab,
  data = NULL,
  subset = NULL,
  exclude = NULL,
  id = NULL,
  median.e,
  q1.e,
  q3.e,
  min.e,
  max.e,
  median.c,
```
q1.c,
q3.c,
min.c,
max.c,
method.mean = "Luo",
method.sd = "Shi",
approx.mean.e,
approx.mean.c = approx.mean.e,
approx.sd.e,
approx.sd.c = approx.sd.e,
sm = gs("smcont"),
pooledvar = gs("pooledvar"),
method.smd = gs("method.smd"),
sd.glass = gs("sd.glass"),
exact.smd = gs("exact.smd"),
method.ci = gs("method.ci.cont"),
level = gs("level"),
level.ma = gs("level.ma"),
fixed = gs("fixed"),
random = gs("random") | !is.null(tau.preset),
overall = fixed | random,
overall.hetstat = fixed | random,
hakn = gs("hakn"),
adhoc.hakn = gs("adhoc.hakn"),
method.tau = gs("method.tau"),
method.tau.ci = gs("method.tau.ci"),
tau.preset = NULL,
TE.tau = NULL,
tau.common = gs("tau.common"),
prediction = gs("prediction"),
level.predict = gs("level.predict"),
method.bias = gs("method.bias"),
backtransf = gs("backtransf"),
text.fixed = gs("text.fixed"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.fixed = gs("text.w.fixed"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
label.e = gs("label.e"),
label.c = gs("label.c"),
label.left = gs("label.left"),
label.right = gs("label.right"),
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
keepdata = gs("keepdata"),
warn = gs("warn"),
warn.deprecated = gs("warn.deprecated"),
control = NULL,
...)

Arguments

n.e Number of observations in experimental group.
mean.e Estimated mean in experimental group.
sd.e Standard deviation in experimental group.
n.c Number of observations in control group.
mean.c Estimated mean in control group.
sd.c Standard deviation in control group.
studlab An optional vector with study labels.
data An optional data frame containing the study information.
subset An optional vector specifying a subset of studies to be used.
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
id An optional vector specifying which estimates come from the same study resulting in the use of a three-level meta-analysis model.
median.e Median in experimental group (used to estimate the mean and standard deviation).
q1.e First quartile in experimental group (used to estimate the mean and standard deviation).
q3.e Third quartile in experimental group (used to estimate the mean and standard deviation).
min.e Minimum in experimental group (used to estimate the mean and standard deviation).
max.e Maximum in experimental group (used to estimate the mean and standard deviation).
median.c Median in control group (used to estimate the mean and standard deviation).
q1.c First quartile in control group (used to estimate the mean and standard deviation).
q3.c Third quartile in control group (used to estimate the mean and standard deviation).
min.c Minimum in control group (used to estimate the mean and standard deviation).
max.c Maximum in control group (used to estimate the mean and standard deviation).
method.mean A character string indicating which method to use to approximate the mean from the median and other statistics (see Details).

method.sd A character string indicating which method to use to approximate the standard deviation from sample size, median, interquartile range and range (see Details).

approx.mean.e Approximation method to estimate means in experimental group (see Details).

approx.mean.c Approximation method to estimate means in control group (see Details).

approx.sd.e Approximation method to estimate standard deviations in experimental group (see Details).

approx.sd.c Approximation method to estimate standard deviations in control group (see Details).

sm A character string indicating which summary measure ("MD", "SMD", or "ROM") is to be used for pooling of studies.

pooledvar A logical indicating if a pooled variance should be used for the mean difference (sm="MD").

method.smd A character string indicating which method is used to estimate the standardised mean difference (sm="SMD"). Either "Hedges" for Hedges’ g (default), "Cohen" for Cohen’s d, or "Glass" for Glass’ delta, can be abbreviated.

sd.glass A character string indicating which standard deviation is used in the denominator for Glass’ method to estimate the standardised mean difference. Either "control" using the standard deviation in the control group (sd.c) or "experimental" using the standard deviation in the experimental group (sd.e), can be abbreviated.

exact.smd A logical indicating whether exact formulae should be used in estimation of the standardised mean difference and its standard error (see Details).

method.ci A character string indicating which method is used to calculate confidence intervals for individual studies, see Details.

level The level used to calculate confidence intervals for individual studies.

level.ma The level used to calculate confidence intervals for meta-analysis estimates.

fixed A logical indicating whether a fixed effect / common effect meta-analysis should be conducted.

random A logical indicating whether a random effects meta-analysis should be conducted.

overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

hakn A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.

adhoc.hakn A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate, see Details.
method.tau A character string indicating which method is used to estimate the between-
study variance τ^2 and its square root τ. Either "DL", "PM", "REML", "ML", "HS", "SJ", "HE", or "EB", can be abbreviated.

method.tau.ci A character string indicating which method is used to estimate the confidence
interval of τ^2 and τ. Either "QP", "BJ", or "J", or ",", can be abbreviated.

tau.preset Prespecified value for the square root of the between-study variance τ^2.

TE.tau Overall treatment effect used to estimate the between-study variance tau-squared.

tau.common A logical indicating whether tau-squared should be the same across subgroups.
prediction A logical indicating whether a prediction interval should be printed.

level.predict The level used to calculate prediction interval for a new study.

method.bias A character string indicating which test is to be used. Either "Begg", "Egger",
"Thompson", or "Pustejovsky", can be abbreviated. See function metabias.

backtransf A logical indicating whether results for ratio of means (sm="ROM") should be
back transformed in printouts and plots. If TRUE (default), results will be pre-
sented as ratio of means; otherwise log ratio of means will be shown.

text.fixed A character string used in printouts and forest plot to label the pooled fixed effect
estimate.

text.random A character string used in printouts and forest plot to label the pooled random
effects estimate.

text.predict A character string used in printouts and forest plot to label the prediction inter-
val.

text.w.fixed A character string used to label weights of fixed effect model.

text.w.random A character string used to label weights of random effects model.

title Title of meta-analysis / systematic review.

complab Comparison label.

outclab Outcome label.

label.e Label for experimental group.

label.c Label for control group.

label.left Graph label on left side of forest plot.

label.right Graph label on right side of forest plot.

subgroup An optional vector to conduct a meta-analysis with subgroups.

subgroup.name A character string with a name for the subgroup variable.

print.subgroup.name A logical indicating whether the name of the subgroup variable should be printed
in front of the group labels.

sep.subgroup A character string defining the separator between name of subgroup variable and
subgroup label.

test.subgroup A logical value indicating whether to print results of test for subgroup differ-
ences.

prediction.subgroup A logical indicating whether prediction intervals should be printed for sub-
groups.
byvar Deprecated argument (replaced by 'subgroup').
keepdata A logical indicating whether original data (set) should be kept in meta object.
warn A logical indicating whether warnings should be printed (e.g., if studies are excluded from meta-analysis due to zero standard deviations).
warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.
control An optional list to control the iterative process to estimate the between-study variance \(\tau^2 \). This argument is passed on to rma.uni.
... Additional arguments (to catch deprecated arguments).

Details
Calculation of fixed and random effects estimates for meta-analyses with continuous outcome data; inverse variance weighting is used for pooling.

Three different types of summary measures are available for continuous outcomes:

- mean difference (argument sm = "MD")
- standardised mean difference (sm = "SMD")
- ratio of means (sm = "ROM")

Default settings are utilised for several arguments (assignments using gs function). These defaults can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings.

Standardised mean difference:
For the standardised mean difference three methods are implemented:

- Hedges’ g (default, method.smd = "Hedges") - see Hedges (1981)
- Cohen’s d (method.smd = "Cohen") - see Cohen (1988)
- Glass’ delta (method.smd = "Glass") - see Glass (1976)

Hedges (1981) calculated the exact bias in Cohen’s d which is a ratio of gamma distributions with the degrees of freedom, i.e. total sample size minus two, as argument. By default (argument exact.smd = FALSE), an accurate approximation of this bias provided in Hedges (1981) is utilised for Hedges’ g as well as its standard error; these approximations are also used in RevMan 5. Following Borenstein et al. (2009) these approximations are not used in the estimation of Cohen’s d. White and Thomas (2005) argued that approximations are unnecessary with modern software and accordingly promote to use the exact formulae; this is possible using argument exact.smd = TRUE. For Hedges’ g the exact formulae are used to calculate the standardised mean difference as well as the standard error; for Cohen’s d the exact formula is only used to calculate the standard error. In typical applications (with sample sizes above 10), the differences between using the exact formulae and the approximation will be minimal.

For Glass’ delta, by default (argument sd.glass = "control"), the standard deviation in the control group (sd.c) is used in the denominator of the standard mean difference. The standard deviation in the experimental group (sd.e) can be used by specifying sd.glass = "experimental".
Ratio of means:
Meta-analysis of ratio of means – also called response ratios – is described in Hedges et al. (1999) and Friedrich et al. (2008). Calculations are conducted on the log scale and list elements TE, TE.fixed, and TE.random contain the logarithm of the ratio of means. In printouts and plots these values are back transformed if argument backtransf = TRUE.

Approximate means from sample sizes, medians and other statistics:
Missing means in the experimental group (analogously for the control group) can be derived from
1. sample size, median, interquartile range and range (arguments n.e, median.e, q1.e, q3.e, min.e, and max.e),
2. sample size, median and interquartile range (arguments n.e, median.e, q1.e, and q3.e), or
3. sample size, median and range (arguments n.e, median.e, min.e, and max.e).
By default, methods described in Luo et al. (2018) are utilized (argument method.mean = "Luo"):
• equation (15) if sample size, median, interquartile range and range are available,
• equation (11) if sample size, median and interquartile range are available,
• equation (7) if sample size, median and range are available.
Instead the methods described in Wan et al. (2014) are used if argument method.mean = "Wan"):
• equation (10) if sample size, median, interquartile range and range are available,
• equation (14) if sample size, median and interquartile range are available,
• equation (2) if sample size, median and range are available.
By default, missing means are replaced successively using interquartile ranges and ranges (if available), interquartile ranges (if available) and finally ranges. Arguments approx.mean.e and approx.mean.c can be used to overwrite this behaviour for each individual study and treatment arm:
• use means directly (entry "" in argument approx.mean.e or approx.mean.c);
• median, interquartile range and range ("iqr.range");
• median and interquartile range ("iqr");
• median and range ("range").

Approximate standard deviations from sample sizes, medians and other statistics:
Missing standard deviations in the experimental group (analogously for the control group) can be derived from
1. sample size, median, interquartile range and range (arguments n.e, median.e, q1.e, q3.e, min.e, and max.e),
2. sample size, median and interquartile range (arguments n.e, median.e, q1.e and q3.e), or
3. sample size, median and range (arguments n.e, median.e, min.e and max.e).
Wan et al. (2014) describe methods to estimate the standard deviation from the sample size, median and additional statistics. Shi et al. (2020) provide an improved estimate of the standard deviation if the interquartile range and range are available in addition to the sample size and median. Accordingly, equation (11) in Shi et al. (2020) is the default (argument method.sd = "Shi"), if the median, interquartile range and range are provided. The method by Wan et al. (2014) is used if argument method.sd = "Wan" and, depending on the sample size, either equation (12) or (13) is used. If only the interquartile range or range is available, equations (15) / (16) and (7) / (9) in Wan et al. (2014) are used, respectively.
By default, missing standard deviations are replaced successively using these methods, i.e., interquartile ranges and ranges are used before interquartile ranges before ranges. Arguments `approx.sd.e` and `approx.sd.c` can be used to overwrite this default for each individual study and treatment arms:

- sample size, median, interquartile range and range ("iqr.range");
- sample size, median and interquartile range ("iqr");
- sample size, median and range ("range").

Confidence intervals for individual studies:
For the mean difference (argument `sm = "MD"`), the confidence interval for individual studies can be based on the

- standard normal distribution (method.ci = "z", default), or
- t-distribution (method.ci = "t").

Note, this choice does not affect the results of the fixed effect and random effects meta-analysis.

Estimation of between-study variance:
The following methods to estimate the between-study variance τ^2 are available:

- DerSimonian-Laird estimator (method.tau = "DL")
- Paule-Mandel estimator (method.tau = "PM")
- Restricted maximum-likelihood estimator (method.tau = "REML")
- Maximum-likelihood estimator (method.tau = "ML")
- Hunter-Schmidt estimator (method.tau = "HS")
- Sidik-Jonkman estimator (method.tau = "SJ")
- Hedges estimator (method.tau = "HE")
- Empirical Bayes estimator (method.tau = "EB")

See `metagen` for more information on these estimators.

Confidence interval for the between-study variance:
The following methods to calculate a confidence interval for τ^2 and τ are available:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.tau.ci = "J"</td>
<td>Method by Jackson (2013)</td>
</tr>
<tr>
<td>method.tau.ci = "BJ"</td>
<td>Method by Biggerstaff and Jackson (2008)</td>
</tr>
<tr>
<td>method.tau.ci = "QP"</td>
<td>Q-Profile method (Viechtbauer, 2007)</td>
</tr>
<tr>
<td>method.tau.ci = "PL"</td>
<td>Profile-Likelihood method for three-level meta-analysis model (Van den Noortgate et al., 2013)</td>
</tr>
</tbody>
</table>

See `metagen` for more information on these methods. No confidence intervals for τ^2 and τ are calculated if method.tau.ci = "".

Hartung-Knapp method:
Hartung and Knapp (2001) proposed an alternative method for random effects meta-analysis based on a refined variance estimator for the treatment estimate. Simulation studies (Hartung and Knapp, 2001; IntHout et al., 2014; Langan et al., 2019) show improved coverage probabilities compared to the classic random effects method.
In rare settings with very homogeneous treatment estimates, the Hartung-Knapp variance estimate can be arbitrarily small resulting in a very narrow confidence interval (Knapp and Hartung, 2003; Wiksten et al., 2016). In such cases, an *ad hoc* variance correction has been proposed by utilising the variance estimate from the classic random effects model with the HK method (Knapp and Hartung, 2003; IQWiQ, 2020). An alternative approach is to use the wider confidence interval of classic fixed or random effects meta-analysis and the HK method (Wiksten et al., 2016; Jackson et al., 2017).

Argument `adhoc.hakn` can be used to choose the *ad hoc* method:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Ad hoc method</th>
</tr>
</thead>
<tbody>
<tr>
<td>adhoc.hakn = ""</td>
<td>not used</td>
</tr>
<tr>
<td>adhoc.hakn = "se"</td>
<td>use variance correction if HK standard error is smaller than standard error from classic random effects meta-analysis (Knapp and Hartung, 2003)</td>
</tr>
<tr>
<td>adhoc.hakn = "iqwig6"</td>
<td>use variance correction if HK confidence interval is narrower than CI from classic random effects model with DerSimonian-Laird estimator (IQWiG, 2020)</td>
</tr>
<tr>
<td>adhoc.hakn = "ci"</td>
<td>use wider confidence interval of classic random effects and HK meta-analysis (Hybrid method 2 in Jackson et al., 2017)</td>
</tr>
</tbody>
</table>

Prediction interval:

A prediction interval for the proportion in a new study (Higgins et al., 2009) is calculated if arguments `prediction` and `random` are `TRUE`. Note, the definition of prediction intervals varies in the literature. This function implements equation (12) of Higgins et al., (2009) which proposed a *t* distribution with *K*-2 degrees of freedom where *K* corresponds to the number of studies in the meta-analysis.

Subgroup analysis:

Argument `subgroup` can be used to conduct subgroup analysis for a categorical covariate. The `metareg` function can be used instead for more than one categorical covariate or continuous co-variates.

Exclusion of studies from meta-analysis:

Arguments `subset` and `exclude` can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument `subset`, while excluded studies are shown in printouts and forest plots using argument `exclude` (see Examples in `metagen`). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:

Internally, both fixed effect and random effects models are calculated regardless of values choosen for arguments `fixed` and `random`. Accordingly, the estimate for the random effects model can be extracted from component `TE.random` of an object of class "meta" even if argument `random` = `FALSE`. However, all functions in R package `meta` will adequately consider the values for `fixed` and `random`. E.g. function `print.meta` will not print results for the random effects model if `random` = `FALSE`.
Value

An object of class c("metacont","meta") with corresponding `print`, `summary`, and `forest` functions. The object is a list containing the following components:

- `n.e`, `mean.e`, `sd.e`,
 - As defined above.
- `n.c`, `mean.c`, `sd.c`,
 - As defined above.
- `studlab`, `exclude`, `sm`, `method.ci`,
 - As defined above.
- `median.e`, `q1.e`, `q3.e`, `min.e`, `max.e`,
 - As defined above.
- `median.c`, `q1.c`, `q3.c`, `min.c`, `max.c`,
 - As defined above.
- `method.mean`, `method.sd`,
 - As defined above.
- `approx.mean.e`, `approx.sd.e`, `approx.mean.c`, `approx.sd.c`,
 - As defined above.
- `level`, `level.ma`,
 - As defined above.
- `fixed`, `random`,
 - As defined above.
- `overall`, `overall.hetstat`,
 - As defined above.
- `pooledvar`, `method.smd`, `sd.glass`,
 - As defined above.
- `hakn`, `adhoc.hakn`, `method.tau`, `method.tau.ci`,
 - As defined above.
- `tau.preset`, `TE.tau`, `method.bias`,
 - As defined above.
- `tau.common`, `title`, `complab`, `outclab`,
 - As defined above.
- `label.e`, `label.c`, `label.left`, `label.right`,
 - As defined above.
- `subgroup`, `subgroup.name`,
 - As defined above.
- `print.subgroup.name`, `sep.subgroup`, `warn`,
 - As defined above.
- `TE`, `seTE` Estimated treatment effect and standard error of individual studies.
- `lower`, `upper` Lower and upper confidence interval limits for individual studies.
- `statistic`, `pval` Statistic and p-value for test of treatment effect for individual studies.
- `w.fixed`, `w.random` Weight of individual studies (in fixed and random effects model).
- `TE.fixed`, `seTE.fixed` Estimated overall treatment effect and standard error (fixed effect model).
lower.fixed, upper.fixed
 Lower and upper confidence interval limits (fixed effect model).
statistic.fixed, pval.fixed
 Statistic and p-value for test of overall treatment effect (fixed effect model).
TE.random, seTE.random
 Estimated overall treatment effect and standard error (random effects model).
lower.random, upper.random
 Lower and upper confidence interval limits (random effects model).
statistic.random, pval.random
 Statistic and p-value for test of overall treatment effect (random effects model).
prediction, level.predict
 As defined above.
seTE.predict
 Standard error utilised for prediction interval.
lower.predict, upper.predict
 Lower and upper limits of prediction interval.
k
 Number of studies combined in meta-analysis.
Q
 Heterogeneity statistic Q.
df.Q
 Degrees of freedom for heterogeneity statistic.
pval.Q
 P-value of heterogeneity test.
tau2
 Between-study variance \(\tau^2 \).
se.tau2
 Standard error of \(\tau^2 \).
lower.tau2, upper.tau2
 Lower and upper limit of confidence interval for \(\tau^2 \).
tau
 Square-root of between-study variance \(\tau \).
lower.tau, upper.tau
 Lower and upper limit of confidence interval for \(\tau \).
H
 Heterogeneity statistic H.
lower.H, upper.H
 Lower and upper confidence limit for heterogeneity statistic H.
I2
 Heterogeneity statistic \(I^2 \).
lower.I2, upper.I2
 Lower and upper confidence limit for heterogeneity statistic \(I^2 \).
Rb
 Heterogeneity statistic \(R_b \).
lower.Rb, upper.Rb
 Lower and upper confidence limit for heterogeneity statistic \(R_b \).
df.hakn
 Degrees of freedom for test of treatment effect for Hartung-Knapp method (only if hakn = TRUE).
method
 Pooling method: "Inverse".
bylevs
 Levels of grouping variable - if subgroup is not missing.
TE.fixed.w, seTE.fixed.w
 Estimated treatment effect and standard error in subgroups (fixed effect model) - if subgroup is not missing.
lower.fixed.w, upper.fixed.w
Lower and upper confidence interval limits in subgroups (fixed effect model) - if subgroup is not missing.

statistic.fixed.w, pval.fixed.w
Statistics and p-values for test of treatment effect in subgroups (fixed effect model) - if subgroup is not missing.

TE.random.w, seTE.random.w
Estimated treatment effect and standard error in subgroups (random effects model) - if subgroup is not missing.

lower.random.w, upper.random.w
Lower and upper confidence interval limits in subgroups (random effects model) - if subgroup is not missing.

statistic.random.w, pval.random.w
Statistics and p-values for test of treatment effect in subgroups (random effects model) - if subgroup is not missing.

w.fixed.w, w.random.w
Weight of subgroups (in fixed and random effects model) - if subgroup is not missing.

df.hakn.w
Degrees of freedom for test of treatment effect for Hartung-Knapp method in subgroups - if subgroup is not missing and hakn = TRUE.

n.e.w
Number of observations in experimental group in subgroups - if subgroup is not missing.

n.c.w
Number of observations in control group in subgroups - if subgroup is not missing.

k.w
Number of studies combined within subgroups - if subgroup is not missing.

k.all.w
Number of all studies in subgroups - if subgroup is not missing.

Q.w.fixed
Overall within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

Q.w.random
Overall within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing (only calculated if argument tau.common is TRUE).

df.Q.w
Degrees of freedom for test of overall within subgroups heterogeneity - if subgroup is not missing.

pval.Q.w.fixed
P-value of within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

pval.Q.w.random
P-value of within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

Q.b.fixed
Overall between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

Q.b.random
Overall between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

df.Q.b
Degrees of freedom for test of overall between subgroups heterogeneity - if subgroup is not missing.
pval.Q.b.fixed P-value of between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.
pval.Q.b.random P-value of between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.
tau.w Square-root of between-study variance within subgroups - if subgroup is not missing.
H.w Heterogeneity statistic H within subgroups - if subgroup is not missing.
lower.H.w, upper.H.w Lower and upper confidence limit for heterogeneity statistic H within subgroups - if subgroup is not missing.
I2.w Heterogeneity statistic I² within subgroups - if subgroup is not missing.
lower.I2.w, upper.I2.w Lower and upper confidence limit for heterogeneity statistic I² within subgroups - if subgroup is not missing.
keepdata As defined above.
data Original data (set) used in function call (if keepdata = TRUE).
subset Information on subset of original data used in meta-analysis (if keepdata = TRUE).
call Function call.
version Version of R package metagen used to create object.

Note

The function metagen is called internally to calculate individual and overall treatment estimates and standard errors.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Friedrich JO, Adhikari NK, Beyene J (2008): The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: A simulation study. BMC Medical Research Methodology, 8, 32

Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration, 2020

White IR, Thomas J (2005): Standardized mean differences in individually-randomized and cluster-randomized trials, with applications to meta-analysis. *Clinical Trials*, 2, 141–51

See Also

`update.meta, metabin, metagen`
Examples

data(fleiss1993cont)

Meta-analysis with Hedges' g as effect measure
#
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 data = Fleiss1993cont, sm = "SMD")
m1
forest(m1)

Use Cohen's d instead of Hedges' g as effect measure
#
update(m1, method.smd = "Cohen")

Use Glass' delta instead of Hedges' g as effect measure
#
update(m1, method.smd = "Glass")

Use Glass' delta based on the standard deviation in the experimental group
#
update(m1, method.smd = "Glass", sd.glass = "experimental")

Calculate Hedges' g based on exact formulae
#
update(m1, exact.smd = TRUE)

data(amlodipine)
m2 <- metacont(n.amlo, mean.amlo, sqrt(var.amlo), n.plac, mean.plac, sqrt(var.plac),
 data = amlodipine, studlab = study)
m2

Use pooled variance
#
update(m2, pooledvar = TRUE)

Meta-analysis of response ratios (Hedges et al., 1999)
#
data(woodyplants)
m3 <- metacont(n.elev, mean.elev, sd.elev, n.amb, mean.amb, sd.amb,
 data = woodyplants, sm = "ROM")
m3
print(m3, backtransf = FALSE)

metacor

Meta-analysis of correlations

Description

Calculation of fixed effect / common effect and random effects estimates for meta-analyses with correlations; inverse variance weighting is used for pooling.
Usage

metacor(
 cor,
 n,
 studlab,
 data = NULL,
 subset = NULL,
 exclude = NULL,
 sm = gs("smcor"),
 level = gs("level"),
 level.ma = gs("level.ma"),
 fixed = gs("fixed"),
 random = gs("random") | !is.null(tau.preset),
 overall = fixed | random,
 overall.hetstat = fixed | random,
 hakn = gs("hakn"),
 adhoc.hakn = gs("adhoc.hakn"),
 method.tau = gs("method.tau"),
 method.tau.ci = gs("method.tau.ci"),
 tau.preset = NULL,
 TE.tau = NULL,
 tau.common = gs("tau.common"),
 prediction = gs("prediction"),
 level.predict = gs("level.predict"),
 null.effect = 0,
 method.bias = gs("method.bias"),
 backtransf = gs("backtransf"),
 text.fixed = gs("text.fixed"),
 text.random = gs("text.random"),
 text.predict = gs("text.predict"),
 text.w.fixed = gs("text.w.fixed"),
 text.w.random = gs("text.w.random"),
 title = gs("title"),
 complab = gs("complab"),
 outclab = "",
 subgroup,
 subgroup.name = NULL,
 print.subgroup.name = gs("print.subgroup.name"),
 sep.subgroup = gs("sep.subgroup"),
 test.subgroup = gs("test.subgroup"),
 prediction.subgroup = gs("prediction.subgroup"),
 byvar,
 keepdata = gs("keepdata"),
 warn.deprecated = gs("warn.deprecated"),
 control = NULL,
 ...
)
Arguments

cor Correlation.

n Number of observations.

studlab An optional vector with study labels.
data An optional data frame containing the study information, i.e., cor and n.
subset An optional vector specifying a subset of studies to be used.
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
sm A character string indicating which summary measure (“ZCOR” or ”COR”) is to be used for pooling of studies.

level The level used to calculate confidence intervals for individual studies.
level.ma The level used to calculate confidence intervals for meta-analysis estimates.
fixed A logical indicating whether a fixed effect / common effect meta-analysis should be conducted.
random A logical indicating whether a random effects meta-analysis should be conducted.
overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.
overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

hakn A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.
adhoc.hakn A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate, see Details.

method.tau A character string indicating which method is used to estimate the between-study variance \(\tau^2 \) and its square root \(\tau \). Either ”DL”, ”PM”, ”REML”, ”ML”, ”HS”, ”SJ”, ”HE”, or ”EB”, can be abbreviated.

method.tau.ci A character string indicating which method is used to estimate the confidence interval of \(\tau^2 \) and \(\tau \). Either ”QP”, ”BJ”, or ”J”, or ””, can be abbreviated.

tau.preset Prespecified value for the square root of the between-study variance \(\tau^2 \).

TE.tau Overall effect used to estimate the between-study variance tau-squared.

tau.common A logical indicating whether tau-squared should be the same across subgroups.
prediction A logical indicating whether a prediction interval should be printed.

level.predict The level used to calculate prediction interval for a new study.

null.effect A numeric value specifying the effect under the null hypothesis.

method.bias A character string indicating which test is to be used. Either ”Begg”, ”Egger”, or ”Thompson”, can be abbreviated. See function metabias.
backtransf A logical indicating whether results for Fisher’s z transformed correlations (sm = "ZCOR") should be back transformed in printouts and plots. If TRUE (default), results will be presented as correlations; otherwise Fisher’s z transformed correlations will be shown.

text.fixed A character string used in printouts and forest plot to label the pooled fixed effect estimate.

text.random A character string used in printouts and forest plot to label the pooled random effects estimate.

text.predict A character string used in printouts and forest plot to label the prediction interval.

text.w.fixed A character string used to label weights of fixed effect model.

text.w.random A character string used to label weights of random effects model.

title Title of meta-analysis / systematic review.

complab Comparison label.

cutlab Outcome label.

subgroup An optional vector to conduct a meta-analysis with subgroups.

subgroup.name A character string with a name for the subgroup variable.

print.subgroup.name A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.

sep.subgroup A character string defining the separator between name of subgroup variable and subgroup label.

test.subgroup A logical value indicating whether to print results of test for subgroup differences.

prediction.subgroup A logical indicating whether prediction intervals should be printed for subgroups.

byvar Deprecated argument (replaced by 'subgroup').

keepdata A logical indicating whether original data (set) should be kept in meta object.

warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.

control An optional list to control the iterative process to estimate the between-study variance τ^2. This argument is passed on to rma.uni.

... Additional arguments (to catch deprecated arguments).

Details

Fixed effect and random effects meta-analysis of correlations based either on Fisher’s z transformation of correlations (sm = "ZCOR") or direct combination of (untransformed) correlations (sm = "COR") (see Cooper et al., p264-5 and p273-4). Only few statisticians would advocate the use of untransformed correlations unless sample sizes are very large (see Cooper et al., p265). The artificial example given below shows that the smallest study gets the largest weight if correlations are combined directly because the correlation is closest to 1.
Default settings are utilised for several arguments (assignments using \texttt{gs} function). These defaults can be changed for the current R session using the \texttt{settings.meta} function.

Furthermore, R function \texttt{update.meta} can be used to rerun a meta-analysis with different settings.

Estimation of between-study variance:

The following methods to estimate the between-study variance τ^2 are available:

- DerSimonian-Laird estimator (\texttt{method.tau = "DL"})
- Paule-Mandel estimator (\texttt{method.tau = "PM"})
- Restricted maximum-likelihood estimator (\texttt{method.tau = "REML"})
- Maximum-likelihood estimator (\texttt{method.tau = "ML"})
- Hunter-Schmidt estimator (\texttt{method.tau = "HS"})
- Sidik-Jonkman estimator (\texttt{method.tau = "SJ"})
- Hedges estimator (\texttt{method.tau = "HE"})
- Empirical Bayes estimator (\texttt{method.tau = "EB"})

See \texttt{metagen} for more information on these estimators.

Confidence interval for the between-study variance:

The following methods to calculate a confidence interval for τ^2 and τ are available.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.tau.ci = "J"</td>
<td>Method by Jackson</td>
</tr>
<tr>
<td>method.tau.ci = "BJ"</td>
<td>Method by Biggerstaff and Jackson</td>
</tr>
<tr>
<td>method.tau.ci = "QP"</td>
<td>Q-Profile method</td>
</tr>
</tbody>
</table>

See \texttt{metagen} for more information on these methods. No confidence intervals for τ^2 and τ are calculated if method.tau.ci = "".

Hartung-Knapp method:

Hartung and Knapp (2001) and Knapp and Hartung (2003) proposed an alternative method for random effects meta-analysis based on a refined variance estimator for the treatment estimate. Simulation studies (Hartung and Knapp, 2001; IntHout et al., 2014; Langan et al., 2019) show improved coverage probabilities compared to the classic random effects method.

In rare settings with very homogeneous treatment estimates, the Hartung-Knapp variance estimate can be arbitrarily small resulting in a very narrow confidence interval (Knapp and Hartung, 2003; Wiksten et al., 2016). In such cases, an \textit{ad hoc} variance correction has been proposed by utilising the variance estimate from the classic random effects model with the HK method (Knapp and Hartung, 2003; IQWiQ, 2020). An alternative approach is to use the wider confidence interval of classic fixed or random effects meta-analysis and the HK method (Wiksten et al., 2016; Jackson et al., 2017).

Argument \texttt{adhoc.hakn} can be used to choose the \textit{ad hoc} method:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Ad hoc method</th>
</tr>
</thead>
<tbody>
<tr>
<td>adhoc.hakn = ""</td>
<td>not used</td>
</tr>
<tr>
<td>adhoc.hakn = "se"</td>
<td>use variance correction if HK standard error is smaller than standard error from classic random effects meta-analysis (Knapp and Hartung, 2003)</td>
</tr>
</tbody>
</table>
adhoc.hakn = "iqwig6" use variance correction if HK confidence interval is narrower than CI from classic random effects model with DerSimonian-Laird estimator (IQWiG, 2020)
adhoc.hakn = "ci" use wider confidence interval of classic random effects and HK meta-analysis (Hybrid method 2 in Jackson et al., 2017)

Prediction interval:
A prediction interval for the proportion in a new study (Higgins et al., 2009) is calculated if arguments prediction and random are TRUE. Note, the definition of prediction intervals varies in the literature. This function implements equation (12) of Higgins et al., (2009) which proposed a \(t \) distribution with \(K-2 \) degrees of freedom where \(K \) corresponds to the number of studies in the meta-analysis.

Subgroup analysis:
Argument subgroup can be used to conduct subgroup analysis for a categorical covariate. The \texttt{metareg} function can be used instead for more than one categorical covariate or continuous covariates.

Exclusion of studies from meta-analysis:
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples in \texttt{metagen}). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both fixed effect and random effects models are calculated regardless of values choosen for arguments fixed and random. Accordingly, the estimate for the random effects model can be extracted from component \(\text{TE.random} \) of an object of class "meta" even if argument random = FALSE. However, all functions in R package \texttt{meta} will adequately consider the values for fixed and random. E.g. functions \texttt{print.meta} and \texttt{forest.meta} will not print results for the random effects model if random = FALSE.

Value
An object of class c("metacor", "meta") with corresponding print, summary, and forest functions. The object is a list containing the following components:
cor, n, studlab, exclude,
 As defined above.
sm, level, level.ma,
 As defined above.
fixed, random,
 As defined above.
hakn, adhoc.hakn, method.tau, method.tau.ci,
 As defined above.
tau.preset, TE.tau, method.bias,
 As defined above.
method.bias, tau.common, title, complab, outlab,
 As defined above.
subgroup, subgroup.name, print.subgroup.name, sep.subgroup
 As defined above.
TE, seTE
 Either Fisher’s z transformation of correlations (sm = "ZCOR") or correlations
 (sm="COR") for individual studies.
lower, upper
 Lower and upper confidence interval limits for individual studies.
zval, pval
 z-value and p-value for test of effect in individual studies.
w.fixed, w.random
 Weight of individual studies (in fixed and random effects model).
TE.fixed, seTE.fixed
 Estimated overall effect (Fisher’s z transformation of correlation or correlation)
 and standard error (fixed effect model).
lower.fixed, upper.fixed
 Lower and upper confidence interval limits (fixed effect model).
statistic.fixed, pval.fixed
 z-value and p-value for test of overall effect (fixed effect model).
TE.random, seTE.random
 Estimated overall effect (Fisher’s z transformation of correlation or correlation)
 and standard error (random effects model).
lower.random, upper.random
 Lower and upper confidence interval limits (random effects model).
statistic.random, pval.random
 z-value or t-value and corresponding p-value for test of overall effect (random
 effects model).
prediction, level.predict
 As defined above.
seTE.predict
 Standard error utilised for prediction interval.
lower.predict, upper.predict
 Lower and upper limits of prediction interval.
k
 Number of studies combined in meta-analysis.
Q
 Heterogeneity statistic Q.
df.Q
 Degrees of freedom for heterogeneity statistic.
pval.Q
 P-value of heterogeneity test.
tau2
 Between-study variance τ^2.
se.tau2
 Standard error of τ^2.
lower.tau2, upper.tau2
 Lower and upper limit of confidence interval for τ^2.
tau
 Square-root of between-study variance τ.
lower.tau, upper.tau
 Lower and upper limit of confidence interval for τ.
H
 Heterogeneity statistic H.
lower.H, upper.H
 Lower and upper confidence limit for heterogeneity statistic H.
I2
Heterogeneity statistic I^2.

lower.I2, upper.I2
Lower and upper confidence limit for heterogeneity statistic I^2.

Rb
Heterogeneity statistic R_b.

lower.Rb, upper.Rb
Lower and upper confidence limit for heterogeneity statistic R_b.

df.hakn
Degrees of freedom for test of effect for Hartung-Knapp method (only if hakn = TRUE).

method
Pooling method: "Inverse".

bylevs
Levels of grouping variable - if subgroup is not missing.

TE.fixed.w, seTE.fixed.w
Estimated effect and standard error in subgroups (fixed effect model) - if subgroup is not missing.

lower.fixed.w, upper.fixed.w
Lower and upper confidence interval limits in subgroups (fixed effect model) - if subgroup is not missing.

statistic.fixed.w, pval.fixed.w
z-value and p-value for test of effect in subgroups (fixed effect model) - if subgroup is not missing.

TE.random.w, seTE.random.w
Estimated effect and standard error in subgroups (random effects model) - if subgroup is not missing.

lower.random.w, upper.random.w
Lower and upper confidence interval limits in subgroups (random effects model) - if subgroup is not missing.

statistic.random.w, pval.random.w
z-value or t-value and corresponding p-value for test of effect in subgroups (random effects model) - if subgroup is not missing.

w.fixed.w, w.random.w
Weight of subgroups (in fixed and random effects model) - if subgroup is not missing.

df.hakn.w
Degrees of freedom for test of effect for Hartung-Knapp method in subgroups - if subgroup is not missing and hakn = TRUE.

n.e.w
Number of observations in experimental group in subgroups - if subgroup is not missing.

n.c.w
Number of observations in control group in subgroups - if subgroup is not missing.

k.w
Number of studies combined within subgroups - if subgroup is not missing.

k.all.w
Number of all studies in subgroups - if subgroup is not missing.

Q.w.fixed
Overall within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

Q.w.random
Overall within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing (only calculated if argument tau.common is TRUE).
df.Q.w Degrees of freedom for test of overall within subgroups heterogeneity - if subgroup is not missing.

pval.Q.w.fixed P-value of within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

pval.Q.w.random P-value of within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

Q.b.fixed Overall between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

Q.b.random Overall between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

df.Q.b Degrees of freedom for test of overall between subgroups heterogeneity - if subgroup is not missing.

pval.Q.b.fixed P-value of between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

pval.Q.b.random P-value of between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

tau.w Square-root of between-study variance within subgroups - if subgroup is not missing.

H.w Heterogeneity statistic H within subgroups - if subgroup is not missing.

lower.H.w, upper.H.w Lower and upper confidence limit for heterogeneity statistic H within subgroups - if subgroup is not missing.

I2.w Heterogeneity statistic I^2 within subgroups - if subgroup is not missing.

lower.I2.w, upper.I2.w Lower and upper confidence limit for heterogeneity statistic I^2 within subgroups - if subgroup is not missing.

keepdata As defined above.

data Original data (set) used in function call (if keepdata = TRUE).

subset Information on subset of original data used in meta-analysis (if keepdata = TRUE).

call Function call.

version Version of R package meta used to create object.

Note

The function metagen is called internally to calculate individual and overall treatment estimates and standard errors.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>
References

See Also

`update.meta, metacont, metagen, print.meta`

Examples

```r
m1 <- metacor(c(0.85, 0.7, 0.95), c(20, 40, 10))

# Print correlations (back transformed from Fisher's z transformation)
#
# m1

# Print Fisher's z transformed correlations
#
print(m1, backtransf = FALSE)

# Forest plot with back transformed correlations
#```


metacr

Meta-analysis of outcome data from Cochrane review

Description

Wrapper function to perform meta-analysis for a single outcome of a Cochrane Intervention review.

Usage

metacr(
  x,
  comp.no = 1,
  outcome.no = 1,
  method,
  sm,
  level = gs("level"),
  level.ma = gs("level.ma"),
  fixed, random,
  hakn = FALSE,
  method.tau = "DL",
  method.tau.ci = gs("method.tau.ci"),
  tau.common = FALSE,
  prediction = gs("prediction"),
  level.predict = gs("level.predict"),
  swap.events,
  logscale,
  backtransf = gs("backtransf"),
  test.subgroup,
  prediction.subgroup = gs("prediction.subgroup"),

Arguments

x An object of class rm5 created by R function read.rm5.
comp.no Comparison number.
outcome.no Outcome number.
method A character string indicating which method is to be used for pooling of studies. One of "Inverse", "MH", or "Peto", can be abbreviated.
sm A character string indicating which summary measure ("RR", "OR", "RD", "ASD", "HR", "MD", or "SMD", or "ROM") is to be used for pooling of studies.
level The level used to calculate confidence intervals for individual studies.
level.ma The level used to calculate confidence intervals for pooled estimates.
fixed A logical indicating whether a fixed effect meta-analysis should be conducted.
random A logical indicating whether a random effects meta-analysis should be conducted.
hakn A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.
method.tau A character string indicating which method is used to estimate the between-study variance $\tau^2$ and its square root $\tau$. Either "DL", "PM", "REML", "ML", "HS", "SJ", "HE", or "EB", can be abbreviated.
method.tau.ci A character string indicating which method is used to estimate the confidence interval of $\tau^2$ and $\tau$. Either "QP", "BJ", or "J", or ", can be abbreviated.
tau.common A logical indicating whether tau-squared should be the same across subgroups.
prediction A logical indicating whether a prediction interval should be printed.
level.predict The level used to calculate prediction interval for a new study.
swap.events A logical indicating whether events and non-events should be interchanged.
logscale A logical indicating whether effect estimates are entered on log-scale.
backtransf A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE (default), results for sm="OR" are printed as odds ratios rather than log odds ratios and results for sm="ZCOR" are printed as correlations rather than Fisher's z transformed correlations, for example.
test.subgroup A logical value indicating whether to print results of test for subgroup differences.
prediction.subgroup
A logical value indicating whether prediction intervals should be printed for subgroups.
text.fixed A character string used in printouts and forest plot to label the pooled fixed effect estimate.
text.random A character string used in printouts and forest plot to label the pooled random effects estimate.
text.predict A character string used in printouts and forest plot to label the prediction interval.
text.w.fixed A character string used to label weights of fixed effect model.
text.w.random A character string used to label weights of random effects model.
title Title of meta-analysis / systematic review.
complab Comparison label.
outclab Outcome label.
keepdata A logical indicating whether original data (set) should be kept in meta object.
warn A logical indicating whether warnings should be printed (e.g., if incr is added to studies with zero cell frequencies).
... Additional arguments (to catch deprecated arguments).

Details

Cochrane Intervention reviews are based on the comparison of two interventions. Each Cochrane Intervention review can have a variable number of comparisons. For each comparison, a variable number of outcomes can be define. For each outcome, a separate meta-analysis is conducted. Review Manager 5 (RevMan 5) is the current software used for preparing and maintaining Cochrane Reviews (https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman).

This wrapper function can be used to perform meta-analysis for a single outcome of a Cochrane Intervention review. Internally, R functions metabin, metacont, and metagen are called - depending on the definition of the outcome in RevMan 5.

Note, it is recommended to choose the RevMan 5 settings before executing metacr, i.e., settings.meta("revman5").

Value

An object of class "meta" and "metabin", "metacont", or "metagen" depending on outcome type utilised in Cochrane Intervention review for selected outcome.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration, 2020
**metacum**

Cumulative meta-analysis

**Description**

Performs a cumulative meta-analysis.

**Usage**

```r
metacum(x, pooled, sortvar)
```
Arguments

x
An object of class meta.
pooled
A character string indicating whether a fixed effect or random effects model is used for pooling. Either missing (see Details), "fixed", or "random", can be abbreviated.
sortvar
An optional vector used to sort the individual studies (must be of same length as x$TE).

Details

A cumulative meta-analysis is performed. Studies are included sequentially as defined by sortvar. Information from object x is utilised if argument pooled is missing. A fixed effect / common effect model is assumed (pooled = "fixed") if argument x$fixed is TRUE; a random effects model is assumed (pooled = "random") if argument x$random is TRUE and x$fixed is FALSE.

Value

An object of class c("metacum","meta") with corresponding print, and forest functions. The object is a list containing the following components:

TE, seTE
Estimated treatment effect and standard error of pooled estimate in cumulative meta-analyses.
lower, upper
Lower and upper confidence interval limits.
statistic
Statistic for test of overall effect.
pval
P-value for test of overall effect.
studlab
Study label describing addition of studies.
w
Sum of weights from fixed effect or random effects model.
I2
Heterogeneity statistic I^2.
Rb
Heterogeneity statistic R_b.
tau
Square-root of between-study variance.
df.hakn
Degrees of freedom for test of treatment effect for Hartung-Knapp method (only if hakn = TRUE).
sm
Summary measure.
method
Method used for pooling.
k
Number of studies combined in meta-analysis.
pooled
As defined above.
fixed
A logical indicating whether analysis is based on fixed effect model.
random
A logical indicating whether analysis is based on random effects model.
TE.fixed, seTE.fixed
Value is NA.
TE.random, seTE.random
Value is NA.
Q
Value is NA.
level.ma  The level used to calculate confidence intervals for pooled estimates.
hakn     A logical indicating whether the method by Hartung and Knapp is used to adjust
test statistics and confidence intervals.
adhoc.hakn A character string indicating whether ad hoc variance correction should be used
for Hartung-Knapp method.
method.tau A character string indicating which method is used to estimate the between-
study variance $\tau^2$.
tau.preset Prespecified value for the square root of the between-study variance $\tau^2$.
TE.tau    Overall treatment effect used to estimate the between-study variance $\tau^2$.
n.harmonic.mean Harmonic mean of number of observations (for back transformation of Freeman-
Tukey Double arcsine transformation).
version   Version of R package meta used to create object.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References
Sage Foundation

See Also
metabin, metacont, print.meta

Examples

data(Fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac,
    data = Fleiss1993bin, studlab = study, sm = "RR", method = "I")
m1
metacum(m1)
m2 <- update(m1, title = "Fleiss1993bin meta-analysis", backtransf = FALSE)
m2
metacum(m2)

data(Fleiss1993cont)
m3 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
    data = Fleiss1993cont, sm = "SMD")
m3
Description

Fixed effect and random effects meta-analysis based on estimates (e.g. log hazard ratios) and their standard errors. The inverse variance method is used for pooling.

Three-level random effects meta-analysis (Van den Noortgate et al., 2013) is available by internally calling `rma.mv` function from R package `metafor` (Viechtbauer, 2010).

Usage

```r
metagen(
 TE,
 seTE,
 studlab,
 data = NULL,
 subset = NULL,
 exclude = NULL,
 id = NULL,
 sm = "",
 method.ci = if (missing(df)) "z" else "t",
 level = gs("level"),
 level.ma = gs("level.ma"),
 fixed = gs("fixed"),
 random = gs("random") | !is.null(tau.preset),
 overall = fixed | random,
 overall.hetstat = fixed | random,
 hakn = gs("hakn"),
 adhoc.hakn = gs("adhoc.hakn"),
 method.tau = gs("method.tau"),
 method.tau.ci = gs("method.tau.ci"),
 tau.preset = NULL,
 TE.tau = NULL,
 tau.common = gs("tau.common"),
 detail.tau = "",
 prediction = gs("prediction"),
 level.predict = gs("level.predict"),
 null.effect = 0,
 method.bias = gs("method.bias"),
 n.e = NULL,
 n.c = NULL,
 pval,
 df,
 lower,
 upper,
```

Arguments

**TE**

Estimate of treatment effect, e.g., log hazard ratio or risk difference.

**seTE**

Standard error of treatment estimate.

**studlab**

An optional vector with study labels.

**data**

An optional data frame containing the study information.

**subset**

An optional vector specifying a subset of studies to be used (see Details).
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots (see Details).

id An optional vector specifying which estimates come from the same study resulting in the use of a three-level meta-analysis model.

sm A character string indicating underlying summary measure, e.g., "RD", "RR", "OR", "ASD", "HR", "MD", "SMD", or "ROM".

method.ci A character string indicating which method is used to calculate confidence intervals for individual studies, see Details.

level The level used to calculate confidence intervals for individual studies.

level.ma The level used to calculate confidence intervals for meta-analysis estimates.

fixed A logical indicating whether a fixed effect / common effect meta-analysis should be conducted.

random A logical indicating whether a random effects meta-analysis should be conducted.

overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

hakn A logical indicating whether method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.

adhoc.hakn A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate. Either "", "se", "ci", or "iqwig6" (see Details), can be abbreviated.

method.tau A character string indicating which method is used to estimate the between-study variance $\tau^2$ and its square root $\tau$. Either "DL", "PM", "REML", "ML", "HS", "SJ", "HE", or "EB", can be abbreviated.

method.tau.ci A character string indicating which method is used to estimate the confidence interval of $\tau^2$ and $\tau$. Either "QP", "BJ", "J", "PL", or "", can be abbreviated.

tau.preset Prespecified value for the square root of the between-study variance $\tau^2$.

TE.tau Overall treatment effect used to estimate the between-study variance tau-squared.

tau.common A logical indicating whether tau-squared should be the same across subgroups.

detail.tau Detail on between-study variance estimate.

prediction A logical indicating whether a prediction interval should be printed.

level.predict The level used to calculate prediction interval for a new study.

null.effect A numeric value specifying the effect under the null hypothesis.

method.bias A character string indicating which test is to be used. Either "Begg", "Egger"., or "Thompson", can be abbreviated. See function metabias.

n.e Number of observations in experimental group (or total sample size in study).
Number of observations in control group.

P-value (used to estimate the standard error).

Degrees of freedom (used in test or to construct confidence interval).

Lower limit of confidence interval (used to estimate the standard error).

Upper limit of confidence interval (used to estimate the standard error).

Level of confidence interval.

Median (used to estimate the treatment effect and standard error).

First quartile (used to estimate the treatment effect and standard error).

Third quartile (used to estimate the treatment effect and standard error).

Minimum (used to estimate the treatment effect and standard error).

Maximum (used to estimate the treatment effect and standard error).

A character string indicating which method to use to approximate the mean from the median and other statistics (see Details).

A character string indicating which method to use to approximate the standard deviation from sample size, median, interquartile range and range (see Details).

Approximation method to estimate treatment estimate (see Details).

Approximation method to estimate standard error (see Details).

A logical indicating whether results should be back transformed in printouts and plots. If `backtransf = TRUE` (default), results for `sm = "OR"` are printed as odds ratios rather than log odds ratios and results for `sm = "ZCOR"` are printed as correlations rather than Fisher’s z transformed correlations, for example.

A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument `sm` is equal to "PLOGIT", "PLN", "PRAW", "PAS", "PFT", or "RD".

A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument `sm` is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".

A character specifying the time unit used to calculate rates, e.g. person-years.

A character string used in printouts and forest plot to label the pooled fixed effect estimate.

A character string used in printouts and forest plot to label the pooled random effects estimate.

A character string used in printouts and forest plot to label the prediction interval.

A character string used to label weights of fixed effect model.

A character string used to label weights of random effects model.

Title of meta-analysis / systematic review.

Comparison label.

Outcome label.

Label for experimental group.
label.c Label for control group.
label.left Graph label on left side of forest plot.
label.right Graph label on right side of forest plot.
subgroup An optional vector to conduct a meta-analysis with subgroups.
subgroup.name A character string with a name for the subgroup variable.
print.subgroup.name
A logical indicating whether the name of the subgroup variable should be printed
in front of the group labels.
sep.subgroup A character string defining the separator between name of subgroup variable and
subgroup label.
test.subgroup A logical value indicating whether to print results of test for subgroup differences.
prediction.subgroup A logical indicating whether prediction intervals should be printed for sub-
groups.
byvar Deprecated argument (replaced by 'subgroup').
keepdata A logical indicating whether original data (set) should be kept in meta object.
warn A logical indicating whether warnings should be printed (e.g., if studies are
excluded from meta-analysis due to zero standard errors).
warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments
are used.
control An optional list to control the iterative process to estimate the between-study
variance $\tau^2$. This argument is passed on to rma.uni or rma.mv.
... Additional arguments (to catch deprecated arguments).

Details

This function provides the generic inverse variance method for meta-analysis which requires treat-
ment estimates and their standard errors (Borenstein et al., 2010). The method is useful, e.g., for
pooling of survival data (using log hazard ratio and standard errors as input). Arguments TE and
seTE can be used to provide treatment estimates and standard errors directly. However, it is possible
to derive these quantities from other information.

Default settings are utilised for several arguments (assignments using gs function). These defaults
can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings.

Three-level random effects meta-analysis:
A three-level random effects meta-analysis model (Van den Noortgate et al., 2013) is utilized if
argument id is used and at least one study provides more than one estimate. Internally, rma.mv
is called to conduct the analysis and weights.rma.mv with argument type = "rowsum" is used to
calculate random effects weights.

Approximate treatment estimates:
Missing treatment estimates can be derived from
1. confidence limits provided by arguments lower and upper;
2. median, interquartile range and range (arguments median, q1, q3, min, and max);
3. median and interquartile range (arguments median, q1 and q3);
4. median and range (arguments median, min and max).

For confidence limits, the treatment estimate is defined as the center of the confidence interval (on the log scale for relative effect measures like the odds ratio or hazard ratio).

If the treatment effect is a mean it can be approximated from sample size, median, interquartile range and range. By default, methods described in Luo et al. (2018) are utilized (argument method.mean = "Luo"):
- equation (7) if sample size, median and range are available,
- equation (11) if sample size, median and interquartile range are available,
- equation (15) if sample size, median, range and interquartile range are available.

Instead the methods described in Wan et al. (2014) are used if argument method.mean = "Wan"):
- equation (2) if sample size, median and range are available,
- equation (14) if sample size, median and interquartile range are available,
- equation (10) if sample size, median, range and interquartile range are available.

By default, missing treatment estimates are replaced successively using these methods, i.e., confidence limits are utilised before interquartile ranges. Argument approx.TE can be used to overwrite this default for each individual study:
- Use treatment estimate directly (entry "" in argument approx.TE);
- confidence limits ("ci" in argument approx.TE);
- median, interquartile range and range ("iqr.range");
- median and interquartile range ("iqr");
- median and range ("range").

**Approximate standard errors:**
Missing standard errors can be derived from
1. p-value provided by arguments pval and (optional) df;
2. confidence limits (arguments lower, upper, and (optional) df);
3. sample size, median, interquartile range and range (arguments n.e and / or n.c, median, q1, q3, min, and max);
4. sample size, median and interquartile range (arguments n.e and / or n.c, median, q1 and q3);
5. sample size, median and range (arguments n.e and / or n.c, median, min and max).

For p-values and confidence limits, calculations are either based on the standard normal or t distribution if argument df is provided. Furthermore, argument level.ci can be used to provide the level of the confidence interval.

Wan et al. (2014) describe methods to estimate the standard deviation (and thus the standard error by deviating the standard deviation with the square root of the sample size) from the sample size, median and additional statistics. Shi et al. (2020) provide an improved estimate of the standard deviation if the interquartile range and range are available in addition to the sample size and median. Accordingly, equation (11) in Shi et al. (2020) is the default (argument method.sd = "Shi"), if the median, interquartile range and range are provided (arguments median, q1, q3,
The method by Wan et al. (2014) is used if argument method.sd = "Wan" and, depending on the sample size, either equation (12) or (13) is used. If only the interquartile range or range is available, equations (15) / (16) and (7) / (9) in Wan et al. (2014) are used, respectively. The sample size of individual studies must be provided with arguments n.e and / or n.c. The total sample size is calculated as n.e + n.c if both arguments are provided.

By default, missing standard errors are replaced successively using these method, e.g., p-value before confidence limits before interquartile range and range. Argument approx.seTE can be used to overwrite this default for each individual study:

- Use standard error directly (entry "" in argument approx.seTE);
- p-value ("pval" in argument approx.seTE);
- confidence limits ("ci");
- median, interquartile range and range ("iqr.range");
- median and interquartile range ("iqr");
- median and range ("range").

Confidence intervals for individual studies:
For the mean difference (argument sm = "MD"), the confidence interval for individual studies can be based on the

- standard normal distribution (method.ci = "z"), or
- t-distribution (method.ci = "t").

By default, the first method is used if argument df is missing and the second method otherwise. Note, this choice does not affect the results of the fixed effect and random effects meta-analysis.

Estimation of between-study variance:
The following methods are available to estimate the between-study variance $\tau^2$.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.tau = &quot;DL&quot;</td>
<td>DerSimonian-Laird estimator (DerSimonian and Laird, 1986)</td>
</tr>
<tr>
<td>method.tau = &quot;PM&quot;</td>
<td>Paule-Mandel estimator (Paule and Mandel, 1982)</td>
</tr>
<tr>
<td>method.tau = &quot;REML&quot;</td>
<td>Restricted maximum-likelihood estimator (Viechtbauer, 2005)</td>
</tr>
<tr>
<td>method.tau = &quot;ML&quot;</td>
<td>Maximum-likelihood estimator (Viechtbauer, 2005)</td>
</tr>
<tr>
<td>method.tau = &quot;HS&quot;</td>
<td>Hunter-Schmidt estimator (Hunter and Schmidt, 2015)</td>
</tr>
<tr>
<td>method.tau = &quot;SJ&quot;</td>
<td>Sidik-Jonkman estimator (Sidik and Jonkman, 2005)</td>
</tr>
<tr>
<td>method.tau = &quot;HE&quot;</td>
<td>Hedges estimator (Hedges and Olkin, 1985)</td>
</tr>
<tr>
<td>method.tau = &quot;EB&quot;</td>
<td>Empirical Bayes estimator (Morris, 1983)</td>
</tr>
</tbody>
</table>

Historically, the DerSimonian-Laird method was the de facto standard to estimate the between-study variance $\tau^2$ and is still the default in many software packages including Review Manager 5 (RevMan 5) and R package meta. However, its role has been challenged and especially the Paule-Mandel and REML estimators have been recommended (Veroniki et al., 2016). Accordingly, the following R command can be used to use the Paule-Mandel estimator in all meta-analyses of the R session: settings.meta(method.tau = "PM")

Confidence interval for the between-study variance:
The following methods to calculate a confidence interval for $\tau^2$ and $\tau$ are available.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
</table>

```r
```
metagen

method.tau.ci = "J"  Method by Jackson (2013)
method.tau.ci = "BJ"  Method by Biggerstaff and Jackson (2008)
method.tau.ci = "QP"  Q-Profile method (Viechtbauer, 2007)
method.tau.ci = "PL"  Profile-Likelihood method for three-level meta-analysis model
                      (Van den Noortgate et al., 2013)

The first three methods have been recommended by Veroniki et al. (2016). By default, the Jackson method
is used for the DerSimonian-Laird estimator of $\tau^2$ and the Q-profile method for all other
estimators of $\tau^2$. The Profile-Likelihood method is the only method available for the three-level
meta-analysis model. No confidence intervals for $\tau^2$ and $\tau$ are calculated if method.tau.ci = "".

Hartung-Knapp method:
Hartung and Knapp (2001a,b) proposed an alternative method for random effects meta-analysis
based on a refined variance estimator for the treatment estimate. Simulation studies (Hartung and
Knapp, 2001a,b; IntHout et al., 2014; Langan et al., 2019) show improved coverage probabilities
compared to the classic random effects method. However, in rare settings with very homogeneous
treatment estimates, the Hartung-Knapp (HK) variance estimate can be arbitrarily small resulting
in a very narrow confidence interval (Knapp and Hartung, 2003; Wiksten et al., 2016). In such
cases, an ad hoc variance correction has been proposed by utilising the variance estimate from
the classic random effects model with the HK method (Knapp and Hartung, 2003; IQWiQ, 2020).
An alternative approach is to use the wider confidence interval of classic fixed or random effects
meta-analysis and the HK method (Wiksten et al., 2016; Jackson et al., 2017).

Argument adhoc.hakn can be used to choose the ad hoc method:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Ad hoc method</th>
</tr>
</thead>
<tbody>
<tr>
<td>adhoc.hakn = &quot;&quot;</td>
<td>not used</td>
</tr>
<tr>
<td>adhoc.hakn = &quot;se&quot;</td>
<td>use variance correction if HK standard error is smaller than standard error from classic random effects meta-analysis (Knapp and Hartung, 2003)</td>
</tr>
<tr>
<td>adhoc.hakn = &quot;iqwig6&quot;</td>
<td>use variance correction if HK confidence interval is narrower than CI from classic random effects model with DerSimonian-Laird estimator (IQWiG, 2020)</td>
</tr>
<tr>
<td>adhoc.hakn = &quot;ci&quot;</td>
<td>use wider confidence interval of classic random effects and HK meta-analysis (Hybrid method 2 in Jackson et al., 2017)</td>
</tr>
</tbody>
</table>

Prediction interval:
A prediction interval for the treatment effect of a new study (Higgins et al., 2009) is calculated if
arguments prediction and random are TRUE. Note, the definition of prediction intervals varies in
the literature. This function implements equation (12) of Higgins et al., (2009) which proposed a $t$
distribution with $K-2$ degrees of freedom where $K$ corresponds to the number of studies in the
meta-analysis.

Subgroup analysis:
Argument subgroup can be used to conduct subgroup analysis for a categorical covariate. The metareg function can be used instead for more than one categorical covariate or continuous co-
variates.

Specify the null hypothesis of test for an overall effect:
Argument `null.effect` can be used to specify the (treatment) effect under the null hypothesis in a test for an overall effect.

By default (`null.effect = 0`), the null hypothesis corresponds to "no difference" (which is obvious for absolute effect measures like the mean difference (`sm = "MD"`) or standardised mean difference (`sm = "SMD"`). For relative effect measures, e.g., risk ratio (`sm = "RR"`) or odds ratio (`sm = "OR"`), the null effect is defined on the log scale, i.e., \( \ln(\text{RR}) = 0 \) or \( \ln(\text{OR}) = 0 \) which is equivalent to testing \( \text{RR} = 1 \) or \( \text{OR} = 1 \).

Use of argument `null.effect` is especially useful for summary measures without a "natural" null effect, i.e., in situations without a second (treatment) group. For example, an overall proportion of 50% could be tested in the meta-analysis of single proportions with argument `null.effect = 0.5`.

Note, all tests for an overall effect are two-sided with the alternative hypothesis that the effect is unequal to `null.effect`.

**Exclusion of studies from meta-analysis:**
Arguments `subset` and `exclude` can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument `subset`, while excluded studies are shown in printouts and forest plots using argument `exclude` (see Examples). Meta-analysis results are the same for both arguments.

**Presentation of meta-analysis results:**
Internally, both fixed effect and random effects models are calculated regardless of values chosen for arguments `fixed` and `random`. Accordingly, the estimate for the random effects model can be extracted from component `TE.random` of an object of class "meta" even if argument `random = FALSE`. However, all functions in R package `meta` will adequately consider the values for `fixed` and `random`. For example, functions `print.meta` and `forest.meta` will not show results for the random effects model if `random = FALSE`.

Argument `pscale` can be used to rescale single proportions or risk differences, e.g. `pscale = 1000` means that proportions are expressed as events per 1000 observations. This is useful in situations with (very) low event probabilities.

Argument `irscale` can be used to rescale single rates or rate differences, e.g. `irscale = 1000` means that rates are expressed as events per 1000 time units, e.g. person-years. This is useful in situations with (very) low rates. Argument `irunit` can be used to specify the time unit used in individual studies (default: "person-years"). This information is printed in summaries and forest plots if argument `irscale` is not equal to 1.

Default settings for `fixed`, `random`, `pscale`, `irscale`, `irunit` and several other arguments can be set for the whole R session using `settings.meta`.

**Value**
An object of class `c("metagen","meta")` with corresponding `print`, `summary`, and `forest` functions. The object is a list containing the following components:

- `TE, seTE, studlab, exclude, n.e, n.c`  
  As defined above.
- `id, sm, method.ci, level, level.ma,`  
  As defined above.
- `fixed, random,`  
  As defined above.
overall, overall.hetstat,
    As defined above.
hakn, adhoc.hakn, method.tau, method.tau.ci,
    As defined above.
tau.preset, TE.tau, method.bias,
    As defined above.
tau.common, title, complab, outclab,
    As defined above.
label.e, label.c, label.left, label.right,
    As defined above.
subgroup, subgroup.name,
    As defined above.
print.subgroup.name, sep.subgroup, warn,
    As defined above.
lower, upper  Lower and upper confidence interval limits for individual studies.
statistic, pval
    Statistic and p-value for test of treatment effect for individual studies.
w.fixed, w.random
    Weight of individual studies (in fixed and random effects model).
TE.fixed, seTE.fixed
    Estimated overall treatment effect and standard error (fixed effect model).
lower.fixed, upper.fixed
    Lower and upper confidence interval limits (fixed effect model).
statistic.fixed, pval.fixed
    Statistic and p-value for test of overall treatment effect (fixed effect model).
TE.random, seTE.random
    Estimated overall treatment effect and standard error (random effects model).
lower.random, upper.random
    Lower and upper confidence interval limits (random effects model).
statistic.random, pval.random
    Statistic and p-value for test of overall treatment effect (random effects model).
prediction, level.predict
    As defined above.
seTE.predict  Standard error utilised for prediction interval.
lower.predict, upper.predict
    Lower and upper limits of prediction interval.
null.effect  As defined above.
k  Number of studies combined in meta-analysis.
Q  Heterogeneity statistic.
df.Q  Degrees of freedom for heterogeneity statistic.
pval.Q  P-value of heterogeneity test.
tau2  Between-study variance $\tau^2$.
se.tau2  Standard error of $\tau^2$. 
lower.tau2, upper.tau2
Lower and upper limit of confidence interval for $\tau^2$.

tau
Square-root of between-study variance $\tau$.

lower.tau, upper.tau
Lower and upper limit of confidence interval for $\tau$.

H
Heterogeneity statistic $H$.

lower.H, upper.H
Lower and upper confidence limit for heterogeneity statistic $H$.

I2
Heterogeneity statistic $I^2$.

lower.I2, upper.I2
Lower and upper confidence limit for heterogeneity statistic $I^2$.

Rb
Heterogeneity statistic $R_b$.

lower.Rb, upper.Rb
Lower and upper confidence limit for heterogeneity statistic $R_b$.

approx.TE, approx.seTE
As defined above.

method
Pooling method: "Inverse".

df.hakn
Degrees of freedom for test of treatment effect for Hartung-Knapp method (only if hakn = TRUE).

seTE.hakn
Estimated standard error for Hartung-Knapp method (not taking ad hoc variance correction into account).

seTE.hakn.adhoc
Estimated standard error for Hartung-Knapp method (taking ad hoc variance correction into account).

bylevs
Levels of grouping variable - if subgroup is not missing.

TE.fixed.w, seTE.fixed.w
Estimated treatment effect and standard error in subgroups (fixed effect model) - if subgroup is not missing.

lower.fixed.w, upper.fixed.w
Lower and upper confidence interval limits in subgroups (fixed effect model) - if subgroup is not missing.

statistic.fixed.w, pval.fixed.w
Statistics and p-values for test of treatment effect in subgroups (fixed effect model) - if subgroup is not missing.

TE.random.w, seTE.random.w
Estimated treatment effect and standard error in subgroups (random effects model) - if subgroup is not missing.

lower.random.w, upper.random.w
Lower and upper confidence interval limits in subgroups (random effects model) - if subgroup is not missing.

statistic.random.w, pval.random.w
Statistics and p-values for test of treatment effect in subgroups (random effects model) - if subgroup is not missing.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>w.fixed.w, w.random.w</td>
<td>Weight of subgroups (in fixed and random effects model) - if subgroup is not missing.</td>
</tr>
<tr>
<td>df.hakn.w</td>
<td>Degrees of freedom for test of treatment effect for Hartung-Knapp method in subgroups - if subgroup is not missing and hakn = TRUE.</td>
</tr>
<tr>
<td>n.harmonic.mean.w</td>
<td>Harmonic mean of number of observations in subgroups (for back transformation of Freeman-Tukey Double arcsine transformation) - if subgroup is not missing.</td>
</tr>
<tr>
<td>n.e.w</td>
<td>Number of observations in experimental group in subgroups - if subgroup is not missing.</td>
</tr>
<tr>
<td>n.c.w</td>
<td>Number of observations in control group in subgroups - if subgroup is not missing.</td>
</tr>
<tr>
<td>k.w</td>
<td>Number of studies combined within subgroups - if subgroup is not missing.</td>
</tr>
<tr>
<td>k.all.w</td>
<td>Number of all studies in subgroups - if subgroup is not missing.</td>
</tr>
<tr>
<td>Q.w.fixed</td>
<td>Overall within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.</td>
</tr>
<tr>
<td>Q.w.random</td>
<td>Overall within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing (only calculated if argument tau.common is TRUE).</td>
</tr>
<tr>
<td>df.Q.w</td>
<td>Degrees of freedom for test of overall within subgroups heterogeneity - if subgroup is not missing.</td>
</tr>
<tr>
<td>pval.Q.w.fixed</td>
<td>P-value of within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.</td>
</tr>
<tr>
<td>pval.Q.w.random</td>
<td>P-value of within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.</td>
</tr>
<tr>
<td>Q.b.fixed</td>
<td>Overall between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.</td>
</tr>
<tr>
<td>Q.b.random</td>
<td>Overall between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.</td>
</tr>
<tr>
<td>df.Q.b</td>
<td>Degrees of freedom for test of overall between subgroups heterogeneity - if subgroup is not missing.</td>
</tr>
<tr>
<td>pval.Q.b.fixed</td>
<td>P-value of between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.</td>
</tr>
<tr>
<td>pval.Q.b.random</td>
<td>P-value of between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.</td>
</tr>
<tr>
<td>tau.w</td>
<td>Square-root of between-study variance within subgroups - if subgroup is not missing.</td>
</tr>
<tr>
<td>H.w</td>
<td>Heterogeneity statistic H within subgroups - if subgroup is not missing.</td>
</tr>
<tr>
<td>lower.H.w, upper.H.w</td>
<td>Lower and upper confidence limit for heterogeneity statistic H within subgroups - if subgroup is not missing.</td>
</tr>
</tbody>
</table>
I2.w  
Heterogeneity statistic $I^2$ within subgroups - if subgroup is not missing.

df.l2  
Within-subgroup degrees of freedom for $I^2$.

Note
R function `rma.uni` from R package `metafor` (Viechtbauer 2010) is called internally to estimate the between-study variance $\tau^2$.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References


Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration, 2020


See Also

`update.meta, metabin, metacont, print.meta, settings.meta`
```r
Examples
data(Fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac, study,
 data = Fleiss1993bin, sm = "RR", method = "I")
m1

Identical results using the generic inverse variance method with
log risk ratio and its standard error:
Note, argument 'n.e' in metagen() is used to provide the total
sample size which is calculated from the group sample sizes n.e
and n.c in meta-analysis m1.
m1.gen <- metagen(TE, seTE, studlab, n.e = n.e + n.c, data = m1, sm = "RR")
m1.gen
forest(m1.gen, leftcols = c("studlab", "n.e", "TE", "seTE"))

Meta-analysis with prespecified between-study variance
metagen(m1$TE, m1$seTE, sm = "RR", tau.preset = sqrt(0.1))

Meta-analysis of survival data:
logHR <- log(c(0.95, 1.5))
selogHR <- c(0.25, 0.35)
metagen(logHR, selogHR, sm = "HR")

Paule-Mandel method to estimate between-study variance for data
from Paule & Mandel (1982)
average <- c(27.044, 26.022, 26.340, 26.787, 26.796)
variance <- c(0.003, 0.076, 0.464, 0.003, 0.014)
metagen(average, sqrt(variance), sm = "MD", method.tau = "PM")

Conduct meta-analysis using hazard ratios and 95% confidence intervals
Data from Steurer et al. (2006), Analysis 1.1 Overall survival
HR <- c(0.55, 0.92, 0.79, 1.18)
lower.HR <- c(0.28, 0.79, 0.59, 0.64)
upper.HR <- c(1.09, 1.08, 1.05, 2.17)
metagen(log(HR), lower = log(lower.HR), upper = log(upper.HR),
studlab = study, sm = "HR")

Exclude MRC-1 and MRC-2 studies from meta-analysis, however,
show them in printouts and forest plots
metabin(d.asp, n.asp, d.plac, n.plac, study,
```

---

130
metainc

Meta-analysis of incidence rates

Description

Calculation of fixed effect and random effects estimates (incidence rate ratio or incidence rate difference) for meta-analyses with event counts. Mantel-Haenszel, Cochran, inverse variance method, and generalised linear mixed model (GLMM) are available for pooling. For GLMMs, the rma.glmm function from R package metafor (Viechtbauer 2010) is called internally.

Usage

metainc(
  event.e,
  time.e,
  event.c,
  time.c,
  studlab,
  data = NULL,
  subset = NULL,
exclude = NULL,
method = if (sm == "IRSD") "Inverse" else "MH",
sm = gs("sminc"),
incr = gs("incr"),
allincr = gs("allincr"),
addincr = gs("addincr"),
model.glmm = "UM.FS",
level = gs("level"),
level.ma = gs("level.ma"),
fixed = gs("fixed"),
random = gs("random") | !is.null(tau.preset),
overall = fixed | random,
overall.hetstat = fixed | random,
hakn = gs("hakn"),
adhoc.hakn = gs("adhoc.hakn"),
method.tau = ifelse(!is.na(charmatch(tolower(method), "glmm", nomatch = NA)), "ML",
    gs("method.tau")),
method.tau.ci = gs("method.tau.ci"),
tau.preset = NULL,
TE.tau = NULL,
tau.common = gs("tau.common"),
prediction = gs("prediction"),
level.predict = gs("level.predict"),
method.bias = gs("method.bias"),
n.e = NULL,
n.c = NULL,
backtransf = if (sm == "IRSD") FALSE else gs("backtransf"),
irscale = 1,
irunit = "person-years",
text.fixed = gs("text.fixed"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.fixed = gs("text.w.fixed"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
label.e = gs("label.e"),
label.c = gs("label.c"),
label.left = gs("label.left"),
label.right = gs("label.right"),
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
```r
metadata = gs("keepdata"),
warn = gs("warn"),
warn.deprecated = gs("warn.deprecated"),
control = NULL,
...)
```

### Arguments

- **event.e**  Number of events in experimental group.
- **time.e**  Person time at risk in experimental group.
- **event.c**  Number of events in control group.
- **time.c**  Person time at risk in control group.
- **studlab**  An optional vector with study labels.
- **data**  An optional data frame containing the study information, i.e., event.e, time.e, event.c, and time.c.
- **subset**  An optional vector specifying a subset of studies to be used.
- **exclude**  An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
- **method**  A character string indicating which method is to be used for pooling of studies. One of "MH", "Inverse", "Cochran", or "GLMM" can be abbreviated.
- **sm**  A character string indicating which summary measure ("IRR", "IRD" or "IRSD") is to be used for pooling of studies, see Details.
- **incr**  A numerical value which is added to each cell frequency for studies with a zero cell count, see Details.
- **allincr**  A logical indicating if incr is added to each cell frequency of all studies if at least one study has a zero cell count. If FALSE (default), incr is added only to each cell frequency of studies with a zero cell count.
- **addincr**  A logical indicating if incr is added to each cell frequency of all studies irrespective of zero cell counts.
- **model.glmm**  A character string indicating which GLMM should be used. One of "UM.FS", "UM.RS", and "CM.EL", see Details.
- **level**  The level used to calculate confidence intervals for individual studies.
- **level.ma**  The level used to calculate confidence intervals for meta-analysis estimates.
- **fixed**  A logical indicating whether a fixed effect / common effect meta-analysis should be conducted.
- **random**  A logical indicating whether a random effects meta-analysis should be conducted.
- **overall**  A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.
overall.hetstat
A logical value indicating whether to print heterogeneity measures for overall
treatment comparisons. This argument is useful in a meta-analysis with sub-
groups if heterogeneity statistics should only be printed on subgroup level.

hakn
A logical indicating whether the method by Hartung and Knapp should be used
to adjust test statistics and confidence intervals.

adhoc.hakn
A character string indicating whether an ad hoc variance correction should be
applied in the case of an arbitrarily small Hartung-Knapp variance estimate, see
Details.

method.tau
A character string indicating which method is used to estimate the between-
study variance $\tau^2$ and its square root $\tau$. Either "DL", "PM", "REML", "ML", "HS",
"SJ", "HE", or "EB", can be abbreviated.

method.tau.ci
A character string indicating which method is used to estimate the confidence
interval of $\tau^2$ and $\tau$. Either "QP", "BJ", or "J", or "", can be abbreviated.

tau.preset
Prespecified value for the square root of the between-study variance $\tau$.

TE.tau
Overall treatment effect used to estimate the between-study variance $\tau^2$.

tau.common
A logical indicating whether tau-squared should be the same across subgroups.

definition
A logical indicating whether a prediction interval should be printed.

level.predict
The level used to calculate prediction interval for a new study.

method.bias
A character string indicating which test is to be used. Either "Begg", "Egger",
or "Thompson", can be abbreviated. See function metabias.

n.e
Number of observations in experimental group (optional).

c
Number of observations in control group (optional).

backtransf
A logical indicating whether results for incidence rate ratio (sm = “IRR”) should
be back transformed in printouts and plots. If TRUE (default), results will be
presented as incidence rate ratios; otherwise log incidence rate ratios will be
shown.

irscale
A numeric defining a scaling factor for printing of incidence rate differences.

irunit
A character string specifying the time unit used to calculate rates, e.g. person-
years.

text.fixed
A character string used in printouts and forest plot to label the pooled fixed effect
estimate.

text.random
A character string used in printouts and forest plot to label the pooled random
effects estimate.

text.predict
A character string used in printouts and forest plot to label the prediction inter-
val.

text.w.fixed
A character string used to label weights of fixed effect model.

text.w.random
A character string used to label weights of random effects model.

title
Title of meta-analysis / systematic review.

complab
Comparison label.

outclab
Outcome label.
\texttt{metaine}

- \texttt{label.e}  
  
  Label for experimental group.

- \texttt{label.c}  
  
  Label for control group.

- \texttt{label.left}  
  
  Graph label on left side of forest plot.

- \texttt{label.right}  
  
  Graph label on right side of forest plot.

- \texttt{subgroup}  
  
  An optional vector to conduct a meta-analysis with subgroups.

- \texttt{subgroup.name}  
  
  A character string with a name for the subgroup variable.

- \texttt{print.subgroup.name}  
  
  A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.

- \texttt{sep.subgroup}  
  
  A character string defining the separator between name of subgroup variable and subgroup label.

- \texttt{test.subgroup}  
  
  A logical value indicating whether to print results of test for subgroup differences.

- \texttt{prediction.subgroup}  
  
  A logical indicating whether prediction intervals should be printed for subgroups.

- \texttt{byvar}  
  
  Deprecated argument (replaced by 'subgroup').

- \texttt{keepdata}  
  
  A logical indicating whether original data (set) should be kept in meta object.

- \texttt{warn}  
  
  A logical indicating whether warnings should be printed (e.g., if \texttt{incr} is added to studies with zero cell frequencies).

- \texttt{warn.deprecated}  
  
  A logical indicating whether warnings should be printed if deprecated arguments are used.

- \texttt{control}  
  
  An optional list to control the iterative process to estimate the between-study variance $\tau^2$. This argument is passed on to \texttt{rma.uni} or \texttt{rma.glmm}, respectively.

- ...  
  
  Additional arguments (to catch deprecated arguments).

\textbf{Details}

Calculation of fixed and random effects estimates for meta-analyses comparing two incidence rates. The following measures of treatment effect are available:

- Incidence Rate Ratio ($sm = \text{"IRR"}$)
- Incidence Rate Difference ($sm = \text{"IRD"}$)
- Square root transformed Incidence Rate Difference ($sm = \text{"IRSD"}$)

Default settings are utilised for several arguments (assignments using \texttt{gs} function). These defaults can be changed for the current R session using the \texttt{settings.meta} function.

Furthermore, R function \texttt{update.meta} can be used to rerun a meta-analysis with different settings.

\textbf{Meta-analysis method:}

By default, both fixed effect and random effects models are considered (see arguments \texttt{fixed} and \texttt{random}). If \texttt{method} is \textquote{MH} (default), the Mantel-Haenszel method is used to calculate the fixed effect estimate (Greenland & Robbins, 1985); if \texttt{method} is \textquote{Inverse}, inverse variance
weighting is used for pooling: if method is "Cochran", the Cochran method is used for pooling (Bayne-Jones, 1964, Chapter 8).

A distinctive and frequently overlooked advantage of incidence rates is that individual patient data (IPD) can be extracted from count data. Accordingly, statistical methods for IPD, i.e., generalised linear mixed models, can be utilised in a meta-analysis of incidence rate ratios (Stijnen et al., 2010). These methods are available (argument method = "GLMM") by calling the rma.glmm function from R package metafor internally.

Three different GLMMs are available for meta-analysis of incidence rate ratios using argument model.glmm (which corresponds to argument model in the rma.glmm function):

1. Poisson regression model with fixed study effects (default)
   (model.glmm = "UM.FS", i.e., Unconditional Model - Fixed Study effects)
2. Mixed-effects Poisson regression model with random study effects
   (model.glmm = "UM.RS", i.e., Unconditional Model - Random Study effects)
3. Generalised linear mixed model (conditional Poisson-Normal)
   (model.glmm = "CM.EL", i.e., Conditional Model - Exact Likelihood)

Details on these three GLMMs as well as additional arguments which can be provided using argument '...' in metainc are described in rma.glmm where you can also find information on the iterative algorithms used for estimation. Note, regardless of which value is used for argument model.glmm, results for two different GLMMs are calculated: fixed effect model (with fixed treatment effect) and random effects model (with random treatment effects).

**Continuity correction:**
For studies with a zero cell count, by default, 0.5 is added to all cell frequencies of these studies (argument incr). This continuity correction is used both to calculate individual study results with confidence limits and to conduct meta-analysis based on the inverse variance method. For Mantel-Haenszel method, Cochran method, and GLMMs, nothing is added to zero cell counts. Accordingly, estimates for these methods are not defined if the number of events is zero in all studies either in the experimental or control group.

**Estimation of between-study variance:**
The following methods to estimate the between-study variance $\tau^2$ are available for the inverse variance method:

- DerSimonian-Laird estimator (method.tau = "DL")
- Paule-Mandel estimator (method.tau = "PM")
- Restricted maximum-likelihood estimator (method.tau = "REML")
- Maximum-likelihood estimator (method.tau = "ML")
- Hunter-Schmidt estimator (method.tau = "HS")
- Sidik-Jonkman estimator (method.tau = "SJ")
- Hedges estimator (method.tau = "HE")
- Empirical Bayes estimator (method.tau = "EB")

See metagen for more information on these estimators. Note, the maximum-likelihood method is utilized for GLMMs.

**Confidence interval for the between-study variance:**
The following methods to calculate a confidence interval for $\tau^2$ and $\tau$ are available.
Argument Method
method.tau.ci = "J" Method by Jackson
method.tau.ci = "BJ" Method by Biggerstaff and Jackson
method.tau.ci = "QP" Q-Profile method

See `metagen` for more information on these methods. For GLMMs, no confidence intervals for $\tau^2$ and $\tau$ are calculated. Likewise, no confidence intervals for $\tau^2$ and $\tau$ are calculated if `method.tau.ci = ""`.

**Hartung-Knapp method:**
Hartung and Knapp (2001a,b) proposed an alternative method for random effects meta-analysis based on a refined variance estimator for the treatment estimate. Simulation studies (Hartung and Knapp, 2001a,b; IntHout et al., 2014; Langan et al., 2019) show improved coverage probabilities compared to the classic random effects method.

In rare settings with very homogeneous treatment estimates, the Hartung-Knapp variance estimate can be arbitrarily small resulting in a very narrow confidence interval (Knapp and Hartung, 2003; Wiksten et al., 2016). In such cases, an *ad hoc* variance correction has been proposed by utilising the variance estimate from the classic random effects model with the HK method (Knapp and Hartung, 2003; IQWiG, 2020). An alternative approach is to use the wider confidence interval of classic fixed or random effects meta-analysis and the HK method (Wiksten et al., 2016; Jackson et al., 2017).

**Ad hoc method**
- `adhoc.hakn = ""` not used
- `adhoc.hakn = "se"` use variance correction if HK standard error is smaller than standard error from classic random effects meta-analysis (Knapp and Hartung, 2003)
- `adhoc.hakn = "iqwig6"` use variance correction if HK confidence interval is narrower than CI from classic random effects model with DerSimonian-Laird estimator (IQWiG, 2020)
- `adhoc.hakn = "ci"` use wider confidence interval of classic random effects and HK meta-analysis (Hybrid method 2 in Jackson et al., 2017)

For GLMMs, a method similar to Knapp and Hartung (2003) is implemented, see description of argument `tdist` in `rma.glmm`, and the *ad hoc* variance correction is not available.

**Prediction interval:**
A prediction interval for the proportion in a new study (Higgins et al., 2009) is calculated if arguments `prediction` and `random` are `TRUE`. Note, the definition of prediction intervals varies in the literature. This function implements equation (12) of Higgins et al., (2009) which proposed a *t* distribution with $K-2$ degrees of freedom where $K$ corresponds to the number of studies in the meta-analysis.

**Subgroup analysis:**
Argument `subgroup` can be used to conduct subgroup analysis for a categorical covariate. The `metareg` function can be used instead for more than one categorical covariate or continuous covariates.
Exclusion of studies from meta-analysis:
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples in metagen). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both fixed effect and random effects models are calculated regardless of values chosen for arguments fixed and random. Accordingly, the estimate for the random effects model can be extracted from component TE.random of an object of class "meta" even if argument random = FALSE. However, all functions in R package meta will adequately consider the values for fixed and random. E.g. function print.meta will not print results for the random effects model if random = FALSE.

Value
An object of class c("metainc","meta") with corresponding print, summary, and forest functions. The object is a list containing the following components:

- event.e, time.e, event.c, time.c, studlab, exclude
  As defined above.
- sm, method, incr, allincr, addincr, model.glmm, warn
  As defined above.
- level, level.ma, fixed, random
  As defined above.
- overall, overall.hetstat
  As defined above.
- hakn, adhoc.hakn, method.tau, method.tau.ci
  As defined above.
- tau.preset, TE.tau, method.bias
  As defined above.
- tau.common, title, complab, outclab
  As defined above.
- label.e, label.c, label.left, label.right
  As defined above.
- subgroup, subgroup.name, print.subgroup.name, sep.subgroup
  As defined above.
- TE, seTE
  Estimated treatment effect and standard error of individual studies.
- lower, upper
  Lower and upper confidence interval limits for individual studies.
- zval, pval
  z-value and p-value for test of treatment effect for individual studies.
- w.fixed, w.random
  Weight of individual studies (in fixed and random effects model).
- TE.fixed, seTE.fixed
  Estimated overall treatment effect and standard error (fixed effect model).
- lower.fixed, upper.fixed
  Lower and upper confidence interval limits (fixed effect model).
statistic.fixed, pval.fixed
  z-value and p-value for test of overall treatment effect (fixed effect model).

TE.random, seTE.random
  Estimated overall treatment effect and standard error (random effects model).
lower.random, upper.random
  Lower and upper confidence interval limits (random effects model).
statistic.random, pval.random
  z-value or t-value and corresponding p-value for test of overall treatment effect
  (random effects model).

prediction, level.predict
  As defined above.
seTE.predict
  Standard error utilised for prediction interval.
lower.predict, upper.predict
  Lower and upper limits of prediction interval.
k
  Number of studies combined in meta-analysis.
Q
  Heterogeneity statistic Q.
df.Q
  Degrees of freedom for heterogeneity statistic.
pval.Q
  P-value of heterogeneity test.
Q.LRT
  Heterogeneity statistic for likelihood-ratio test (only if method = "GLMM").
df.Q.LRT
  Degrees of freedom for likelihood-ratio test
pval.Q.LRT
  P-value of likelihood-ratio test.
tau2
  Between-study variance $\tau^2$. 
se.tau2, upper.tau2
  Lower and upper limit of confidence interval for $\tau^2$.

tau
  Square-root of between-study variance $\tau$.
lower.tau, upper.tau
  Lower and upper limit of confidence interval for $\tau$.

H
  Heterogeneity statistic H.
lower.H, upper.H
  Lower and upper confidence limit for heterogeneity statistic H.

I2
  Heterogeneity statistic $I^2$.
lower.I2, upper.I2
  Lower and upper confidence limit for heterogeneity statistic $I^2$.

Rb
  Heterogeneity statistic $R_b$.
lower.Rb, upper.Rb
  Lower and upper confidence limit for heterogeneity statistic $R_b$.

sparse
  Logical flag indicating if any study included in meta-analysis has any zero cell
  frequencies.

incr.event
  Increment added to number of events.
df.hakn
  Degrees of freedom for test of treatment effect for Hartung-Knapp method (only
  if hakn = TRUE).
metainc

k.MH Number of studies combined in meta-analysis using Mantel-Haenszel method.
bylevs Levels of grouping variable - if subgroup is not missing.

TE.fixed.w, seTE.fixed.w
Estimated treatment effect and standard error in subgroups (fixed effect model)
- if subgroup is not missing.

lower.fixed.w, upper.fixed.w
Lower and upper confidence interval limits in subgroups (fixed effect model)
- if subgroup is not missing.

statistic.fixed.w, pval.fixed.w
z-value and p-value for test of treatment effect in subgroups (fixed effect model)
- if subgroup is not missing.

TE.random.w, seTE.random.w
Estimated treatment effect and standard error in subgroups (random effects model)
- if subgroup is not missing.

lower.random.w, upper.random.w
Lower and upper confidence interval limits in subgroups (random effects model)
- if subgroup is not missing.

statistic.random.w, pval.random.w
z-value or t-value and corresponding p-value for test of treatment effect in sub-
groups (random effects model) - if subgroup is not missing.

w.fixed.w, w.random.w
Weight of subgroups (in fixed and random effects model) - if subgroup is not
missing.

df.hakn.w Degrees of freedom for test of treatment effect for Hartung-Knapp method in
subgroups - if subgroup is not missing and hakn = TRUE.

event.e.w Number of events in experimental group in subgroups - if subgroup is not mis-
ing.
time.e.w Total person time in subgroups (experimental group) - if subgroup is not miss-
ing.
n.e.w Number of observations in experimental group in subgroups - if subgroup is not
missing.
event.c.w Number of events in control group in subgroups - if subgroup is not missing.
time.c.w Total person time in subgroups (control group) - if subgroup is not missing.
n.c.w Number of observations in control group in subgroups - if subgroup is not mis-
ing.

k.w Number of studies combined within subgroups - if subgroup is not missing.

k.all.w Number of all studies in subgroups - if subgroup is not missing.

Q.w.fixed Overall within subgroups heterogeneity statistic Q (based on fixed effect model)
- if subgroup is not missing.

Q.w.random Overall within subgroups heterogeneity statistic Q (based on random effects
model) - if subgroup is not missing (only calculated if argument tau.common is
TRUE).

df.Q.w Degrees of freedom for test of overall within subgroups heterogeneity - if subgroup
is not missing.
pval.Q.w.fixed P-value of within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

pval.Q.w.random P-value of within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

Q.b.fixed Overall between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

Q.b.random Overall between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

df.Q.b Degrees of freedom for test of overall between subgroups heterogeneity - if subgroup is not missing.

pval.Q.b.fixed P-value of between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

pval.Q.b.random P-value of between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

tau.w Square-root of between-study variance within subgroups - if subgroup is not missing.

H.w Heterogeneity statistic H within subgroups - if subgroup is not missing.

lower.H.w, upper.H.w Lower and upper confidence limit for heterogeneity statistic H within subgroups - if subgroup is not missing.

I2.w Heterogeneity statistic I² within subgroups - if subgroup is not missing.

lower.I2.w, upper.I2.w Lower and upper confidence limit for heterogeneity statistic I² within subgroups - if subgroup is not missing.

keepdata As defined above.

data Original data (set) used in function call (if keepdata = TRUE).

subset Information on subset of original data used in meta-analysis (if keepdata = TRUE).

.glmm.fixed GLMM object generated by call of rma.glmm function (fixed effect model).

.glmm.random GLMM object generated by call of rma.glmm function (random effects model).

call Function call.

version Version of R package meta used to create object.

version.metafor Version of R package metafor used for GLMMs.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>
References


See Also

*metabin, update.meta, print.meta*

Examples

data(smoking)
m1 <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
data = smoking, studlab = study)
print(m1, digits = 2)

m2 <- update(m1, method = "Cochran")
print(m2, digits = 2)

data(lungcancer)
m3 <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
data = lungcancer, studlab = study)
print(m3, digits = 2)

# Redo Cochran meta-analysis with inflated standard errors
#
# All cause mortality
# \[\text{TEa} \leftarrow \log(\frac{\text{smoking$d.smokers/smoking$py.smokers}}{\text{smoking$d.nonsmokers/smoking$py.nonsmokers}})\]

seTEa <- \sqrt{\frac{1}{\text{smoking$d.smokers}} + \frac{1}{\text{smoking$d.nonsmokers}} + \frac{2.5}{\text{smoking$d.nonsmokers}}}\\
metagen(\text{TEa, seTEa, sm = "IRR", studlab = smoking$study})

# Lung cancer mortality
#
# \[\text{TEl} \leftarrow \log(\frac{\text{lungcancer$d.smokers/lungcancer$py.smokers}}{\text{lungcancer$d.nonsmokers/lungcancer$py.nonsmokers}})\]

seTEl <- \sqrt{\frac{1}{\text{lungcancer$d.smokers}} + \frac{1}{\text{lungcancer$d.nonsmokers}} + \frac{2.25}{\text{lungcancer$d.nonsmokers}}}\\
metagen(\text{TEl, seTEl, sm = "IRR", studlab = lungcancer$study})

## Not run:
# Meta-analysis using generalised linear mixed models
# (only if R packages 'metafor' and 'lme4' are available)
# Poisson regression model (fixed study effects)
#
# \[m4 \leftarrow \text{metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers, data = smoking, studlab = study, method = "GLMM")}\]

# Mixed-effects Poisson regression model (random study effects)
#
# \[\text{update(m4, model.glmm = "UM.RS", nAGQ = 1)}\]

# Generalised linear mixed model (conditional Poisson-Normal)
#
# \[\text{update(m4, model.glmm = "CM.EL")}\]

## End(Not run)

---

**metainf**

Influence analysis in meta-analysis using leave-one-out method

---

**Description**

Performs an influence analysis. Pooled estimates are calculated omitting one study at a time.

**Usage**

metainf(x, pooled, sortvar)
Arguments

x
An object of class meta.
pooled
A character string indicating whether a fixed effect or random effects model is used for pooling. Either missing (see Details), "fixed" or "random", can be abbreviated.
sortvar
An optional vector used to sort the individual studies (must be of same length as x$TE).

Details

Performs a influence analysis; pooled estimates are calculated omitting one study at a time. Studies are sorted according to sortvar.

Information from object x is utilised if argument pooled is missing. A fixed effect model is assumed (pooled="fixed") if argument x$fixed is TRUE; a random effects model is assumed (pooled="random") if argument x$random is TRUE and x$fixed is FALSE.

Value

An object of class c("metainf","meta") with corresponding print, and forest functions. The object is a list containing the following components:

- TE, seTE
  Estimated treatment effect and standard error of pooled estimate in influence analysis.
- lower, upper
  Lower and upper confidence interval limits.
- statistic
  Statistic for test of overall effect.
- pval
  P-value for test of overall effect.
- studlab
  Study label describing omission of studies.
- w
  Sum of weights from fixed effect or random effects model.
- I2
  Heterogeneity statistic $I^2$.
- Rb
  Heterogeneity statistic $R_b$.
- tau
  Square-root of between-study variance.
- df.hakn
  Degrees of freedom for test of treatment effect for Hartung-Knapp method (only if hakn = TRUE).
- sm
  Summary measure.
- method
  Method used for pooling.
- k
  Number of studies combined in meta-analysis.
- pooled
  As defined above.
- fixed
  A logical indicating whether analysis is based on fixed effect model.
- random
  A logical indicating whether analysis is based on random effects model.
- TE.fixed, seTE.fixed
  Value is NA.
- TE.random, seTE.random
  Value is NA.
Q
level.ma
hakn
adhoc.hakn
method.tau
tau.preset
TE.tau
n.harmonic.mean
version

Value is NA.
The level used to calculate confidence intervals for pooled estimates.
A logical indicating whether the method by Hartung and Knapp is used to adjust test statistics and confidence intervals.
A character string indicating whether ad hoc variance correction should be used for Hartung-Knapp method.
A character string indicating which method is used to estimate the between-study variance $\tau^2$.
Prespecified value for the square root of the between-study variance $\tau^2$.
Overall treatment effect used to estimate the between-study variance $\tau^2$.
Harmonic mean of number of observations (for back transformation of Freeman-Tukey Double arcsine transformation).
Version of R package meta used to create object.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also
metabin, metacont, print.meta

Examples
data(Fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin, studlab = study, sm = "RR", method = "I")
m1
metainf(m1)
m1, pooled = "random"
forest(metainf(m1))
forest(metainf(m1), layout = "revman5")
forest(metainf(m1, pooled = "random"))
metainf(m1, sortvar = study)
m1, sortvar = 7:1

m2 <- update(m1, title = "Fleiss1993bin meta-analysis", backtransf = FALSE)
m1

m3 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
metamean

Meta-analysis of single means

Description

Calculation of an overall mean from studies reporting a single mean using the inverse variance method for pooling; inverse variance weighting is used for pooling.

Usage

```
metamean(
 n,
 mean,
 sd,
 studlab,
 data = NULL,
 subset = NULL,
 exclude = NULL,
 median,
 q1,
 q3,
 min,
 max,
 method.mean = "Luo",
 method.sd = "Shi",
 approx.mean,
 approx.sd,
 sm = gs("smmean"),
 method.ci = gs("method.ci.cont"),
 level = gs("level"),
 level.ma = gs("level.ma"),
 fixed = gs("fixed"),
 random = gs("random") | !is.null(tau.preset),
 overall = fixed | random,
 overall.hetstat = fixed | random,
 hakn = gs("hakn"),
 adhoc.hakn = gs("adhoc.hakn"),
 method.tau = gs("method.tau"),
 method.tau.ci = gs("method.tau.ci"),
 tau.preset = NULL,
 TE.tau = NULL,
 tau.common = gs("tau.common"),
 prediction = gs("prediction"),
```

level.predict = gs("level.predict"),
null.effect = NA,
method.bias = gs("method.bias"),
backtransf = gs("backtransf"),
text.fixed = gs("text.fixed"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.fixed = gs("text.w.fixed"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
keepdata = gs("keepdata"),
warn = gs("warn"),
warn.deprecated = gs("warn.deprecated"),
control = NULL,
...)

Arguments

n Number of observations.
mean Estimated mean.
sd Standard deviation.
studlab An optional vector with study labels.
data An optional data frame containing the study information.
subset An optional vector specifying a subset of studies to be used.
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
median Median (used to estimate the mean and standard deviation).
q1 First quartile (used to estimate the mean and standard deviation).
q3 Third quartile (used to estimate the mean and standard deviation).
min Minimum (used to estimate the mean and standard deviation).
max Maximum (used to estimate the mean and standard deviation).
method.mean A character string indicating which method to use to approximate the median and other statistics (see Details).
method.sd A character string indicating which method to use to approximate the standard deviation from sample size, median, interquartile range and range (see Details).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>approx.mean</td>
<td>Approximation method to estimate means (see Details).</td>
</tr>
<tr>
<td>approx.sd</td>
<td>Approximation method to estimate standard deviations (see Details).</td>
</tr>
<tr>
<td>sm</td>
<td>A character string indicating which summary measure (&quot;MRAW&quot; or &quot;MLN&quot;) is to be used for pooling of studies.</td>
</tr>
<tr>
<td>method.ci</td>
<td>A character string indicating which method is used to calculate confidence intervals for individual studies, see Details.</td>
</tr>
<tr>
<td>level</td>
<td>The level used to calculate confidence intervals for individual studies.</td>
</tr>
<tr>
<td>level.ma</td>
<td>The level used to calculate confidence intervals for meta-analysis estimates.</td>
</tr>
<tr>
<td>fixed</td>
<td>A logical indicating whether a fixed effect / common effect meta-analysis should be conducted.</td>
</tr>
<tr>
<td>random</td>
<td>A logical indicating whether a random effects meta-analysis should be conducted.</td>
</tr>
<tr>
<td>overall</td>
<td>A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.</td>
</tr>
<tr>
<td>overall.hetstat</td>
<td>A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.</td>
</tr>
<tr>
<td>hakn</td>
<td>A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.</td>
</tr>
<tr>
<td>adhoc.hakn</td>
<td>A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate, see Details.</td>
</tr>
<tr>
<td>method.tau</td>
<td>A character string indicating which method is used to estimate the between-study variance $\tau^2$ and its square root $\tau$. Either &quot;DL&quot;, &quot;PM&quot;, &quot;REML&quot;, &quot;ML&quot;, &quot;HS&quot;, &quot;SJ&quot;, &quot;HE&quot;, or &quot;EB&quot;, can be abbreviated.</td>
</tr>
<tr>
<td>method.tau.ci</td>
<td>A character string indicating which method is used to estimate the confidence interval of $\tau^2$ and $\tau$. Either &quot;QP&quot;, &quot;BJ&quot;, or &quot;J&quot;, or &quot;,&quot;, can be abbreviated.</td>
</tr>
<tr>
<td>tau.preset</td>
<td>Prespecified value for the square root of the between-study variance $\tau^2$.</td>
</tr>
<tr>
<td>TE.tau</td>
<td>Overall treatment effect used to estimate the between-study variance tau-squared.</td>
</tr>
<tr>
<td>tau.common</td>
<td>A logical indicating whether tau-squared should be the same across subgroups.</td>
</tr>
<tr>
<td>prediction</td>
<td>A logical indicating whether a prediction interval should be printed.</td>
</tr>
<tr>
<td>level.predict</td>
<td>The level used to calculate prediction interval for a new study.</td>
</tr>
<tr>
<td>null.effect</td>
<td>A numeric value specifying the effect under the null hypothesis.</td>
</tr>
<tr>
<td>method.bias</td>
<td>A character string indicating which test is to be used. Either &quot;Begg&quot;, &quot;Egger&quot;, or &quot;Thompson&quot;, can be abbreviated. See function metabias.</td>
</tr>
<tr>
<td>backtransf</td>
<td>A logical indicating whether results should be back transformed in printouts and plots for sm = &quot;MLN&quot;. If TRUE (default), results will be presented as means; otherwise logarithm of means will be shown.</td>
</tr>
<tr>
<td>text.fixed</td>
<td>A character string used in printouts and forest plot to label the pooled fixed effect estimate.</td>
</tr>
</tbody>
</table>
**Details**

Fixed effect and random effects meta-analysis of single means to calculate an overall mean; inverse variance weighting is used for pooling. The following transformations of means are implemented to calculate an overall mean:

- Raw, i.e. untransformed, means (sm = "MRAW", default)
- Log transformed means (sm = "MLN")

Note, you should use R function `metacont` to compare means of pairwise comparisons instead of using `metamean` for each treatment arm separately which will break randomisation in randomised controlled trials.
Calculations are conducted on the log scale if \( sm = "\text{ROM}" \). Accordingly, list elements \( \text{TE} \), \( \text{TE}.\text{fixed} \), and \( \text{TE.random} \) contain the logarithm of means. In printouts and plots these values are back transformed if argument \( \text{backtransf} = \text{TRUE} \).

Default settings are utilised for several arguments (assignments using \texttt{gs} function). These defaults can be changed for the current R session using the \texttt{settings.meta} function.

Furthermore, R function \texttt{update.meta} can be used to rerun a meta-analysis with different settings.

**Approximate means from sample sizes, medians and other statistics:**
Missing means can be derived from
1. sample size, median, interquartile range and range (arguments \( n, \text{median}, q1, q3, \text{min}, \) and \( \text{max} \)),
2. sample size, median and interquartile range (arguments \( n, \text{median}, q1, \) and \( q3 \)), or
3. sample size, median and range (arguments \( n, \text{median}, \text{min}, \) and \( \text{max} \)).

By default, methods described in Luo et al. (2018) are utilized (argument \texttt{method.mean} = "Luo"):  
• equation (15) if sample size, median, interquartile range and range are available,
• equation (11) if sample size, median and interquartile range are available,
• equation (7) if sample size, median and range are available.

Instead the methods described in Wan et al. (2014) are used if argument \texttt{method.mean} = "Wan"):  
• equation (10) if sample size, median, interquartile range and range are available,
• equation (14) if sample size, median and interquartile range are available,
• equation (2) if sample size, median and range are available.

By default, missing means are replaced successively using interquartile ranges and ranges (if available), interquartile ranges (if available) and finally ranges. Argument \texttt{approx.mean} can be used to overwrite this behaviour for each individual study and treatment arm:
• use means directly (entry "" in argument \texttt{approx.mean});
• median, interquartile range and range ("\text{iqr.range}");
• median and interquartile range ("\text{iqr}");
• median and range ("\text{range}").

**Approximate standard deviations from sample sizes, medians and other statistics:**
Missing standard deviations can be derived from
1. sample size, median, interquartile range and range (arguments \( n, \text{median}, q1, q3, \text{min}, \) and \( \text{max} \)),
2. sample size, median and interquartile range (arguments \( n, \text{median}, q1 \) and \( q3 \)), or
3. sample size, median and range (arguments \( n, \text{median}, \text{min} \) and \( \text{max} \)).

Wan et al. (2014) describe methods to estimate the standard deviation from the sample size, median and additional statistics. Shi et al. (2020) provide an improved estimate of the standard deviation if the interquartile range and range are available in addition to the sample size and median. Accordingly, equation (11) in Shi et al. (2020) is the default (argument \texttt{method.sd} = "Shi"), if the median, interquartile range and range are provided. The method by Wan et al. (2014) is used if argument \texttt{method.sd} = "Wan" and, depending on the sample size, either equation (12) or (13) is used. If only the interquartile range or range is available, equations (15) / (16) and (7) / (9) in Wan et al. (2014) are used, respectively.
By default, missing standard deviations are replaced successively using these methods, i.e., interquartile ranges and ranges are used before interquartile ranges before ranges. Argument approx.sd can be used to overwrite this default for each individual study and treatment arms:

- sample size, median, interquartile range and range ("iqr.range");
- sample size, median and interquartile range ("iqr");
- sample size, median and range ("range").

Confidence intervals for individual studies:
For untransformed means (argument sm = "MRAW"), the confidence interval for individual studies can be based on:

- standard normal distribution (method.ci = "z", default), or
- t-distribution (method.ci = "t").

Estimation of between-study variance:
The following methods to estimate the between-study variance $\tau^2$ are available:

- DerSimonian-Laird estimator (method.tau = "DL")
- Paule-Mandel estimator (method.tau = "PM")
- Restricted maximum-likelihood estimator (method.tau = "REML")
- Maximum-likelihood estimator (method.tau = "ML")
- Hunter-Schmidt estimator (method.tau = "HS")
- Sidik-Jonkman estimator (method.tau = "SJ")
- Hedges estimator (method.tau = "HE")
- Empirical Bayes estimator (method.tau = "EB")

See metagen for more information on these estimators.

Confidence interval for the between-study variance:
The following methods to calculate a confidence interval for $\tau^2$ and $\tau$ are available.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.tau.ci = &quot;J&quot;</td>
<td>Method by Jackson</td>
</tr>
<tr>
<td>method.tau.ci = &quot;BJ&quot;</td>
<td>Method by Biggerstaff and Jackson</td>
</tr>
<tr>
<td>method.tau.ci = &quot;QP&quot;</td>
<td>Q-Profile method</td>
</tr>
</tbody>
</table>

See metagen for more information on these methods. No confidence intervals for $\tau^2$ and $\tau$ are calculated if method.tau.ci = "".

Hartung-Knapp method:
Hartung and Knapp (2001) proposed an alternative method for random effects meta-analysis based on a refined variance estimator for the treatment estimate. Simulation studies (Hartung and Knapp, 2001; IntHout et al., 2014; Langan et al., 2019) show improved coverage probabilities compared to the classic random effects method.

In rare settings with very homogeneous treatment estimates, the Hartung-Knapp variance estimate can be arbitrarily small resulting in a very narrow confidence interval (Knapp and Hartung, 2003; Wiksten et al., 2016). In such cases, an ad hoc variance correction has been proposed by utilising the variance estimate from the classic random effects model with the HK method (Knapp and...
Hartung, 2003; IQWiQ, 2020). An alternative approach is to use the wider confidence interval of classic fixed or random effects meta-analysis and the HK method (Wiksten et al., 2016; Jackson et al., 2017).

Argument `adhoc.hakn` can be used to choose the *ad hoc* method:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Ad hoc method</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>adhoc.hakn = &quot;&quot;</code></td>
<td>not used</td>
</tr>
<tr>
<td><code>adhoc.hakn = &quot;se&quot;</code></td>
<td>use variance correction if HK standard error is smaller than standard error from classic random effects meta-analysis (Knapp and Hartung, 2003)</td>
</tr>
<tr>
<td><code>adhoc.hakn = &quot;iqwig6&quot;</code></td>
<td>use variance correction if HK confidence interval is narrower than CI from classic random effects model with DerSimonian-Laird estimator (IQWiG, 2020)</td>
</tr>
<tr>
<td><code>adhoc.hakn = &quot;ci&quot;</code></td>
<td>use wider confidence interval of classic random effects and HK meta-analysis (Hybrid method 2 in Jackson et al., 2017)</td>
</tr>
</tbody>
</table>

**Prediction interval:**

A prediction interval for the proportion in a new study (Higgins et al., 2009) is calculated if arguments `prediction` and `random` are `TRUE`. Note, the definition of prediction intervals varies in the literature. This function implements equation (12) of Higgins et al., (2009) which proposed a *t* distribution with *K*-2 degrees of freedom where *K* corresponds to the number of studies in the meta-analysis.

**Subgroup analysis:**

Argument `subgroup` can be used to conduct subgroup analysis for a categorical covariate. The `metareg` function can be used instead for more than one categorical covariate or continuous covariates.

**Exclusion of studies from meta-analysis:**

Arguments `subset` and `exclude` can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument `subset`, while excluded studies are shown in printouts and forest plots using argument `exclude` (see Examples in `metagen`). Meta-analysis results are the same for both arguments.

**Presentation of meta-analysis results:**

Internally, both fixed effect and random effects models are calculated regardless of values chosen for arguments `fixed` and `random`. Accordingly, the estimate for the random effects model can be extracted from component `TE.random` of an object of class "meta" even if argument `random = FALSE`. However, all functions in R package `meta` will adequately consider the values for `fixed` and `random`. E.g. functions `print.meta` and `forest.meta` will not print results for the random effects model if `random = FALSE`.

**Value**

An object of class `c("metamean", "meta")` with corresponding `print`, `summary`, and `forest` functions. The object is a list containing the following components:

- `n`, `mean`, `sd`, As defined above.
studlab, exclude, sm, method.ci,
    As defined above.
median, q1, q3, min, max,
    As defined above.
method.mean, method.sd,
    As defined above.
approx.mean, approx.sd,
    As defined above.
level, level.ma,
    As defined above.
fixed, random,
    As defined above.
overall, overall.hetstat,
    As defined above.
hakn, adhoc.hakn, method.tau, method.tau.ci,
    As defined above.
tau.preset, TE.tau, method.bias,
    As defined above.
tau.common, title, complab, outclab,
    As defined above.
subgroup, subgroup.name, print.subgroup.name, sep.subgroup, warn
    As defined above.
TE, seTE
    Estimated effect (mean or log mean) and standard error of individual studies.
lower, upper
    Lower and upper confidence interval limits for individual studies.
statistic, pval
    Statistic and p-value for test of treatment effect for individual studies.
w.fixed, w.random
    Weight of individual studies (in fixed and random effects model).
TE.fixed, seTE.fixed
    Estimated overall effect (mean or log mean) and standard error (fixed effect model).
lower.fixed, upper.fixed
    Lower and upper confidence interval limits (fixed effect model).
statistic.fixed, pval.fixed
    Statistic and p-value for test of overall treatment effect (fixed effect model).
TE.random, seTE.random
    Estimated overall effect (mean or log mean) and standard error (random effects model).
lower.random, upper.random
    Lower and upper confidence interval limits (random effects model).
statistic.random, pval.random
    Statistic and p-value for test of overall treatment effect (random effects model).
prediction, level.predict
    As defined above.
seTE.predict
    Standard error utilised for prediction interval.
lower.predict, upper.predict
   Lower and upper limits of prediction interval.

k
   Number of studies combined in meta-analysis.

Q
   Heterogeneity statistic.

tau2
   Between-study variance $\tau^2$.

se.tau2
   Standard error of $\tau^2$.

lower.tau2, upper.tau2
   Lower and upper limit of confidence interval for $\tau^2$.

tau
   Square-root of between-study variance $\tau$.

lower.tau, upper.tau
   Lower and upper limit of confidence interval for $\tau$.

H
   Heterogeneity statistic H.

lower.H, upper.H
   Lower and upper confidence limit for heterogeneity statistic H.

I2
   Heterogeneity statistic I$^2$.

lower.I2, upper.I2
   Lower and upper confidence limit for heterogeneity statistic I$^2$.

Rb
   Heterogeneity statistic $R_b$.

lower.Rb, upper.Rb
   Lower and upper confidence limit for heterogeneity statistic $R_b$.

method
   Pooling method: "Inverse".

df.hakn
   Degrees of freedom for test of treatment effect for Hartung-Knapp method (only
   if hakn = TRUE).

bylevs
   Levels of grouping variable - if subgroup is not missing.

TE.fixed.w, seTE.fixed.w
   Estimated effect and standard error in subgroups (fixed effect model) - if subgroup
   is not missing.

lower.fixed.w, upper.fixed.w
   Lower and upper confidence interval limits in subgroups (fixed effect model) -
   if subgroup is not missing.

statistic.fixed.w, pval.fixed.w
   Statistics and p-values for test of treatment effect in subgroups (fixed effect
   model) - if subgroup is not missing.

TE.random.w, seTE.random.w
   Estimated effect and standard error in subgroups (random effects model) - if subgroup
   is not missing.

lower.random.w, upper.random.w
   Lower and upper confidence interval limits in subgroups (random effects model)
   - if subgroup is not missing.

statistic.random.w, pval.random.w
   Statistics and p-values for test of treatment effect in subgroups (random effects
   model) - if subgroup is not missing.
w.fixed.w, w.random.w
Weight of subgroups (in fixed and random effects model) - if subgroup is not missing.
df.hakn.w
Degrees of freedom for test of effect for Hartung-Knapp method in subgroups - if subgroup is not missing and hakn = TRUE.
n.e.w
Number of observations in experimental group in subgroups - if subgroup is not missing.
n.c.w
Number of observations in control group in subgroups - if subgroup is not missing.
k.w
Number of studies combined within subgroups - if subgroup is not missing.
k.all.w
Number of all studies in subgroups - if subgroup is not missing.
Q.w.fixed
Overall within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.
Q.w.random
Overall within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing (only calculated if argument tau.common is TRUE).
df.Q.w
Degrees of freedom for test of overall within subgroups heterogeneity - if subgroup is not missing.
pval.Q.w.fixed
P-value of within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.
pval.Q.w.random
P-value of within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.
Q.b.fixed
Overall between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.
Q.b.random
Overall between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.
df.Q.b
Degrees of freedom for test of overall between subgroups heterogeneity - if subgroup is not missing.
pval.Q.b.fixed
P-value of between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.
pval.Q.b.random
P-value of between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.
tau.w
Square-root of between-study variance within subgroups - if subgroup is not missing.
H.w
Heterogeneity statistic H within subgroups - if subgroup is not missing.
lower.H.w, upper.H.w
Lower and upper confidence limit for heterogeneity statistic H within subgroups - if subgroup is not missing.
I2.w
Heterogeneity statistic I^2 within subgroups - if subgroup is not missing.
lower.I2.w, upper.I2.w
Lower and upper confidence limit for heterogeneity statistic I^2 within subgroups - if subgroup is not missing.
keepdata  As defined above.
data    Original data (set) used in function call (if keepdata = TRUE).
subset  Information on subset of original data used in meta-analysis (if keepdata = TRUE).
call     Function call.
version  Version of R package *meta* used to create object.

**Note**

The function **metagen** is called internally to calculate individual and overall treatment estimates and standard errors.

**Author(s)**

Guido Schwarzer <sc@imbi.uni-freiburg.de>

**References**


**See Also**

update.meta, metamean, metagen
Examples

```r
m1 <- metamean(rep(100, 3), 1:3, rep(1, 3))
m1

m2 <- update(m1, sm = "MLN")
m2

With test for overall mean equal to 2
#
update(m1, null.effect = 2)
update(m2, null.effect = 2)

Print results without back-transformation
#
update(m1, backtransf = FALSE)
update(m2, backtransf = FALSE)
update(m1, null.effect = 2, backtransf = FALSE)
update(m2, null.effect = 2, backtransf = FALSE)
```

Description

This function can be used to merge pooled results of two meta-analyses into a single meta-analysis object. This is, for example, useful to produce a forest plot of a random-effects meta-analysis with and without using the Hartung-Knapp method.

Usage

```r
metamerge(
 meta1,
 meta2,
 pooled1,
 pooled2,
 text.pooled1,
 text.pooled2,
 text.w.pooled1,
 text.w.pooled2,
 detail.tau1,
 detail.tau2,
 backtransf
)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>meta1</td>
<td>First meta-analysis object (see Details).</td>
</tr>
<tr>
<td>meta2</td>
<td>Second meta-analysis object (see Details).</td>
</tr>
<tr>
<td>pooled1</td>
<td>A character string indicating whether results of fixed effect or random effects model should be considered for first meta-analysis. Either &quot;fixed&quot; or &quot;random&quot;, can be abbreviated.</td>
</tr>
<tr>
<td>pooled2</td>
<td>A character string indicating whether results of fixed effect or random effects model should be considered for second meta-analysis. Either &quot;fixed&quot; or &quot;random&quot;, can be abbreviated.</td>
</tr>
<tr>
<td>text.pooled1</td>
<td>A character string used in printouts and forest plot to label the estimate from the first meta-analysis.</td>
</tr>
<tr>
<td>text.pooled2</td>
<td>A character string used in printouts and forest plot to label the estimate from the second meta-analysis.</td>
</tr>
<tr>
<td>text.w.pooled1</td>
<td>A character string used to label weights of the first meta-analysis.</td>
</tr>
<tr>
<td>text.w.pooled2</td>
<td>A character string used to label weights of the second meta-analysis.</td>
</tr>
<tr>
<td>detail.tau1</td>
<td>A character string used to label estimate of between-study variance of the first meta-analysis.</td>
</tr>
<tr>
<td>detail.tau2</td>
<td>A character string used to label estimate of between-study variance of the second meta-analysis.</td>
</tr>
<tr>
<td>backtransf</td>
<td>A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE (default), results for sm=&quot;OR&quot; are printed as odds ratios rather than log odds ratios, for example.</td>
</tr>
</tbody>
</table>

Details

In R package meta, objects of class "meta" contain results of both a fixed effect and random effects meta-analysis. This function enables the user to keep the results of one of these models and to add results from a second meta-analysis or a sensitivity analysis.

Applications of this function include printing and plotting results of the fixed effect or random effects meta-analysis and the

- Hartung-Knapp method (see argument hakn in metagen),
- trim-and-fill method (trimfill),
- limit meta-analysis (limitmeta from R package metasens),
- Copas selection model (copas from R package metasens),
- robust variance meta-analysis model (robu from R package robumeta).

The first argument must be an object created by a meta-analysis function, e.g., metagen or metabin. It is also possible to provide an object created with limitmeta or copas. In this case, arguments meta2 and pooled2 will be ignored.

The second meta-analysis could be an object created by a meta-analysis function or with trimfill, limitmeta, copas, or robu.

The created meta-analysis object only contains the study results from the first meta-analysis which are shown in printouts and forest plots. This only makes a difference for meta-analysis methods
where individual study results differ, e.g., Mantel-Haenszel and Peto method for binary outcomes (see `metabin`).

R function `metabind` can be used to print and plot the results of more than two meta-analyses, however, without showing individual study results.

**Value**

An object of class "meta" and "metamerge" with corresponding print, summary, and forest functions. The following list elements have a different meaning:

- **TE, seTE, studLab**
  - Treatment estimate, standard error, and study labels (first meta-analysis).
- **lower, upper**
  - Lower and upper confidence interval limits for individual studies (first meta-analysis).
- **statistic, pval**
  - Statistic and p-value for test of treatment effect for individual studies (first meta-analysis).
- **w.fixed**
  - Weight of individual studies (first meta-analysis).
- **w.random**
  - Weight of individual studies (second meta-analysis).
- **TE.fixed, seTE.fixed**
  - Estimated overall treatment effect and standard error (first meta-analysis).
- **lower.fixed, upper.fixed**
  - Lower and upper confidence interval limits (first meta-analysis).
- **statistic.fixed, pval.fixed**
  - Statistic and p-value for test of overall treatment effect (first meta-analysis).
- **TE.random, seTE.random**
  - Estimated overall treatment effect and standard error (second meta-analysis).
- **lower.random, upper.random**
  - Lower and upper confidence interval limits (second meta-analysis).
- **statistic.random, pval.random**
  - Statistic and p-value for test of overall treatment effect (second meta-analysis).
- **lower.predict, upper.predict**
  - Lower and upper limits of prediction interval (related to first meta-analysis).
- **k**
  - Number of studies combined in first meta-analysis.
- **Q, df.Q**
  - Heterogeneity statistic (first meta-analysis).
- **pval.Q**
  - P-value of heterogeneity test (first meta-analysis).
- **tau2**
  - Between-study variance(s) \( \tau^2 \) (first and second meta-analysis).
- **lower.tau2, upper.tau2**
  - Lower and upper limit of confidence interval(s) for \( \tau^2 \) (first and second meta-analysis).
- **tau**
  - Square-root of between-study variance(s) \( \tau \) (first and second meta-analysis).
- **lower.tau, upper.tau**
  - Lower and upper limit of confidence interval(s) for \( \tau \) (first and second meta-analysis).
text.fixed  Label for the first meta-analysis.
text.random  Label for the second meta-analysis.

See metagen for information on other list elements.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also
metagen, metabind

Examples

data(Fleiss1993cont)
  m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
      data = Fleiss1993cont, sm = "MD", fixed = FALSE,
      text.random = "Classic random effects", text.w.random = "RE")
  m2 <- update(m1, hakn = TRUE,
      text.random = "Hartung-Knapp method", text.w.random = "HK")
  m12 <- metamerge(m1, m2)
  forest(m12, rightcols = c("effect", "ci", "w.fixed"))

  m3 <- update(m1,
      text.random = "Random effects moded (DL)", text.w.random = "DL")
  m4 <- update(m1, method.tau = "REML",
      text.random = "Random effects moded (REML)", text.w.random = "REML")
  m34 <- metamerge(m3, m4)

  data(Fleiss1993bin)
  m5 <- metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin,
      studlab = paste(study, year), sm = "OR", random = FALSE, 
      text.fixed = "MH method", text.w.fixed = "MH")

  m5 <- update(m5, hakn = TRUE,
      text.random = "Hartung-Knapp method", text.w.random = "HK")

  m56 <- metamerge(m5, m6)

metaprop <- update(m5, method = "Peto", text.fixed = "Peto method", text.w.fixed = "Peto")

# Merge results (show individual results for MH method)
#
m56 <- metamerge(m5, m6)

m56

forest(m56, digits = 4)

# Merge results (show individual results for Peto method)
#
m65 <- metamerge(m6, m5)

m65

---

**metaprop**

*Meta-analysis of single proportions*

**Description**

Calculation of an overall proportion from studies reporting a single proportion. Inverse variance method and generalised linear mixed model (GLMM) are available for pooling. For GLMMs, the `rma.glmm` function from R package **metafor** (Viechtbauer 2010) is called internally.

**Usage**

```r
metaprop(
 event,
 n,
 studlab,
 data = NULL,
 subset = NULL,
 exclude = NULL,
 method,
 sm = gs("smprop"),
 incr = gs("incr"),
 allincr = gs("allincr"),
 addincr = gs("addincr"),
 method.ci = gs("method.ci.prop"),
 level = gs("level"),
 level.ma = gs("level.ma"),
 fixed = gs("fixed"),
 random = gs("random") | !is.null(tau.preset),
 overall = fixed | random,
 overall.hetstat = fixed | random,
 hakn = gs("hakn"),
 adhoc.hakn = gs("adhoc.hakn"),
```
method.tau,
method.tau.ci = gs("method.tau.ci"),
tau.preset = NULL,
TE.tau = NULL,
tau.common = gs("tau.common"),
prediction = gs("prediction"),
level.predict = gs("level.predict"),
null.effect = NA,
method.bias = gs("method.bias"),
backtransf = gs("backtransf"),
pscale = 1,
text.fixed = gs("text.fixed"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.fixed = gs("text.w.fixed"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
keepdata = gs("keepdata"),
warn = gs("warn"),
warn.deprecated = gs("warn.deprecated"),
control = NULL,
...
)

Arguments

- **event**: Number of events.
- **n**: Number of observations.
- **studlab**: An optional vector with study labels.
- **data**: An optional data frame containing the study information, i.e., event and n.
- **subset**: An optional vector specifying a subset of studies to be used.
- **exclude**: An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
- **method**: A character string indicating which method is to be used for pooling of studies. One of "Inverse" and "GLMM", can be abbreviated.
- **sm**: A character string indicating which summary measure ("PLOGIT", "PAS", "PFT", "PLN", or "PRAW") is to be used for pooling of studies, see Details.
**metaprop**

**incr**
A numeric which is added to event number and sample size of studies with zero or all events, i.e., studies with an event probability of either 0 or 1.

**allincr**
A logical indicating if `incr` is considered for all studies if at least one study has either zero or all events. If `FALSE` (default), `incr` is considered only in studies with zero or all events.

**addincr**
A logical indicating if `incr` is used for all studies irrespective of number of events.

**method.ci**
A character string indicating which method is used to calculate confidence intervals for individual studies, see Details.

**level**
The level used to calculate confidence intervals for individual studies.

**level.ma**
The level used to calculate confidence intervals for meta-analysis estimates.

**fixed**
A logical indicating whether a fixed effect / common effect meta-analysis should be conducted.

**random**
A logical indicating whether a random effects meta-analysis should be conducted.

**overall**
A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

**overall.hetstat**
A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

**hakn**
A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.

**adhoc.hakn**
A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate, see Details.

**method.tau**
A character string indicating which method is used to estimate the between-study variance $\tau^2$ and its square root $\tau$. Either "DL", "PM", "REML", "ML", "HS", "SJ", "HE", or "EB", can be abbreviated.

**method.tau.ci**
A character string indicating which method is used to estimate the confidence interval of $\tau^2$ and $\tau$. Either "QP", "BJ", or "J", or "", can be abbreviated.

**tau.preset**
Prespecified value for the square root of the between-study variance $\tau^2$.

**TE.tau**
Overall treatment effect used to estimate the between-study variance tau-squared.

**tau.common**
A logical indicating whether tau-squared should be the same across subgroups.

**prediction**
A logical indicating whether a prediction interval should be printed.

**level.predict**
The level used to calculate prediction interval for a new study.

**null.effect**
A numeric value specifying the effect under the null hypothesis.

**method.bias**
A character string indicating which test is to be used. Either "Begg", "Egger", or "Thompson", can be abbreviated. See function `metabias`.

**backtransf**
A logical indicating whether results for transformed proportions (argument `sm` != "PRAW") should be back transformed in printouts and plots. If `TRUE` (default), results will be presented as proportions; otherwise transformed proportions will be shown. See Details for presentation of confidence intervals.
pscale  A numeric defining a scaling factor for printing of single event probabilities.
text.fixed  A character string used in printouts and forest plot to label the pooled fixed effect estimate.
text.random  A character string used in printouts and forest plot to label the pooled random effects estimate.
text.predict  A character string used in printouts and forest plot to label the prediction interval.
text.w.fixed  A character string used to label weights of fixed effect model.
text.w.random  A character string used to label weights of random effects model.
title  Title of meta-analysis / systematic review.
complab  Comparison label.
outclab  Outcome label.
subgroup  An optional vector to conduct a meta-analysis with subgroups.
subgroup.name  A character string with a name for the subgroup variable.
print.subgroup.name  A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.
sep.subgroup  A character string defining the separator between name of subgroup variable and subgroup label.
test.subgroup  A logical value indicating whether to print results of test for subgroup differences.
prediction.subgroup  A logical indicating whether prediction intervals should be printed for subgroups.
byvar  Deprecated argument (replaced by 'subgroup').
keepdata  A logical indicating whether original data (set) should be kept in meta object.
warn  A logical indicating whether the addition of incr to studies with zero or all events should result in a warning.
warn.deprecated  A logical indicating whether warnings should be printed if deprecated arguments are used.
control  An optional list to control the iterative process to estimate the between-study variance $\tau^2$. This argument is passed on to rma.uni or rma.glmm, respectively.
...  Additional arguments passed on to rma.glmm function.

Details

This function provides methods for fixed effect and random effects meta-analysis of single proportions to calculate an overall proportion. Note, you should use R function metabin to compare proportions of pairwise comparisons instead of using metaprop for each treatment arm separately which will break randomisation in randomised controlled trials.

The following transformations of proportions are implemented to calculate an overall proportion:
• Logit transformation (sm = "PLOGIT", default)
• Arcsine transformation (sm = "PAS")
• Freeman-Tukey Double arcsine transformation (sm = "PFT")
• Log transformation (sm = "PLN")
• Raw, i.e. untransformed, proportions (sm = "PRAW")

A generalised linear mixed model (GLMM) - more specific, a random intercept logistic regression model - can be utilised for the meta-analysis of proportions (Stijnen et al., 2010). This is the default method for the logit transformation (argument sm = "PLOGIT"). Internally, the rma.glmm function from R package metafor is called to fit a GLMM.

Classic meta-analysis (Borenstein et al., 2010) utilising the (un)transformed proportions and corresponding standard errors in the inverse variance method is conducted by calling the metagen function internally. This is the only available method for all transformations but the logit transformation. The classic meta-analysis model with logit transformed proportions is used by setting argument method = "Inverse".

Default settings are utilised for several arguments (assignments using gs function). These defaults can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings.

**Choice of transformation / meta-analysis method:**
Contradictory recommendations on the use of transformations of proportions have been published in the literature. For example, Barendregt et al. (2013) recommend the use of the Freeman-Tukey double arcsine transformation instead of the logit transformation whereas Warton & Hui (2011) strongly advise to use generalised linear mixed models with the logit transformation instead of the arcsine transformation.

Schwarzer et al. (2019) describe seriously misleading results in a meta-analysis with very different sample sizes due to problems with the back-transformation of the Freeman-Tukey transformation which requires a single sample size (Miller, 1978). Accordingly, Schwarzer et al. (2019) also recommend to use GLMMs for the meta-analysis of single proportions, however, admit that individual study weights are not available with this method. Meta-analysts which require individual study weights should consider the inverse variance method with the arcsine or logit transformation.

In order to prevent misleading conclusions for the Freeman-Tukey double arcsine transformation, sensitivity analyses using other transformations or using a range of sample sizes should be conducted (Schwarzer et al., 2019).

**Continuity correction:**
If the summary measure is equal to "PLOGIT", "PLN", or "PRAW", a continuity correction is applied if any study has either zero or all events, i.e., an event probability of either 0 or 1.

By default, 0.5 is used as continuity correction (argument incr). This continuity correction is used both to calculate individual study results with confidence limits and to conduct meta-analysis based on the inverse variance method. For GLMMs no continuity correction is used.

**Confidence intervals for individual studies:**
Various methods are available to calculate confidence intervals for individual study results (see Agresti & Coull 1998 and Newcombe 1988):
• Clopper-Pearson interval also called 'exact' binomial interval (method.ci = "CP", default)
• Wilson Score interval (method.ci = "WS")
• Wilson Score interval with continuity correction (method.ci = "WSCC")
• Agresti-Coull interval (method.ci = "AC")
• Simple approximation interval (method.ci = "SA")
• Simple approximation interval with continuity correction (method.ci = "SACC")
• Normal approximation interval based on summary measure, i.e. defined by argument sm (method.ci = "NAsm")

Note, with exception of the normal approximation based on the summary measure, i.e. method.ci = "NAsm", the same confidence interval is calculated for individual studies for any summary measure (argument sm) as only number of events and observations are used in the calculation disregarding the chosen transformation.

Results will be presented for transformed proportions if argument backtransf = FALSE. In this case, argument method.ci = "NAsm" is used, i.e. confidence intervals based on the normal approximation based on the summary measure.

**Estimation of between-study variance:**
The following methods to estimate the between-study variance \( \tau^2 \) are available for the inverse variance method:

• DerSimonian-Laird estimator (method.tau = "DL")
• Paule-Mandel estimator (method.tau = "PM")
• Restricted maximum-likelihood estimator (method.tau = "REML")
• Maximum-likelihood estimator (method.tau = "ML")
• Hunter-Schmidt estimator (method.tau = "HS")
• Sidik-Jonkman estimator (method.tau = "SJ")
• Hedges estimator (method.tau = "HE")
• Empirical Bayes estimator (method.tau = "EB")

See metagen for more information on these estimators. Note, the maximum-likelihood method is utilized for GLMMs.

**Confidence interval for the between-study variance:**
The following methods to calculate a confidence interval for \( \tau^2 \) and \( \tau \) are available.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.tau.ci = &quot;J&quot;</td>
<td>Method by Jackson</td>
</tr>
<tr>
<td>method.tau.ci = &quot;BJ&quot;</td>
<td>Method by Biggerstaff and Jackson</td>
</tr>
<tr>
<td>method.tau.ci = &quot;QP&quot;</td>
<td>Q-Profile method</td>
</tr>
</tbody>
</table>

See metagen for more information on these methods. For GLMMs, no confidence intervals for \( \tau^2 \) and \( \tau \) are calculated. Likewise, no confidence intervals for \( \tau^2 \) and \( \tau \) are calculated if method.tau.ci = "".

**Hartung-Knapp method:**
Hartung and Knapp (2001a,b) proposed an alternative method for random effects meta-analysis based on a refined variance estimator for the treatment estimate. Simulation studies (Hartung and
Knapp, 2001a,b; IntHout et al., 2014; Langan et al., 2019) show improved coverage probabilities compared to the classic random effects method.

In rare settings with very homogeneous treatment estimates, the Hartung-Knapp variance estimate can be arbitrarily small resulting in a very narrow confidence interval (Knapp and Hartung, 2003; Wiksten et al., 2016). In such cases, an *ad hoc* variance correction has been proposed by utilising the variance estimate from the classic random effects model with the HK method (Knapp and Hartung, 2003; IQWiQ, 2020). An alternative approach is to use the wider confidence interval of classic fixed or random effects meta-analysis and the HK method (Wiksten et al., 2016; Jackson et al., 2017).

Argument `adhoc.hakn` can be used to choose the *ad hoc* method:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Ad hoc method</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>adhoc.hakn = &quot;&quot;</code></td>
<td>not used</td>
</tr>
<tr>
<td><code>adhoc.hakn = &quot;se&quot;</code></td>
<td>use variance correction if HK standard error is smaller than standard error from classic random effects meta-analysis (Knapp and Hartung, 2003)</td>
</tr>
<tr>
<td><code>adhoc.hakn = &quot;iqwig6&quot;</code></td>
<td>use variance correction if HK confidence interval is narrower than CI from classic random effects model with DerSimonian-Laird estimator (IQWiG, 2020)</td>
</tr>
<tr>
<td><code>adhoc.hakn = &quot;ci&quot;</code></td>
<td>use wider confidence interval of classic random effects and HK meta-analysis (Hybrid method 2 in Jackson et al., 2017)</td>
</tr>
</tbody>
</table>

For GLMMs, a method similar to Knapp and Hartung (2003) is implemented, see description of argument `tdist` in `rma.glmm`, and the *ad hoc* variance correction is not available.

**Prediction interval:**

A prediction interval for the proportion in a new study (Higgins et al., 2009) is calculated if arguments `prediction` and `random` are `TRUE`. Note, the definition of prediction intervals varies in the literature. This function implements equation (12) of Higgins et al., (2009) which proposed a *t* distribution with *K*-2 degrees of freedom where *K* corresponds to the number of studies in the meta-analysis.

**Subgroup analysis:**

Argument `subgroup` can be used to conduct subgroup analysis for a categorical covariate. The `metareg` function can be used instead for more than one categorical covariate or continuous covariates.

**Specify the null hypothesis of test for an overall proportion:**

Argument `null.effect` can be used to specify the proportion used under the null hypothesis in a test for an overall effect.

By default (`null.effect = NA`), no hypothesis test is conducted as it is unclear which value is a sensible choice for the data at hand. An overall proportion of 50%, for example, could be tested by setting argument `null.effect = 0.5`.

Note, all tests for an overall effect are two-sided with the alternative hypothesis that the effect is unequal to `null.effect`.

**Exclusion of studies from meta-analysis:**
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples in metagen). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both fixed effect and random effects models are calculated regardless of values chosen for arguments fixed and random. Accordingly, the estimate for the random effects model can be extracted from component TE.random of an object of class "meta" even if argument random = FALSE. However, all functions in R package meta will adequately consider the values for fixed and random. E.g. function print.meta will not print results for the random effects model if random = FALSE.

Argument pscale can be used to rescale proportions, e.g. pscale = 1000 means that proportions are expressed as events per 1000 observations. This is useful in situations with (very) low event probabilities.

Value
An object of class c("metaprop", "meta") with corresponding print, summary, and forest functions. The object is a list containing the following components:

- event, n, studlab, exclude:
  As defined above.
- sm, incr, allincr, addincr, method.ci:
  As defined above.
- level, level.ma:
  As defined above.
- fixed, random:
  As defined above.
- overall, overall.hetstat:
  As defined above.
- hakn, adhoc.hakn, method.tau, method.tau.ci:
  As defined above.
- tau.preset, TE.tau, null.hypothesis:
  As defined above.
- method.bias, tau.common, title, complab, outclab:
  As defined above.
- subgroup, subgroup.name, print.subgroup.name, sep.subgroup, warn:
  As defined above.
- TE, seTE:
  Estimated (un)transformed proportion and its standard error for individual studies.
- lower, upper:
  Lower and upper confidence interval limits for individual studies.
- zval, pval:
  z-value and p-value for test of treatment effect for individual studies.
- w.fixed, w.random:
  Weight of individual studies (in fixed and random effects model).
- TE.fixed, seTE.fixed:
  Estimated overall (un)transformed proportion and standard error (fixed effect model).
lower.fixed, upper.fixed
   Lower and upper confidence interval limits (fixed effect model).
statistic.fixed, pval.fixed
   z-value and p-value for test of overall effect (fixed effect model).
TE.random, seTE.random
   Estimated overall (un)transformed proportion and standard error (random effects model).
lower.random, upper.random
   Lower and upper confidence interval limits (random effects model).
statistic.random, pval.random
   z-value or t-value and corresponding p-value for test of overall effect (random effects model).
prediction, level.predict
   As defined above.
seTE.predict
   Standard error utilised for prediction interval.
lower.predict, upper.predict
   Lower and upper limits of prediction interval.
k
   Number of studies combined in meta-analysis.
Q
   Heterogeneity statistic Q.
df.Q
   Degrees of freedom for heterogeneity statistic.
pval.Q
   P-value of heterogeneity test.
Q.LRT
   Heterogeneity statistic for likelihood-ratio test (only if method = "GLMM").
df.Q.LRT
   Degrees of freedom for likelihood-ratio test.
pval.Q.LRT
   P-value of likelihood-ratio test.
tau2
   Between-study variance $\tau^2$.
se.tau2
   Standard error of $\tau^2$.
lower.tau2, upper.tau2
   Lower and upper limit of confidence interval for $\tau^2$.
tau
   Square-root of between-study variance $\tau$.
lower.tau, upper.tau
   Lower and upper limit of confidence interval for $\tau$.
H
   Heterogeneity statistic H.
lower.H, upper.H
   Lower and upper confidence limit for heterogeneity statistic H.
I2
   Heterogeneity statistic $I^2$.
lower.I2, upper.I2
   Lower and upper confidence limit for heterogeneity statistic $I^2$.
Rb
   Heterogeneity statistic $R_b$.
lower.Rb, upper.Rb
   Lower and upper confidence limit for heterogeneity statistic $R_b$.
method
   A character string indicating method used for pooling: "Inverse"
df.hakn Degrees of freedom for test of treatment effect for Hartung-Knapp method (only if hakn=TRUE).

bylevs Levels of grouping variable - if subgroup is not missing.

TE.fixed.w, seTE.fixed.w Estimated treatment effect and standard error in subgroups (fixed effect model) - if subgroup is not missing.

lower.fixed.w, upper.fixed.w Lower and upper confidence interval limits in subgroups (fixed effect model) - if subgroup is not missing.

statistic.fixed.w, pval.fixed.w z-value and p-value for test of treatment effect in subgroups (fixed effect model) - if subgroup is not missing.

TE.random.w, seTE.random.w Estimated treatment effect and standard error in subgroups (random effects model) - if subgroup is not missing.

lower.random.w, upper.random.w Lower and upper confidence interval limits in subgroups (random effects model) - if subgroup is not missing.

statistic.random.w, pval.random.w z-value or t-value and corresponding p-value for test of treatment effect in subgroups (random effects model) - if subgroup is not missing.

w.fixed.w, w.random.w Weight of subgroups (in fixed and random effects model) - if subgroup is not missing.

df.hakn Degrees of freedom for test of treatment effect for Hartung-Knapp method in subgroups - if subgroup is not missing and hakn=TRUE.

n.harmonic.mean.w Harmonic mean of number of observations in subgroups (for back transformation of Freeman-Tukey Double arcsine transformation) - if subgroup is not missing.

event.w Number of events in subgroups - if subgroup is not missing.

n.w Number of observations in subgroups - if subgroup is not missing.

k.w Number of studies combined within subgroups - if subgroup is not missing.

k.all.w Number of all studies in subgroups - if subgroup is not missing.

Q.w.fixed Overall within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

Q.w.random Overall within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing (only calculated if argument tau.common is TRUE).

df.Q.w Degrees of freedom for test of overall within subgroups heterogeneity - if subgroup is not missing.

pval.Q.w.fixed P-value of within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.
pval.Q.w.random
P-value of within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.
Q.b.fixed
Overall between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.
Q.b.random
Overall between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.
df.Q.b
Degrees of freedom for test of overall between subgroups heterogeneity - if subgroup is not missing.
pval.Q.b.fixed
P-value of between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.
pval.Q.b.random
P-value of between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.
tau.w
Square-root of between-study variance within subgroups - if subgroup is not missing.
H.w
Heterogeneity statistic H within subgroups - if subgroup is not missing.
lower.H.w, upper.H.w
Lower and upper confidence limit for heterogeneity statistic H within subgroups - if subgroup is not missing.
I2.w
Heterogeneity statistic I^2 within subgroups - if subgroup is not missing.
lower.I2.w, upper.I2.w
Lower and upper confidence limit for heterogeneity statistic I^2 within subgroups - if subgroup is not missing.
incr.event
Increment added to number of events.
keepdata
As defined above.
data
Original data (set) used in function call (if keepdata=TRUE).
subset
Information on subset of original data used in meta-analysis (if keepdata=TRUE).
.glmm.fixed
GLMM object generated by call of rma.glmm function (fixed effect model).
.glmm.random
GLMM object generated by call of rma.glmm function (random effects model).
call
Function call.
version
Version of R package meta used to create object.
version.metafor
Version of R package metafor used for GLMMs.

**Author(s)**
Guido Schwarzer <sc@imbi.uni-freiburg.de>
References


See Also

update.meta, metacont, metagen, print.meta, forest.meta

Examples

# Meta-analysis using generalised linear mixed model
#
metaprop(4:1, 10 * 1:4)

# Apply various classic meta-analysis methods to estimate
# proportions
#
m1 <- metaprop(4:1, 10 * 1:4, method = "Inverse")
m2 <- update(m1, sm = "PAS")
m3 <- update(m1, sm = "PRAW")
m4 <- update(m1, sm = "PLN")
m5 <- update(m1, sm = "PFT")
#
m1
m2
m3
m4
m5
#
forest(m1)
## Not run:
forest(m2)
forest(m3)
forest(m3, pscale = 100)
forest(m4)
forest(m5)
## End(Not run)

# Do not back transform results, e.g. print logit transformed
# proportions if sm = "PLOGIT" and store old settings
#
oldset <- settings.meta(backtransf = FALSE)
#
m6 <- metaprop(4:1, c(10, 20, 30, 40), method = "Inverse")
m7 <- update(m6, sm = "PAS")
m8 <- update(m6, sm = "PRAW")
m9 <- update(m6, sm = "PLN")
m10 <- update(m6, sm = "PFT")
## Not run:
forest(m6)
## Not run: 
forest(m7)
forest(m8)
forest(m8, pscale = 100)
forest(m9)
forest(m10)

## End(Not run)

# Use old settings
# settings.meta(oldset)

# Examples with zero events
# m1 <- metaprop(c(0, 0, 10, 10), rep(100, 4), method = "Inverse")
m2 <- metaprop(c(0, 0, 10, 10), rep(100, 4), incr = 0.1, method = "Inverse")

m1
m2

## Not run: 
forest(m1)
forest(m2)

## End(Not run)

# Example from Miller (1978):
# death <- c(3, 6, 10, 1)
animals <- c(11, 17, 21, 6)

# m3 <- metaprop(death, animals, sm = "PFT")
forest(m3)

# Data examples from Newcombe (1998)
# - apply various methods to estimate confidence intervals for individual studies
#
event <- c(81, 15, 0, 1)
n <- c(263, 148, 20, 29)

# m1 <- metaprop(event, n, method.ci = "SA", method = "Inverse")
m2 <- update(m1, method.ci = "SACC")
m3 <- update(m1, method.ci = "WS")
m4 <- update(m1, method.ci = "WSCC")
m5 <- update(m1, method.ci = "CP")

lower <- round(rbind(NA, m1$lower, m2$lower, NA, m3$lower,
m4$lower, NA, m5$lower), 4)
upper <- round(rbind(NA, m1$upper, m2$upper, NA, m3$upper,
```R
m4$upper, NA, m5$upper), 4)

#
tab1 <- data.frame(
scen1 = meta:::formatCI(lower[, 1], upper[, 1]),
scen2 = meta:::formatCI(lower[, 2], upper[, 2]),
scen3 = meta:::formatCI(lower[, 3], upper[, 3]),
scen4 = meta:::formatCI(lower[, 4], upper[, 4])
)

names(tab1) <- c("r=81, n=263", "r=15, n=148",
"r=0, n=20", "r=1, n=29")
row.names(tab1) <- c("Simple", "- SA", "- SACC",
"Score", "- WS", "- WSCC", "Binomial", "- CP")
tab1[is.na(tab1)] <- ""

Newcombe (1998), Table I, methods 1-5:
tab1

Same confidence interval, i.e. unaffected by choice of summary
measure
print(metaprop(event, n, method.ci = "WS", method = "Inverse"), ma = FALSE)
print(metaprop(event, n, sm = "PLN", method.ci = "WS"), ma = FALSE)
print(metaprop(event, n, sm = "PFT", method.ci = "WS"), ma = FALSE)
print(metaprop(event, n, sm = "PAS", method.ci = "WS"), ma = FALSE)
print(metaprop(event, n, sm = "PRAW", method.ci = "WS"), ma = FALSE)

Different confidence intervals as argument sm = "NAsm"
print(metaprop(event, n, method.ci = "NAsm", method = "Inverse"), ma = FALSE)
print(metaprop(event, n, sm = "PLN", method.ci = "NAsm"), ma = FALSE)
print(metaprop(event, n, sm = "PFT", method.ci = "NAsm"), ma = FALSE)
print(metaprop(event, n, sm = "PAS", method.ci = "NAsm"), ma = FALSE)

Different confidence intervals as argument backtransf = FALSE.
Accordingly, method.ci = "NAsm" used internally.
print(metaprop(event, n, method.ci = "NAsm", method = "Inverse"),
ma = FALSE, backtransf = FALSE)
print(metaprop(event, n, sm = "PLN", method.ci = "NAsm"), ma = FALSE,
backtransf = FALSE)
print(metaprop(event, n, sm = "PFT", method.ci = "NAsm"), ma = FALSE,
backtransf = FALSE)
print(metaprop(event, n, sm = "PAS", method.ci = "NAsm"), ma = FALSE,
backtransf = FALSE)
print(metaprop(event, n, sm = "PRAW", method.ci = "NAsm"),
ma = FALSE, backtransf = FALSE)

Same results (printed on original and log scale, respectively)
print(metaprop(event, n, sm = "PLN", method.ci = "NAsm"), ma = FALSE)
print(metaprop(event, n, sm = "PLN"), ma = FALSE, backtransf = FALSE)

Results for first study (on log scale)
round(log(c(0.3079848, 0.2569522, 0.3691529)), 4)
```
# Print results as events per 1000 observations
#
print(metaprop(6:8, c(100, 1200, 1000), method = "Inverse"),
      pscale = 1000, digits = 1)

---

## metarate

*Meta-analysis of single incidence rates*

### Description

Calculation of an overall incidence rate from studies reporting a single incidence rate. Inverse variance method and generalised linear mixed model (GLMM) are available for pooling. For GLMMs, the `rma.glmm` function from R package `metafor` (Viechtbauer 2010) is called internally.

### Usage

```r
metarate(
 event,
 time,
 studlab,
 data = NULL,
 subset = NULL,
 exclude = NULL,
 n = NULL,
 method = "Inverse",
 sm = gs("smrate"),
 incr = gs("incr"),
 allincr = gs("allincr"),
 addincr = gs("addincr"),
 level = gs("level"),
 level.ma = gs("level.ma"),
 fixed = gs("fixed"),
 random = gs("random") | !is.null(tau.preset),
 overall = fixed | random,
 overall.hetstat = fixed | random,
 hakn = gs("hakn"),
 adhoc.hakn = gs("adhoc.hakn"),
 method.tau,
 method.tau.ci = gs("method.tau.ci"),
 tau.preset = NULL,
 TE.tau = NULL,
 tau.common = gs("tau.common"),
 prediction = gs("prediction"),
 level.predict = gs("level.predict"),
 null.effect = NA,
)```
method.bias = gs("method.bias"),
backtransf = gs("backtransf"),
irscale = 1,
irunit = "person-years",
text.fixed = gs("text.fixed"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.fixed = gs("text.w.fixed"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
keepdata = gs("keepdata"),
warn = gs("warn"),
warn.deprecated = gs("warn.deprecated"),
control = NULL,
...)

Arguments

event Number of events.
time Person time at risk.
studlab An optional vector with study labels.
data An optional data frame containing the study information, i.e., event and time.
subset An optional vector specifying a subset of studies to be used.
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
n Number of observations.
method A character string indicating which method is to be used for pooling of studies. One of "Inverse" and "GLMM", can be abbreviated.
sm A character string indicating which summary measure ("IR", "IRLN", "IRS", or "IRFT") is to be used for pooling of studies, see Details.
incr A numeric which is added to the event number of studies with zero events, i.e., studies with an incidence rate of 0.
allincr A logical indicating if incr is considered for all studies if at least one study has zero events. If FALSE (default), incr is considered only in studies with zero events.
addincr A logical indicating if incr is used for all studies irrespective of number of events.

level The level used to calculate confidence intervals for individual studies.

level.ma The level used to calculate confidence intervals for meta-analysis estimates.

fixed A logical indicating whether a fixed effect / common effect meta-analysis should be conducted.

random A logical indicating whether a random effects meta-analysis should be conducted.

overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

hakn A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.

adhoc.hakn A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate, see Details.

method.tau A character string indicating which method is used to estimate the between-study variance \(\tau^2\) and its square root \(\tau\). Either "DL", "PM", "REML", "ML", "HS", "SJ", "HE", or "EB", can be abbreviated.

method.tau.ci A character string indicating which method is used to estimate the confidence interval of \(\tau^2\) and \(\tau\). Either "QP", "BJ", or "J", or "", can be abbreviated.

tau.preset Prespecified value for the square root of the between-study variance \(\tau^2\).

TE.tau Overall treatment effect used to estimate the between-study variance tau-squared.

tau.common A logical indicating whether tau-squared should be the same across subgroups.

prediction A logical indicating whether a prediction interval should be printed.

level.predict The level used to calculate prediction interval for a new study.

null.effect A numeric value specifying the effect under the null hypothesis.

method.bias A character string indicating which test is to be used. Either "Begg", "Egger", or "Thompson", can be abbreviated. See function metabias.

backtransf A logical indicating whether results for transformed rates (argument sm != "IR") should be back transformed in printouts and plots. If TRUE (default), results will be presented as incidence rates; otherwise transformed rates will be shown.

irscale A numeric defining a scaling factor for printing of rates.

irunit A character string specifying the time unit used to calculate rates, e.g. person-years.

text.fixed A character string used in printouts and forest plot to label the pooled fixed effect estimate.
metarate

A character string used in printouts and forest plot to label the pooled random effects estimate.

text.predict

A character string used in printouts and forest plot to label the prediction interval.

text.w.fixed

A character string used to label weights of fixed effect model.

text.w.random

A character string used to label weights of random effects model.

title

Title of meta-analysis / systematic review.

complab

Comparison label.

outclab

Outcome label.

subgroup

An optional vector to conduct a meta-analysis with subgroups.

subgroup.name

A character string with a name for the subgroup variable.

print.subgroup.name

A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.

sep.subgroup

A character string defining the separator between name of subgroup variable and subgroup label.

test.subgroup

A logical value indicating whether to print results of test for subgroup differences.

prediction.subgroup

A logical indicating whether prediction intervals should be printed for subgroups.

byvar

Deprecated argument (replaced by 'subgroup').

keepdata

A logical indicating whether original data (set) should be kept in meta object.

warn

A logical indicating whether the addition of incr to studies with zero events should result in a warning.

warn.deprecated

A logical indicating whether warnings should be printed if deprecated arguments are used.

control

An optional list to control the iterative process to estimate the between-study variance τ^2. This argument is passed on to rma.uni or rma.glmm, respectively.

... Additional arguments passed on to rma.glmm function.

Details

This function provides methods for fixed effect and random effects meta-analysis of single incidence rates to calculate an overall rate. Note, you should use R function metainc to compare incidence rates of pairwise comparisons instead of using metarate for each treatment arm separately which will break randomisation in randomised controlled trials.

The following transformations of incidence rates are implemented to calculate an overall rate:

- Log transformation (sm = "IRLN", default)
- Square root transformation (sm = "IRS")
- Freeman-Tukey Double arcsine transformation (sm = "IRFT")
• No transformation (sm = "IR")

By default (argument method = "Inverse"), the inverse variance method (Borenstein et al., 2010) is used for pooling by calling `metagen` internally. A random intercept Poisson regression model (Stijnen et al., 2010) can be utilised instead with argument method = "GLMM" which calls the `rma.glmm` function from R package `metafor`.

Default settings are utilised for several arguments (assignments using `gs` function). These defaults can be changed for the current R session using the `settings.meta` function.

Furthermore, R function `update.meta` can be used to rerun a meta-analysis with different settings.

Continuity correction:

If the summary measure (argument sm) is equal to "IR" or "IRLN", a continuity correction is applied if any study has zero events, i.e., an incidence rate of 0.

By default, 0.5 is used as continuity correction (argument incr). This continuity correction is used both to calculate individual study results with confidence limits and to conduct meta-analysis based on the inverse variance method.

For the Freeman-Tukey (Freeman & Tukey, 1950) and square root transformation as well as GLMMs no continuity correction is used.

Estimation of between-study variance:

The following methods to estimate the between-study variance τ^2 are available for the inverse variance method:

- DerSimonian-Laird estimator (method.tau = "DL")
- Paule-Mandel estimator (method.tau = "PM")
- Restricted maximum-likelihood estimator (method.tau = "REML")
- Maximum-likelihood estimator (method.tau = "ML")
- Hunter-Schmidt estimator (method.tau = "HS")
- Sidik-Jonkman estimator (method.tau = "SJ")
- Hedges estimator (method.tau = "HE")
- Empirical Bayes estimator (method.tau = "EB")

See `metagen` for more information on these estimators. Note, the maximum-likelihood method is utilized for GLMMs.

Confidence interval for the between-study variance:

The following methods to calculate a confidence interval for τ^2 and τ are available.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.tau.ci = "J"</td>
<td>Method by Jackson</td>
</tr>
<tr>
<td>method.tau.ci = "BJ"</td>
<td>Method by Biggerstaff and Jackson</td>
</tr>
<tr>
<td>method.tau.ci = "QP"</td>
<td>Q-Profile method</td>
</tr>
</tbody>
</table>

See `metagen` for more information on these methods. For GLMMs, no confidence intervals for τ^2 and τ are calculated. Likewise, no confidence intervals for τ^2 and τ are calculated if method.tau.ci = "".

Hartung-Knapp method:
Hartung and Knapp (2001a,b) proposed an alternative method for random effects meta-analysis based on a refined variance estimator for the treatment estimate. Simulation studies (Hartung and Knapp, 2001a,b; IntHout et al., 2014; Langan et al., 2019) show improved coverage probabilities compared to the classic random effects method.

In rare settings with very homogeneous treatment estimates, the Hartung-Knapp variance estimate can be arbitrarily small resulting in a very narrow confidence interval (Knapp and Hartung, 2003; Wiksten et al., 2016). In such cases, an ad hoc variance correction has been proposed by utilising the variance estimate from the classic random effects model with the HK method (Knapp and Hartung, 2003; IQWiQ, 2020). An alternative approach is to use the wider confidence interval of classic fixed or random effects meta-analysis and the HK method (Wiksten et al., 2016; Jackson et al., 2017).

Argument `adhoc.hakn` can be used to choose the ad hoc method:

<table>
<thead>
<tr>
<th>Argument <code>adhoc.hakn</code></th>
<th>Ad hoc method</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>adhoc.hakn = ""</code></td>
<td>not used</td>
</tr>
<tr>
<td><code>adhoc.hakn = "se"</code></td>
<td>use variance correction if HK standard error is smaller than standard error from classic random effects meta-analysis (Knapp and Hartung, 2003)</td>
</tr>
<tr>
<td><code>adhoc.hakn = "iqwig6"</code></td>
<td>use variance correction if HK confidence interval is narrower than CI from classic random effects model with DerSimonian-Laird estimator (IQWiG, 2020)</td>
</tr>
<tr>
<td><code>adhoc.hakn = "ci"</code></td>
<td>use wider confidence interval of classic random effects and HK meta-analysis (Hybrid method 2 in Jackson et al., 2017)</td>
</tr>
</tbody>
</table>

For GLMMs, a method similar to Knapp and Hartung (2003) is implemented, see description of argument `tdist` in `rma.glmm`, and the ad hoc variance correction is not available.

Prediction interval:

A prediction interval for the proportion in a new study (Higgins et al., 2009) is calculated if arguments `prediction` and `random` are `TRUE`. Note, the definition of prediction intervals varies in the literature. This function implements equation (12) of Higgins et al., (2009) which proposed a t distribution with `K-2` degrees of freedom where `K` corresponds to the number of studies in the meta-analysis.

Subgroup analysis:

Argument `subgroup` can be used to conduct subgroup analysis for a categorical covariate. The `metareg` function can be used instead for more than one categorical covariate or continuous covariates.

Specify the null hypothesis of test for an overall effect:

Argument `null.effect` can be used to specify the rate used under the null hypothesis in a test for an overall effect.

By default (`null.effect = NA`), no hypothesis test is conducted as it is unclear which value is a sensible choice for the data at hand. An overall rate of 2, for example, could be tested by setting argument `null.effect = 2`.

Note, all tests for an overall effect are two-sided with the alternative hypothesis that the effect is unequal to `null.effect`.
Exclusion of studies from meta-analysis:
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples in metagen). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both fixed effect and random effects models are calculated regardless of values chosen for arguments fixed and random. Accordingly, the estimate for the random effects model can be extracted from component TE.random of an object of class "meta" even if argument random = FALSE. However, all functions in R package meta will adequately consider the values for fixed and random. E.g. function print.meta will not print results for the random effects model if random = FALSE.

Argument irscale can be used to rescale rates, e.g. irscale = 1000 means that rates are expressed as events per 1000 time units, e.g. person-years. This is useful in situations with (very) low rates. Argument irunit can be used to specify the time unit used in individual studies (default: "person-years"). This information is printed in summaries and forest plots if argument irscale is not equal to 1.

Value
An object of class c("metarate","meta") with corresponding print, summary, and forest functions. The object is a list containing the following components:

- event, n, studlab, exclude,
 As defined above.
- sm, incr, allincr, addincr, method.ci,
 As defined above.
- level, level.ma,
 As defined above.
- fixed, random,
 As defined above.
- overall, overall.hetstat,
 As defined above.
- hakn, adhoc.hakn, method.tau, method.tau.ci,
 As defined above.
- tau.preset, TE.tau, null.hypothesis,
 As defined above.
- method.bias, tau.common, title, complab, outclab,
 As defined above.
- subgroup, subgroup.name, print.subgroup.name, sep.subgroup, warn
 As defined above.
- TE, seTE
 Estimated (un)transformed incidence rate and its standard error for individual studies.
- lower, upper
 Lower and upper confidence interval limits for individual studies.
- zval, pval
 z-value and p-value for test of treatment effect for individual studies.
- w.fixed, w.random
 Weight of individual studies (in fixed and random effects model).
TE.fixed, seTE.fixed
Estimated overall (un)transformed incidence rate and standard error (fixed effect model).

lower.fixed, upper.fixed
Lower and upper confidence interval limits (fixed effect model).

statistic.fixed, pval.fixed
z-value and p-value for test of overall effect (fixed effect model).

TE.random, seTE.random
Estimated overall (un)transformed incidence rate and standard error (random effects model).

lower.random, upper.random
Lower and upper confidence interval limits (random effects model).

statistic.random, pval.random
z-value or t-value and corresponding p-value for test of overall effect (random effects model).

prediction, level.predict
As defined above.

seTE.predict
Standard error utilised for prediction interval.

lower.predict, upper.predict
Lower and upper limits of prediction interval.

k
Number of studies combined in meta-analysis.

Q
Heterogeneity statistic Q.

df.Q
Degrees of freedom for heterogeneity statistic.

pval.Q
P-value of heterogeneity test.

Q.LRT
Heterogeneity statistic for likelihood-ratio test (only if method = “GLMM”).

df.Q.LRT
Degrees of freedom for likelihood-ratio test.

pval.Q.LRT
P-value of likelihood-ratio test.

tau2
Between-study variance τ^2.

se.tau2
Standard error of τ^2.

lower.tau2, upper.tau2
Lower and upper limit of confidence interval for τ^2.

tau
Square-root of between-study variance τ.

lower.tau, upper.tau
Lower and upper limit of confidence interval for τ.

H
Heterogeneity statistic H.

lower.H, upper.H
Lower and upper confidence limit for heterogeneity statistic H.

I2
Heterogeneity statistic I^2.

lower.I2, upper.I2
Lower and upper confidence limit for heterogeneity statistic I^2.

Rb
Heterogeneity statistic R_b.

lower.Rb, upper.Rb
Lower and upper confidence limit for heterogeneity statistic R_b.
method

A character string indicating method used for pooling: "Inverse"

df.hakn

Degrees of freedom for test of treatment effect for Hartung-Knapp method (only if hakn = TRUE).

bylevs

Levels of grouping variable - if subgroup is not missing.

TE.fixed.w, seTE.fixed.w

Estimated treatment effect and standard error in subgroups (fixed effect model) - if subgroup is not missing.

lower.fixed.w, upper.fixed.w

Lower and upper confidence interval limits in subgroups (fixed effect model) - if subgroup is not missing.

statistic.fixed.w, pval.fixed.w

z-value and p-value for test of treatment effect in subgroups (fixed effect model) - if subgroup is not missing.

TE.random.w, seTE.random.w

Estimated treatment effect and standard error in subgroups (random effects model) - if subgroup is not missing.

lower.random.w, upper.random.w

Lower and upper confidence interval limits in subgroups (random effects model) - if subgroup is not missing.

statistic.random.w, pval.random.w

z-value or t-value and corresponding p-value for test of treatment effect in subgroups (random effects model) - if subgroup is not missing.

w.fixed.w, w.random.w

Weight of subgroups (in fixed and random effects model) - if subgroup is not missing.

df.hakn.w

Degrees of freedom for test of treatment effect for Hartung-Knapp method in subgroups - if subgroup is not missing and hakn = TRUE.

n.harmonic.mean.w

Harmonic mean of number of observations in subgroups (for back transformation of Freeman-Tukey Double arcsine transformation) - if subgroup is not missing.

event.w

Number of events in subgroups - if subgroup is not missing.

n.w

Number of observations in subgroups - if subgroup is not missing.

k.w

Number of studies combined within subgroups - if subgroup is not missing.

k.all.w

Number of all studies in subgroups - if subgroup is not missing.

Q.w.fixed

Overall within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

Q.w.random

Overall within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing (only calculated if argument tau.common is TRUE).

df.Q.w

Degrees of freedom for test of overall within subgroups heterogeneity - if subgroup is not missing.

pval.Q.w.fixed

P-value of within subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.
pval.Q.w.random

P-value of within subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

Q.b.fixed

Overall between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

Q.b.random

Overall between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

df.Q.b

Degrees of freedom for test of overall between subgroups heterogeneity - if subgroup is not missing.

pval.Q.b.fixed

P-value of between subgroups heterogeneity statistic Q (based on fixed effect model) - if subgroup is not missing.

pval.Q.b.random

P-value of between subgroups heterogeneity statistic Q (based on random effects model) - if subgroup is not missing.

tau.w

Square-root of between-study variance within subgroups - if subgroup is not missing.

H.w

Heterogeneity statistic H within subgroups - if subgroup is not missing.

lower.H.w, upper.H.w

Lower and upper confidence limit for heterogeneity statistic H within subgroups - if subgroup is not missing.

I2.w

Heterogeneity statistic I^2 within subgroups - if subgroup is not missing.

lower.I2.w, upper.I2.w

Lower and upper confidence limit for heterogeneity statistic I^2 within subgroups - if subgroup is not missing.

incr.event

Increment added to number of events.

keepdata

As defined above.

data

Original data (set) used in function call (if keepdata = TRUE).

subset

Information on subset of original data used in meta-analysis (if keepdata = TRUE).

.glmm.fixed

GLMM object generated by call of rma.glmm function (fixed effect model).

.glmm.random

GLMM object generated by call of rma.glmm function (random effects model).

call

Function call.

version

Version of R package meta used to create object.

version.metafor

Version of R package metafor used for GLMMs.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>
References

See Also

update.meta, metacont, metagen, print.meta

Examples

Apply various meta-analysis methods to estimate incidence rates
#
ml <- metarate(4:1, c(10, 20, 30, 40))
m2 <- update(ml, sm = "IR")
m3 <- update(ml, sm = "IRS")
m4 <- update(ml, sm = "IRFT")
#
ml
m2
m3
metareg

Meta-regression

Meta-regression for objects of class `meta`. This is a wrapper function for the R function `rma.uni` in the R package `metafor` (Viechtbauer 2010).

Usage

```r
metareg(
  x,
  formula,
  method.tau = x$method.tau,
  hakn = x$hakn,
  level.ma = x$level.ma,
  intercept = TRUE,
  ...
)
```

Arguments

- **x**: An object of class `meta`.
- **formula**: Either a character string or a formula object.
- **method.tau**: A character string indicating which method is used to estimate the between-study variance tau-squared. Either "FE", "DL", "REML", "ML", "HS", "SJ", "HE", or "EB", can be abbreviated.
- **hakn**: A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.
- **level.ma**: The level used to calculate confidence intervals for parameter estimates in the meta-regression model.
intercept A logical indicating whether an intercept should be included in the meta-regression model.

... Additional arguments passed to R function `rma.uni`.

Details

This R function is a wrapper function for R function `rma.uni` in the R package `metafor` (Viechtbauer 2010).

Note, results are not back-transformed in printouts of meta-analyses using summary measures with transformations, e.g., log risk ratios are printed instead of the risk ratio if argument `sm = "RR"` and logit transformed proportions are printed if argument `sm = "PLOGIT"`.

Argument `...` can be used to pass additional arguments to R function `rma.uni`. For example, argument `control` to provide a list of control values for the iterative estimation algorithm. See help page of R function `rma.uni` for more details.

Value

An object of class c("metareg","rma.uni","rma"). Please look at the help page of R function `rma.uni` for more details on the output from this function.

In addition, a list `.meta` is added to the output containing the following components:

- `x`, `formula`, `method.tau`, `hakn`, `level.ma`, `intercept`
 - As defined above.
- `dots` Information provided in argument `...`.
- `call` Function call.
- `version` Version of R package `meta` used to create object.
- `version.metafor` Version of R package `metafor` used to create object.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`bubble`, `summary.meta`, `metagen`
Examples

data(Fleiss1993cont)
Add some (fictitious) grouping variables:
Fleiss1993cont$age <- c(55, 65, 55, 65, 55)
Fleiss1993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")

m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 data = Fleiss1993cont, sm = "MD")
Not run:
Warnings due to wrong ordering of arguments (order has changed
with version 3.0-0 of R package meta)
#
metareg(~ region, m1)
metareg(~ region, data = m1)
#
Warning as no information on covariate is available
#
metareg(m1)
End(Not run)

Do meta-regression for covariate region
#
mu2 <- update(m1, subgroup = region, tau.common = TRUE, fixed = FALSE)
metareg(mu2)

Same result for
- tau-squared
- test of heterogeneity
- test for subgroup differences
(as argument 'tau.common' was used to create mu2)
#
mu2
metareg(mu2, intercept = FALSE)
metareg(m1, region)

Different result for
- tau-squared
- test of heterogeneity
- test for subgroup differences
(as argument 'tau.common' is - by default - FALSE)
#
mu1 <- update(m1, subgroup = region)
mu1

Generate bubble plot
#
bubble(metareg(mu2))

Do meta-regression with two covariates
#
metareg(mu1, region + age)
Do same meta-regressions using formula notation
#
metareg(m1, ~ region)
metareg(mu1, ~ region + age)

Do meta-regression using REML method and print intermediate results for iterative estimation algorithm; furthermore print results with three digits.
#
metareg(mu1, region, method.tau = "REML",
 control = list(VERBOSE = TRUE), digits = 3)

Use Hartung-Knapp method
#
mu3 <- update(mu2, hakn = TRUE)
mu3
metareg(mu3, intercept = FALSE)

nnt
Calculate the number needed to treat (NNT)

Description

Calculate the number needed to treat (NNT) from estimated risk difference, risk ratio, or odds ratio, and a baseline risk.

Usage

nnt(x, ...)

S3 method for class 'meta'
nnt(x, p.c, fixed = x$fixed, random = x$random, ...)

Default S3 method:
print(x, fixed = x$fixed, random = x$random, ...)

S3 method for class 'nnt.meta'
print(
 x,
 fixed = x$fixed,
 random = x$random,
 digits = gs("digits"),
 digits.prop = gs("digits.prop"),
 big.mark = gs("big.mark"),
 ...
)
Arguments

x
An object of class `meta`, or estimated treatment effect, i.e., risk difference(s), risk ratio(s), or odds ratio(s).

... Additional arguments (ignored at the moment).

p.c Baseline risk (control group event probability).

fixed A logical indicating whether NNTs should be calculated based on fixed effects estimate.

random A logical indicating whether NNTs should be calculated based on random effects estimate.

sm Summary measure.

lower Lower confidence interval limit.

upper Upper confidence interval limit.

digits Minimal number of significant digits, see `print.default`.

digits.prop Minimal number of significant digits for proportions, see `print.default`.

big.mark A character used as thousands separator.

Details

The number needed to treat (NNT) can be easily computed from an estimated risk difference (RD), risk ratio (RR), or odds ratio (OR) and a given baseline risk (Higgins & Green, 2011, section 12.5).

Accordingly, this function can be used to calculate NNTs for meta-analyses generated with `metabin` or `metagen` if argument `sm` was equal to "RD", "RR", or "OR". It is also possible to directly provide estimated treatment effects without conducting a meta-analysis (see Examples).

The baseline risk can be specified using argument `p.c`. If this argument is missing, the minimum, mean, and maximum of the control event probabilities in the meta-analysis are used for `metabin`; otherwise the control event probabilities 0.1, 0.2, ..., 0.9 are used.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`metabin`, `metagen`
Examples

Calculate NNT for RD = -0.21
(Cochrane Handbook, version 5.1, subsection 12.5.4.1)
nnt(-0.21, sm = "RD")

Calculate NNT for RR = 0.92 and baseline risk p.c = 0.3
(Cochrane Handbook, version 5.1, subsection 12.5.4.2)
nnt(0.92, p.c = 0.3, sm = "RR")

Calculate NNT for OR = 0.73 and baseline risk p.c = 0.3
(Cochrane Handbook, version 5.1, subsection 12.5.4.3)
nnt(0.73, p.c = 0.3, sm = "OR")

Use Mantel-Haenszel odds ratio to calculate NNTs
data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont, data = Olkin1995,
 random = FALSE)
nnt(m1, random = TRUE)

Olkin1995

Thrombolytic Therapy after Acute Myocardial Infarction

Description

Meta-analysis on Thrombolytic Therapy after Acute Myocardial Infarction

Format

A data frame with the following columns:

- **author**: first author
- **year**: year of publication
- **ev.exp**: number of events in experimental group
- **n.exp**: number of observations in experimental group
- **ev.cont**: number of events in control group
- **n.cont**: number of observations in control group

Source

Examples

data(Olkin1995)
metabin(ev.exp, n.exp, ev.cont, n.cont, data = Olkin1995)
Conversion from log odds ratio to standardised mean difference using method by Hasselblad & Hedges (1995) or Cox (1970).

Usage

```r
or2smd(
  lnOR,
  selnOR = NULL,
  studlab = NULL,
  data = NULL,
  subset = NULL,
  exclude = NULL,
  method = "HH",
  ...
)
```

Arguments

- `lnOR`: Log odds ratio(s) or meta-analysis object.
- `selnOR`: Standard error(s) of log odds ratio(s) (ignored if argument `lnOR` is a meta-analysis object).
- `studlab`: An optional vector with study labels (ignored if argument `lnOR` is a meta-analysis object).
- `data`: An optional data frame containing the study information (ignored if argument `lnOR` is a meta-analysis object).
- `subset`: An optional vector specifying a subset of studies to be used (ignored if argument `lnOR` is a meta-analysis object).
- `exclude`: An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots (ignored if argument `lnOR` is a meta-analysis object).
- `method`: A character string indicating which method is used to convert log odds ratios to standardised mean differences. Either "HH" or "CS", can be abbreviated.
- `...`: Additional arguments passed on to `metagen` (ignored if argument `lnOR` is a meta-analysis object).

Details

This function implements the following methods for the conversion from log odds ratios to standardised mean difference:
• Hasselblad & Hedges (1995) assuming logistic distributions (method == "HH")
• Cox (1970) and Cox & Snell (1989) assuming normal distributions (method == "CS")

Internally, `metagen` is used to conduct a meta-analysis with the standardised mean difference as summary measure.

Argument `lnOR` can be either a vector of log odds ratios or a meta-analysis object created with `metabin` or `metagen` and the odds ratio as summary measure.

Argument `selnOR` is mandatory if argument `lnOR` is a vector and ignored otherwise. Additional arguments in ... are only passed on to `metagen` if argument `lnOR` is a vector.

Value

An object of class "meta" and "metagen"; see `metagen`.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`smd2or, metabin, metagen, metacont`

Examples

```r
# Example from Borenstein et al. (2009), Chapter 7
#
mb <- or2smd(0.9069, sqrt(0.0676))
# TE = standardised mean difference (SMD); seTE = standard error of SMD
data.frame(SMD = round(mb$TE, 4), varSMD = round(mb$seTE^2, 4))

# Use dataset from Fleiss (1993)
#
data(fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac,
data = fleiss1993bin, studlab = paste(study, year),
   sm = "OR", random = FALSE)
or2smd(m1)
```
Meta-analysis on Prevention of First Bleeding in Cirrhosis comparing beta-blocker or sclerotherapy with placebo.

A data frame with the following columns:

- **id**: study id
- **treat.exp**: treatment in experimental group
- **logOR**: log odds ratio
- **selogOR**: standard error of log odds ratio
- **bleed.exp**: number of bleedings in experimental group
- **n.cont**: number of observations in experimental group
- **bleed.plac**: number of bleedings in placebo group
- **n.plac**: number of observations in placebo group

Source

Examples

```r
data(Pagliaro1992)
sclero <- subset(Pagliaro1992, treat.exp == "Sclerotherapy")

m <- metagen(logOR, selogOR, data = sclero, sm = "OR")

# Thompson & Sharp (1999), Table IV, method (2)
metabias(m, method = "Egger")

# Thompson & Sharp (1999), Table IV, method (3a)
metabias(m, method = "Thompson")

# Thompson & Sharp (1999), Table IV, method (3b)
update(m, method.tau = "ML")
metabias(update(m, method.tau = "ML"), method = "Thompson")
```
print.meta

Print meta-analysis results

Description

Print method for objects of class meta.

R function cilayout can be utilised to change the layout to print confidence intervals (both in printout
from print.meta and print.summary.meta function as well as in forest plots). The default layout is
"[lower; upper]". Another popular layout is "(lower - upper)" which is used throughout an R
session by using R command cilayout("","- ").

Argument pscale can be used to rescale single proportions or risk differences, e.g. pscale = 1000
means that proportions are expressed as events per 1000 observations. This is useful in situations
with (very) low event probabilities.

Argument irscale can be used to rescale single rates or rate differences, e.g. irscale = 1000
means that rates are expressed as events per 1000 time units, e.g. person-years. This is useful in
situations with (very) low rates. Argument irunit can be used to specify the time unit used in
individual studies (default: "person-years"). This information is printed in summaries and forest
plots if argument irscale is not equal to 1.

Usage

S3 method for class 'meta'

print(
 x,
 fixed = x$fixed,
 random = x$random,
 prediction = x$prediction,
 overall = x$overall,
 overall.hetstat = x$overall.hetstat,
 test.subgroup = x$test.subgroup,
 test.subgroup.fixed = test.subgroup & fixed,
 test.subgroup.random = test.subgroup & random,
 prediction.subgroup = x$prediction.subgroup,
 backtransf = x$backtransf,
 pscale = x$pscale,
 irscale = x$irscale,
 irunit = x$irunit,
 subgroup.name = x$subgroup.name,
 print.subgroup.name = x$print.subgroup.name,
 sep.subgroup = x$sep.subgroup,
 nchar.subgroup = 35,
 header = TRUE,
 print.CMH = x$print.CMH,
 digits = gs("digits"),
 digits.stat = gs("digits.stat"),
 digits.pval = max(gs("digits.pval"), 2),
)
print.meta

digits.pval.Q = max(gs("digits.pval.Q"), 2),
digits.Q = gs("digits.Q"),
digits.tau2 = gs("digits.tau2"),
digits.tau = gs("digits.tau"),
digits.H = gs("digits.H"),
digits.I2 = gs("digits.I2"),
scientific.pval = gs("scientific.pval"),
big.mark = gs("big.mark"),
zero.pval = gs("zero.pval"),
JAMA.pval = gs("JAMA.pval"),
print.tau2 = TRUE,
print.tau = TRUE,
print.I2 = gs("print.I2"),
print.H = gs("print.H"),
print.Rb = gs("print.Rb"),
text.tau2 = gs("text.tau2"),
text.tau = gs("text.tau"),
text.I2 = gs("text.I2"),
text.Rb = gs("text.Rb"),
details.methods = TRUE,
warn.backtransf = FALSE,
...
)

cilayout(
 bracket = gs("CIbracket"),
 separator = gs("CIseparator"),
 lower.blank = gs("CIlower.blank"),
 upper.blank = gs("CIlower.blank"
)
)

Arguments

x
An object of class meta.

fixed
A logical indicating whether results for fixed effect meta-analysis should be printed.

random
A logical indicating whether results for random effects meta-analysis should be printed.

prediction
A logical indicating whether a prediction interval should be printed.

overall
A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

overall.hetstat
A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

test.subgroup
A logical value indicating whether to print results of test for subgroup differences.
test.subgroup.fixed
A logical value indicating whether to print results of test for subgroup differences (based on fixed effect / common effect model).

test.subgroup.random
A logical value indicating whether to print results of test for subgroup differences (based on random effects model).

prediction.subgroup
A logical indicating whether prediction intervals should be printed for subgroups.

backtransf
A logical indicating whether printed results should be back transformed. If backtransf=TRUE, results for sm="OR" are printed as odds ratios rather than log odds ratios and results for sm="ZCOR" are printed as correlations rather than Fisher's z transformed correlations, for example.

pscale
A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument sm is equal to "PLOGIT", "PLN", "PRAW", "PAS", "PFT", or "RD".

irscale
A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument sm is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".

irunit
A character specifying the time unit used to calculate rates, e.g. person-years.

subgroup.name
A character string with a name for the grouping variable.

print.subgroup.name
A logical indicating whether the name of the grouping variable should be printed in front of the group labels.

sep.subgroup
A character string defining the separator between label and levels of grouping variable.

nchar.subgroup
A numeric specifying the number of characters to print from subgroup labels.

header
A logical indicating whether information on title of meta-analysis, comparison and outcome should be printed at the beginning of the printout.

print.CMH
A logical indicating whether result of the Cochran-Mantel-Haenszel test for overall effect should be printed.

digits
Minimal number of significant digits, see print.default.

digits.stat
Minimal number of significant digits for z- or t-value of test for overall effect, see print.default.

digits.pval
Minimal number of significant digits for p-value of overall treatment effect, see print.default.

digits.pval.Q
Minimal number of significant digits for p-value of heterogeneity test, see print.default.

digits.Q
Minimal number of significant digits for heterogeneity statistic Q, see print.default.

digits.tau2
Minimal number of significant digits for between-study variance \(\tau^2 \), see print.default.

digits.tau
Minimal number of significant digits for \(\tau \), the square root of the between-study variance \(\tau^2 \).

digits.H
Minimal number of significant digits for H statistic, see print.default.

digits.I2
Minimal number of significant digits for I-squared and Rb statistic, see print.default.
print.rm5

Description

Calculate and print a summary of all meta-analyses in a Cochrane review.

Usage

```r
## S3 method for class 'rm5'
print(x, comp.no, outcome.no, ...)
```
Arguments

- `x`: An object of class rm5.
- `comp.no`: Comparison number.
- `outcome.no`: Outcome number.
- `...`: Additional arguments (passed on to `metacr`).

Details

This function can be used to redo all or selected meta-analyses of a Cochrane Review.

Review Manager 5 (RevMan 5) is the current software used for preparing and maintaining Cochrane Reviews (https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman). In RevMan 5, subgroup analyses can be defined and data from a Cochrane review can be imported to R using the function `read.rm5`.

The R function `metacr` is called internally.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

- `summary.meta`
- `metacr`
- `read.rm5`
- `metabias.rm5`

Examples

```r
# Locate export data file "Fleiss1993_CR.csv"
# in sub-directory of package "meta"
#
filename <- system.file("extdata", "Fleiss1993_CR.csv", package = "meta")
Fleiss1993_CR <- read.rm5(filename)

# Print results for all meta-analysis
#
Fleiss1993_CR

# Print results only for second outcome of first comparison
#
print(Fleiss1993_CR, comp.no = 1, outcome.no = 2)
```
print.summary.meta

Print detailed meta-analysis results

Description

Print method for objects of class summary.meta.

Usage

S3 method for class 'summary.meta'
print(
 x,
 sortvar,
 fixed = xxfixed,
 random = xxrandom,
 details = FALSE,
 ma = TRUE,
 overall = x$overall,
 backtransf = x$backtransf,
 pscale = x$pscale,
 irscale = x$irscale,
 irunit = x$irunit,
 digits = gs("digits"),
 digits.se = gs("digits.se"),
 digits.pval = max(gs("digits.pval"), 2),
 digits.tau2 = gs("digits.tau2"),
 digits.tau = gs("digits.tau"),
 digits.I2 = gs("digits.I2"),
 digits.prop = gs("digits.prop"),
 digits.weight = gs("digits.weight"),
 scientific.pval = gs("scientific.pval"),
 zero.pval = gs("zero.pval"),
 JAMA.pval = gs("JAMA.pval"),
 big.mark = gs("big.mark"),
 text.tau2 = gs("text.tau2"),
 text.tau = gs("text.tau"),
 text.I2 = gs("text.I2"),
 truncate,
 text.truncate = "*** Output truncated ***",
 details.methods = TRUE,
 warn.backtransf = FALSE,
 ...
)

Arguments

x An object of class summary.meta
sortvar An optional vector used to sort the individual studies (must be of same length as x$TE).
fixed A logical indicating whether a fixed effect meta-analysis should be conducted.
random A logical indicating whether a random effects meta-analysis should be conducted.
details A logical indicating whether further details of individual studies should be printed.
ma A logical indicating whether the summary results of the meta-analysis should be printed.
overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.
backtransf A logical indicating whether printed results should be back transformed. If backtransf = TRUE, results for sm = "OR" are printed as odds ratios rather than log odds ratios and results for sm = "ZCOR" are printed as correlations rather than Fisher's z transformed correlations, for example.
pscale A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument sm is equal to "PLOGIT"", "PLN", "PRAW", "PAS", "PFT", or "RD".
irscale A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument sm is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".
irunit A character specifying the time unit used to calculate rates, e.g. person-years.
digits Minimal number of significant digits, see print.default.
digits.se Minimal number of significant digits for standard deviations and standard errors, see print.default.
digits.pval Minimal number of significant digits for p-value of test of treatment effect, see print.default.
digits.tau2 Minimal number of significant digits for between-study variance, see print.default.
digits.tau Minimal number of significant digits for square root of between-study variance, see print.default.
digits.I2 Minimal number of significant digits for I-squared and Rb statistic, see print.default.
digits.prop Minimal number of significant digits for proportions, see print.default.
digits.weight Minimal number of significant digits for weights, see print.default.
scientific.pval A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.
zero.pval A logical specifying whether p-values should be printed with a leading zero.
JAMA.pval A logical specifying whether p-values for test of overall effect should be printed according to JAMA reporting standards.
big.mark A character used as thousands separator.
text.tau2 Text printed to identify between-study variance τ^2.
Text printed to identify τ, the square root of the between-study variance τ^2.

Text printed to identify heterogeneity statistic I^2.

An optional vector used to truncate the printout of results for individual studies (must be a logical vector of same length as xTE or contain numerical values).

A character string printed if study results were truncated from the printout.

A logical specifying whether details on statistical methods should be printed.

A logical indicating whether a warning should be printed if backtransformed proportions and rates are below 0 and backtransformed proportions are above 1.

Additional arguments (passed on to `print.meta` called internally).

Details

Print method for objects of class `summary.meta` giving detailed information on the meta-analysis.

Argument `pscale` can be used to rescale single proportions or risk differences, e.g. `pscale = 1000` means that proportions are expressed as events per 1000 observations. This is useful in situations with (very) low event probabilities.

Argument `irscale` can be used to rescale single rates or rate differences, e.g. `irscale = 1000` means that rates are expressed as events per 1000 time units, e.g. person-years. This is useful in situations with (very) low rates. Argument `irunit` can be used to specify the time unit used in individual studies (default: "person-years"). This information is printed in summaries and forest plots if argument `irscale` is not equal to 1.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`summary.meta, update.meta, metabin, metacont, metagen`

Examples

```r
data(Fleiss1993cont)
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, sm = "SMD", studlab = paste(study, year))
sml <- summary(m1)
```
radial.meta

Radial plot

Description

Draw a radial plot (also called Galbraith plot) which can be used to assess bias in meta-analysis.

Usage

S3 method for class 'meta'
radial(
x,
xlim = NULL,
ylim = NULL,
xlab = "Inverse of standard error",
ylab = "Standardised treatment effect (z-score)",
fixed = TRUE,
axes = TRUE,
pch = 1,
text = NULL,
cex = 1,
col = NULL,
level = NULL,
...
)

Default S3 method:
radial(
x,
y,
xlim = NULL,
ylim = NULL,
xlab = "Inverse of standard error",
ylab = "Standardised treatment effect (z-score)",
fixed = TRUE,
...
radial.meta

 axes = TRUE,
 pch = 1,
 text = NULL,
 cex = 1,
 col = NULL,
 level = NULL,
 ...)

Arguments

x An object of class meta, or estimated treatment effect in individual studies.
xlim The x limits (min, max) of the plot.
ylim The y limits (min, max) of the plot.
xlab A label for the x-axis.
ylab A label for the y-axis.
fixed A logical indicating whether the pooled fixed effect estimate should be plotted.
axes A logical indicating whether axes should be drawn on the plot.
pch The plotting symbol used for individual studies.
text A character vector specifying the text to be used instead of plotting symbol.
cex The magnification to be used for plotting symbol.
col A vector with colour of plotting symbols.
level The confidence level utilised in the plot.
... Graphical arguments as in par may also be passed as arguments.
y Standard error of estimated treatment effect.

Details

A radial plot (Galbraith 1988a,b), also called Galbraith plot, is drawn in the active graphics window. If fixed is TRUE, the pooled estimate of the fixed effect model is plotted. If level is not NULL, the corresponding confidence limits are drawn.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Galbraith RF (1988b): A note on graphical presentation of estimated odds ratios from several clinical trials. Statistics in Medicine, 7, 889–94

See Also

metabias, metabin, metagen, funnel
Examples

data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, subset = c(41, 47, 51, 59),
studlab = paste(author, year), sm = "RR", method = "I")

Radial plot
#
radial(m1, level = 0.95)

read.mtv

Import RevMan 4 data files (.mtv)

Description

Reads a file created with RevMan 4 and creates a data frame from it.

Usage

read.mtv(file)

Arguments

- `file` The name of a file to read data values from.

Details

Reads a file created with RevMan 4 (Menu: “File” - “Export” - “Analysis data file...”) and creates a data frame from it.

Value

A data frame containing the following components:

- `comp.no` Comparison number.
- `outcome.no` Outcome number.
- `group.no` Group number.
- `studlab` Study label.
- `year` Year of publication.
- `event.e` Number of events in experimental group.
- `n.e` Number of observations in experimental group.
- `event.c` Number of events in control group.
- `n.c` Number of observations in control group.
- `mean.e` Estimated mean in experimental group.
read.mtv

- sd.e
 Standard deviation in experimental group.

- mean.c
 Estimated mean in control group.

- sd.c
 Standard deviation in control group.

- O.E
 Observed minus expected (IPD analysis).

- V
 Variance of O.E (IPD analysis).

- order
 Ordering of studies.

- conceal
 Concealment of treatment allocation.

- grplab
 Group label.

- type
 Type of outcome. D = dichotomous, C = continuous, P = IPD.

- outclab
 Outcome label.

- graph.exp
 Graph label for experimental group.

- graph.cont
 Graph label for control group.

- label.exp
 Label for experimental group.

- label.cont
 Label for control group.

- complab
 Comparison label.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

metabin, metacont, metagen

Examples

Locate MTV-data file "FLEISS1993.MTV" in sub-directory of R package
meta
#
filename <- system.file("extdata/FLEISS1993.MTV", package = "meta")
fleiss1993.cc <- read.mtv(filename)

Same result as R Command example(Fleiss1993bin):
#
metabin(event.e, n.e, event.c, n.c,
 data = fleiss1993.cc, subset = type == "D",
 studlab = paste(studlab, year))

Same result: example(Fleiss1993cont)
#
metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c,
read.rm5

Import RevMan 5 analysis data

Description
Reads analysis data from Cochrane intervention review created with RevMan 5 and creates a data frame from it.

Usage
read.rm5(
 file,
 sep = ",",
 quote = "\"",
 title,
 numbers.in.labels = TRUE,
 debug = 0
)

Arguments
file The name of a file to read data values from.
sep The field separator character (only considered for CSV-files). Values on each line of the file are separated by this character. The comma is the default field separator character in RevMan 5.
quote The set of quoting characters (only considered for CSV-files). In RevMan 5 a "" is the default quoting character.
title Title of Cochrane review.
numbers.in.labels A logical indicating whether comparison number and outcome number should be printed at the beginning of the comparison (argument complab) and outcome label (argument outclab); this is the default in RevMan 5.
debug An integer between 0 and 3 indicating whether to print debug messages (only considered for RM5-files).

Details
Review Manager 5 (RevMan 5) was the software used for preparing and maintaining Cochrane reviews (https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman). RevMan 5 includes the ability to write systematic reviews of interventions, diagnostic test accuracy reviews, methodology reviews and overviews of reviews.
This function provides the ability to read the analysis data from a Cochrane intervention review created with RevMan 5; a data frame is created from it. Cochrane intervention reviews are based on comparisons of two interventions.

By default in RevMan 5, the name of the exported CSV data file is the title of the Cochrane review. Furthermore, the title is part of the RM5-file. Argument title can be used to overwrite the title of the Cochrane review.

Import RM5-file:
A RM5-file (which is in a specific XML format) can be used directly to import the analysis dataset. If the import fails, use argument debug = 3 for more details.

Import CSV-file:
In the past, the following (rather complicated) procedure based on a CSV-file generated within RevMan 5 was necessary - which is only described here for backward compatibility.

In order to generate a data analysis file in RevMan 5 use the following Menu points: "File" - "Export" - "Data and analyses". It is mandatory to include the following fields in the exported data file by selecting them with the mouse cursor in the Export Analysis Data Wizard: (i) Comparison Number, (ii) Outcome Number, (iii) Subgroup Number. When these fields are not selected a corresponding error message will be printed in R. It is recommended to include all fields in the exported data file except for the last field "Risk of bias tables". For example, in order to redo the meta-analysis in R for the RevMan 5 data type "O-E and Variance" the fields "O-E" and "Variance" have to be selected in the Export Analysis Data Wizard. If the last field "Risk of bias tables" is selected the import in R fails with an error message "line X did not have Y elements".

Value
A data frame containing the following components:

- comp.no: Comparison number.
- outcome.no: Outcome number.
- group.no: Group number.
- studlab: Study label.
- year: Year of publication.
- event.e: Number of events in experimental group.
- n.e: Number of observations in experimental group.
- event.c: Number of events in control group.
- n.c: Number of observations in control group.
- mean.e: Estimated mean in experimental group.
- sd.e: Standard deviation in experimental group.
- mean.c: Estimated mean in control group.
- sd.c: Standard deviation in control group.
- O.E: Observed minus expected (IPD analysis).
- V: Variance of O.E (IPD analysis).
- TE, seTE: Estimated treatment effect and standard error of individual studies.
lower, upper Lower and upper limit of 95% confidence interval for treatment effect in individual studies.
weight Weight of individual studies (according to meta-analytical method used in respective meta-analysis - see details).
order Ordering of studies.
grplab Group label.
type Type of outcome. D = dichotomous, C = continuous, P = IPD.
method A character string indicating which method has been used for pooling of studies. One of "Inverse", "MH", or "Peto".
sm A character string indicating which summary measure has been used for pooling of studies.
model A character string indicating which meta-analytical model has been used (either "Fixed" or "Random").
fixed A logical indicating whether fixed effect meta-analysis has been used in respective meta-analysis (see details).
random A logical indicating whether random effects meta-analysis has been used in respective meta-analysis (see details).
outclab Outcome label.
k Total number of studies combined in respective meta-analysis).
event.e.pooled Number of events in experimental group in respective meta-analysis (see details).
n.e.pooled Number of observations in experimental group in respective meta-analysis (see details).
event.c.pooled Number of events in control group in respective meta-analysis (see details).
n.c.pooled Number of observations in control group in respective meta-analysis (see details).
TE.pooled Estimated treatment effect in respective meta-analysis (see details).
lower, upper Lower and upper limit of 95% confidence interval for treatment effect in respective meta-analysis (see details).
weight.pooled Total weight in respective meta-analysis (see details).
Z.pooled Z-score for test of overall treatment effect in respective meta-analysis (see details).
pval.pooled P-value for test of overall treatment effect in respective meta-analysis (see details).
Q Heterogeneity statistic Q in respective meta-analysis (see details).
pval.Q P-value of heterogeneity statistic Q in respective meta-analysis (see details).
I2 Heterogeneity statistic I^2 in respective meta-analysis (see details).
tau2 Between-study variance (moment estimator of DerSimonian-Laird) in respective meta-analysis.
Q.w Heterogeneity statistic Q within groups in respective meta-analysis (see details).
settings.meta

pval.Q.w P-value of heterogeneity statistic Q within groups in respective meta-analysis (see details).
I2.w Heterogeneity statistic I^2 within groups in respective meta-analysis (see details).
label.e Label for experimental group.
label.c Label for control group.
label.left Graph label on left side of forest plot.
label.right Graph label on right side of forest plot.
complab Comparison label.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration, 2020

See Also

summary.rm5, metabias.rm5, metabin, metacont, metagen, metacr, print.rm5

Examples

Locate export data file "Fleiss1993_CR.csv"
in sub-directory of package "meta"
#
filename <- system.file("extdata", "Fleiss1993_CR.csv", package = "meta")
Fleiss1993_CR <- read.rm5(filename)

Same result as R command example(Fleiss1993bin):
#
metacr(Fleiss1993_CR)

Same result as R command example(Fleiss1993cont):
#
metacr(Fleiss1993_CR, 1, 2)
settings.meta

Usage
settings.meta(..., quietly = TRUE)

Arguments
... Arguments to change default settings.
quietly A logical indicating whether information on settings should be printed.

Details
This function can be used to define defaults for several arguments (i.e., assignments using gs) of the following R functions: `metabin, metacont, metacor, metacr, metagen, metainc, metaprop, metarate`

Furthermore, some of these settings are considered to print meta-analysis results and to produce forest plots.

The function can be used to either change individual settings (see Examples) or use one of the following general settings:

- settings.meta("revman5")
- settings.meta("jama")
- settings.meta("iqwig5")
- settings.meta("iqwig6")
- settings.meta("geneexpr")
- settings.meta("meta4")

The first command can be used to reproduce meta-analyses from Cochrane reviews conducted with `Review Manager 5` (RevMan 5, https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman) and specifies to use a RevMan 5 layout in forest plots.

The second command can be used to generate forest plots following instructions for authors of the `Journal of the American Medical Association` (https://jamanetwork.com/journals/jama/pages/instructions-for-authors/). Study labels according to JAMA guidelines can be generated using `labels.meta`.

The next commands implement the recommendations of the Institute for Quality and Efficiency in Health Care, Germany (IQWiG) accordinging to General Methods 5 and 6, respectively (https://www.iqwig.de/en/about-us/methods/methods-paper/).

The setting "geneexpr" can be used to print p-values in scientific notation and to suppress the calculation of confidence intervals for the between-study variance.

The last setting uses the default settings of R package `meta`, version 4 or below.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>hakn</td>
<td>FALSE</td>
<td>method not available in RevMan 5</td>
</tr>
<tr>
<td>method.tau</td>
<td>"DL"</td>
<td>only available method in RevMan 5</td>
</tr>
<tr>
<td>tau.common</td>
<td>FALSE</td>
<td>common between-study variance in subgroups</td>
</tr>
<tr>
<td>MH.exact</td>
<td>FALSE</td>
<td>exact Mantel-Haenszel method</td>
</tr>
</tbody>
</table>
JAMA settings:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>layout</td>
<td>"JAMA"</td>
<td>layout for forest plots</td>
</tr>
<tr>
<td>test.overall</td>
<td>TRUE</td>
<td>print information on test of overall effect</td>
</tr>
<tr>
<td>digits.I2</td>
<td>0</td>
<td>number of digits for I-squared measure</td>
</tr>
<tr>
<td>CIbracket,</td>
<td>"["</td>
<td>print confidence intervals as "[. .]"</td>
</tr>
<tr>
<td>CIseparator</td>
<td>","</td>
<td></td>
</tr>
<tr>
<td>zero.pval,</td>
<td>TRUE</td>
<td>print p-values with leading zero</td>
</tr>
<tr>
<td>JAMA.pval,</td>
<td>TRUE</td>
<td>round p-values to three digits (for 0.001 < p ≤ 0.01) or two digits (p > 0.01)</td>
</tr>
</tbody>
</table>

IQWiG, General Methods 5 settings:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>hakn</td>
<td>TRUE</td>
<td>Hartung-Knapp method</td>
</tr>
<tr>
<td>prediction</td>
<td>TRUE</td>
<td>Prediction interval</td>
</tr>
</tbody>
</table>

IQWiG, General Methods 6 settings:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>hakn</td>
<td>TRUE</td>
<td>Hartung-Knapp method</td>
</tr>
<tr>
<td>adhoc.hakn</td>
<td>"ci"</td>
<td>ad hoc variance correction</td>
</tr>
<tr>
<td>method.tau</td>
<td>"PM"</td>
<td>Paule-Mandel estimator for between-study variance</td>
</tr>
<tr>
<td>prediction</td>
<td>TRUE</td>
<td>Prediction interval</td>
</tr>
</tbody>
</table>

Settings for gene expression data:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>scientific.pval</td>
<td>TRUE</td>
<td>Scientific notation for p-values</td>
</tr>
<tr>
<td>method.tau.ci</td>
<td>FALSE</td>
<td>no confidence interval for between-study heterogeneity variance</td>
</tr>
</tbody>
</table>

Settings for `meta`, version 4 or below:
A list of all arguments with current settings is printed using the command `settings.meta("print")`. In order to reset all settings of R package `meta` the command `settings.meta("reset")` or `settings.meta(reset = TRUE)` can be used.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

`gs, forest.meta, print.meta, labels.meta`

Examples

```r
# Get listing of current settings
#
settings.meta()

# Meta-analyses using default settings
#
metabin(10, 20, 15, 20)
metaprop(4, 20)
metabin(10, 20, 15, 20, sm = "RD")
metaprop(4, 20, sm = "PLN")

# Change summary measure for R functions metabin and metaprop
# and store old settings
#
oldset <- settings.meta(smbin = "RD", smprop = "PLN")
#
metabin(10, 20, 15, 20)
metaprop(4, 20)

# Use old settings
#
settings.meta(oldset)

# Change level used to calculate confidence intervals
# (99%-CI for studies, 99.9%-CI for pooled effects)
#
metagregen(1:3, 2:4 / 10, sm = "MD")
settings.meta(level = 0.99, level.ma = 0.999)
metagregen(1:3, 2:4 / 10, sm = "MD")

# Always print a prediction interval
#
settings.meta(prediction = TRUE)
```
metagen(1:3, 2:4 / 10, sm = "MD")
metagen(4:6, 4:2 / 10, sm = "MD")

Try to set unknown argument results in a warning
#
try(settings.meta(unknownarg = TRUE))

Reset to default settings of R package meta
#
settings.meta("reset")
metabin(10, 20, 15, 20)
metaprop(4, 20)
metagen(1:3, 2:4 / 10, sm = "MD")

Do not back transform results (e.g. print log odds ratios instead
of odds ratios, print transformed correlations / proportions
instead of correlations / proportions)
#
settings.meta(backtransf = FALSE)
metabin(10, 20, 15, 20)
metaprop(4, 20)
metacor(c(0.85, 0.7, 0.95), c(20, 40, 10))

Forest plot using RevMan 5 style
#
settings.meta("revman5")
forest(metagen(1:3, 2:4 / 10, sm = "MD", fixed = FALSE),
label.left = "Favours A", label.right = "Favours B",
colgap.studlab = "2cm", colgap.forest.left = "0.2cm")

Forest plot using JAMA style
#
settings.meta("jama")
forest(metagen(1:3, 2:4 / 10, sm = "MD", fixed = FALSE),
label.left = "Favours A", label.right = "Favours B",
colgap.studlab = "2cm", colgap.forest.left = "0.2cm")

Use slightly different layout for confidence intervals
(especially useful if upper confidence limit can be negative)
#
settings.meta(CIseparator = " - ")
forest(metagen(-1:3, 2:4 / 10, sm="MD", fixed=FALSE),
label.left="Favours A", label.right="Favours B",
colgap.studlab = "2cm", colgap.forest.left = "0.2cm")

Use old settings
#
settings.meta(oldset)

smd2or Conversion from standardised mean difference to log odds ratio
Description

Conversion from standardised mean difference to log odds ratio using method by Hasselblad & Hedges (1995) or Cox (1970).

Usage

smd2or(
 smd, se.smd, studlab, data = NULL, subset = NULL, exclude = NULL, method = "HH", backtransf = gs("backtransf"), ...
)

Arguments

smd Standardised mean difference(s) (SMD) or meta-analysis object.
se.smd Standard error(s) of SMD (ignored if argument smd is a meta-analysis object).
studlab An optional vector with study labels (ignored if argument smd is a meta-analysis object).
data An optional data frame containing the study information (ignored if argument smd is a meta-analysis object).
subset An optional vector specifying a subset of studies to be used (ignored if argument smd is a meta-analysis object).
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots (ignored if argument smd is a meta-analysis object).
method A character string indicating which method is used to convert SMDs to log odds ratios. Either "HH" or "CS", can be abbreviated.
backtransf A logical indicating whether odds ratios (if TRUE) or log odds ratios (if FALSE) should be shown in printouts and plots.
... Additional arguments passed on to metagen (ignored if argument smd is a meta-analysis object).

Details

This function implements the following methods for the conversion from standardised mean difference to log odds ratio:

- Hasselblad & Hedges (1995) assuming logistic distributions (method == "HH")
- Cox (1970) and Cox & Snell (1989) assuming normal distributions (method == "CS")
Internally, `metagen` is used to conduct a meta-analysis with the odds ratio as summary measure. Argument `smd` can be either a vector of standardised mean differences or a meta-analysis object created with `metacont` or `metagen` and the standardised mean difference as summary measure. Argument `se.smd` is mandatory if argument `smd` is a vector and ignored otherwise. Additional arguments in ... are only passed on to `metagen` if argument `smd` is a vector.

Value

An object of class "meta" and "metagen"; see `metagen`.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`or2smd`, `metacont`, `metagen`, `metabin`

Examples

```r
# Example from Borenstein et al. (2009), Chapter 7
#
mb <- smd2or(0.5, sqrt(0.0205), backtransf = FALSE)
# TE = log odds ratio; seTE = standard error of log odds ratio
data.frame(lnOR = round(mb$TE, 4), varlnOR = round(mb$seTE^2, 4))

# Use dataset from Fleiss (1993)
#
data(Fleiss1993cont)
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, sm = "SMD",
       studlab = paste(study, year))
smd2or(m1)
```
Description

Meta-analyses on the effect of smoking on mortality risk.

Format

A data frame with the following columns:

- **study**: study label
- **participants**: total number of participants
- **d.smokers**: number of deaths in smokers’ group
- **py.smokers**: person years at risk in smokers’ group
- **d.nonsmokers**: number of deaths in non-smokers’ group
- **py.nonsmokers**: person years at risk in non-smokers’ group

Details

Data have been reconstructed based on the famous Smoking and Health Report to the Surgeon General (Bayne-Jones S et al., 1964). Data sets can be used to evaluate the risk of smoking on overall mortality (dataset `smoking`) and lung-cancer deaths (dataset `lungcancer`), respectively.

The person time is attributed such that the rate ratios are equal to the reported mortality ratios implicitly assuming that the data have arisen from a homogeneous age group; more detailed information by age is not available from the report. Note, the group of "non-smokers" actually consists of all participants except those who are smokers of cigarettes only. Information on real non-smokers is not available from the published Smoking and Health Report.

Source

See Also

- `metainc`

Examples

```r
data(smoking)

m1 <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
               data = smoking, studlab = study)
print(m1, digits = 2)

data(lungcancer)
```
m2 <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
 data = lungcancer, studlab = study)
print(m2, digits = 2)

summary.meta

Description

Summary method for objects of class meta.

Usage

S3 method for class 'meta'
summary(object, ...)

Arguments

object An object of class meta.
... Additional arguments (ignored).

Details

Review Manager 5 (RevMan 5) is the current software used for preparing and maintaining Cochrane Reviews (https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman). In RevMan 5, subgroup analyses can be defined and data from a Cochrane review can be imported to R using the function read.rm5. If a meta-analysis is then conducted using function metacr, information on subgroups is available in R (components subgroup, subgroup.name, and print.subgroup.name, subgroup in an object of class "meta"). Accordingly, by using function metacr there is no need to define subgroups in order to redo the statistical analysis conducted in the Cochrane review.

Note, for an object of type metaprop, starting with version 3.7-0 of meta, list elements TE, lower and upper in element study correspond to transformed proportions and confidence limits (regardless whether exact confidence limits are calculated; argument ciexact=TRUE in metaprop function). Accordingly, the following results are based on the same transformation defined by argument sm: list elements TE, lower and upper in elements study, fixed, random, within.fixed and within.random.

R function cilayout can be utilised to change the layout to print confidence intervals (both in printout from print.meta and print.summary.meta function as well as in forest plots). The default layout is "[lower; upper]". Another popular layout is "(lower - upper)" which is used throughout an R session by using R command cilayout(""," - ").

Argument pscale can be used to rescale single proportions or risk differences, e.g. pscale=1000 means that proportions are expressed as events per 1000 observations. This is useful in situations with (very) low event probabilities.
Argument `irscale` can be used to rescale single rates or rate differences, e.g. `irscale=1000` means that rates are expressed as events per 1000 time units, e.g. person-years. This is useful in situations with (very) low rates. Argument `irunit` can be used to specify the time unit used in individual studies (default: "person-years"). This information is printed in summaries and forest plots if argument `irscale` is not equal to 1.

Value

An object of classes `summary.meta` and `meta`.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`print.summary.meta`, `metabin`, `metacont`, `metagen`

Examples

```r
data(Fleiss1993cont)
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont, data = Fleiss1993cont, studlab = paste(study, year), sm = "SMD")
summary(m1)
summary(update(m1, subgroup = c(1, 2, 1, 1, 2), subgroup.name = "group"))
forest(update(m1, subgroup = c(1, 2, 1, 1, 2), subgroup.name = "group"))
```

Not run:

Use unicode characters to print tau^2, tau, and I^2
print(summary(m1),
 text.tau2 = "\u03c4\u00b2", text.tau = "\u03c4", text.I2 = "I\u00b2")

End(Not run)
Description

Calculate and print a detailed summary of all meta-analyses in a Cochrane review.

Usage

```r
## S3 method for class 'rm5'
summary(object, comp.no, outcome.no, ...)

## S3 method for class 'summary.rm5'
print(x, ...)
```

Arguments

- `object`: An object of class `rm5`.
- `comp.no`: Comparison number.
- `outcome.no`: Outcome number.
- `...`: Additional arguments (passed on to `metacr`).
- `x`: An object of class `summary.rm5`.

Details

This function can be used to redo all or selected meta-analyses of a Cochrane Review.

Review Manager 5 (RevMan 5) is the current software used for preparing and maintaining Cochrane Reviews (https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman). In RevMan 5, subgroup analyses can be defined and data from a Cochrane review can be imported to R using the function `read.rm5`.

The R function `metacr` is called internally.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

- `summary.meta`
- `metacr`
- `read.rm5`
- `metabias.rm5`
trimfill.meta

Trim-and-fill method to adjust for bias in meta-analysis

Description

Trim-and-fill method for estimating and adjusting for the number and outcomes of missing studies in a meta-analysis.

Usage

```r
## S3 method for class 'meta'
trimfill(
x,
left = NULL,
ma.fixed = TRUE,
type = "L",
n.iter.max = 50,
level = x$level,
level.ma = x$level.ma,
fixed = FALSE,
random = TRUE,
hakn = x$hakn,
method.tau = x$method.tau,
method.tau.ci = x$method.tau.ci,
prediction = x$prediction,
level.predict = x$level.predict,
backtransf = x$backtransf,
p.scale = x$p.scale,
ir.scale = x$ir.scale,
ir.unit = x$ir.unit,
silent = TRUE,
...)
```
Default S3 method:

trimfill(
 x,
 seTE,
 left = NULL,
 ma.fixed = TRUE,
 type = "L",
 n.iter.max = 50,
 sm = "",
 studlab = NULL,
 level = 0.95,
 level.ma = level,
 fixed = FALSE,
 random = TRUE,
 hakn = FALSE,
 method.tau = "DL",
 method.tau.ci = if (method.tau == "DL") "J" else "QP",
 prediction = FALSE,
 level.predict = level,
 backtransf = TRUE,
 pscale = 1,
 irscale = 1,
 irunit = "person-years",
 silent = TRUE,
 ...
)

Arguments

- **x**: An object of class `meta`, or estimated treatment effect in individual studies.
- **left**: A logical indicating whether studies are supposed to be missing on the left or right side of the funnel plot. If NULL, the linear regression test for funnel plot symmetry (i.e., function `metabias(...,method="Egger")`) is used to determine whether studies are missing on the left or right side.
- **ma.fixed**: A logical indicating whether a fixed effect or random effects model is used to estimate the number of missing studies.
- **type**: A character indicating which method is used to estimate the number of missing studies. Either "L" or "R".
- **n.iter.max**: Maximum number of iterations to estimate number of missing studies.
- **level**: The level used to calculate confidence intervals for individual studies. If existing, `x$level` is used as value for `level`; otherwise 0.95 is used.
- **level.ma**: The level used to calculate confidence interval for the pooled estimate. If existing, `x$level.ma` is used as value for `level.ma`; otherwise 0.95 is used.
- **fixed**: A logical indicating whether a fixed effect meta-analysis should be conducted.
trimfill.meta

random A logical indicating whether a random effects meta-analysis should be conducted.
hakn A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.
method.tau A character string indicating which method is used to estimate the between-study variance τ^2 and its square root τ. Either "DL", "PM", "REML", "ML", "HS", "SJ", "HE", or "EB", can be abbreviated.
method.tau.ci A character string indicating which method is used to estimate the confidence interval of τ^2 and τ. Either "QP", "BJ", or "J", or ", can be abbreviated.
prediction A logical indicating whether a prediction interval should be printed.
level.predict The level used to calculate prediction interval for a new study.
backtransf A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE, results for sm="OR" are printed as odds ratios rather than log odds ratios and results for sm="ZCOR" are printed as correlations rather than Fisher’s z transformed correlations, for example.
pscale A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument sm is equal to "PLOGIT", "PLN", "PRAW", "PAS", "PFT", or "RD".
irscale A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument sm is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".
irunit A character specifying the time unit used to calculate rates, e.g. person-years.
silent A logical indicating whether basic information on iterations shown.
... other arguments
seTE Standard error of estimated treatment effect.
sm An optional character string indicating underlying summary measure, e.g., "RD", "RR", "OR", "ASD", "HR", "MD", "SMD", or "ROM"; ignored if x is of class meta.
studlab An optional vector with study labels; ignored if x is of class meta.

Details

The trim-and-fill method (Duval, Tweedie 2000a, 2000b) can be used for estimating and adjusting for the number and outcomes of missing studies in a meta-analysis. The method relies on scrutiny of one side of a funnel plot for asymmetry assumed due to publication bias.

Three different methods have been proposed originally to estimate the number of missing studies. Two of these methods (L- and R-estimator) have been shown to perform better in simulations, and are available in this R function (argument type).

A fixed effect or random effects model can be used to estimate the number of missing studies (argument ma.fixed). Furthermore, a fixed effect and/or random effects model can be used to summaries study results (arguments fixed and random). Simulation results (Peters et al. 2007) indicate that the fixed-random model, i.e. using a fixed effect model to estimate the number of missing studies and a random effects model to summaries results, (i) performs better than the fixed-fixed model, and (ii) performs no worse than and marginally better in certain situations than the random-random model. Accordingly, the fixed-random model is the default.
An empirical comparison of the trim-and-fill method and the Copas selection model (Schwarzer et al. 2010) indicates that the trim-and-fill method leads to excessively conservative inference in practice. The Copas selection model is available in R package **metasens**. The function **metagen** is called internally.

Value

An object of class `c("metagen","meta","trimfill")`. The object is a list containing the following components:

- `studlab`, `sm`, `left`, `ma.fixed`, `type`, `n.iter.max`
 - As defined above.
- `level`, `level.ma`, `level.predict`
 - As defined above.
- `fixed`, `random`, `prediction`
 - As defined above.
- `hakn`, `method.tau`, `method.tau.ci`, `as defined above.``TE`, `seTE`
 - Estimated treatment effect and standard error of individual studies.
- `lower`, `upper`
 - Lower and upper confidence interval limits for individual studies.
- `statistic`, `pval`
 - Statistic and p-value for test of treatment effect for individual studies.
- `w.fixed`, `w.random`
 - Weight of individual studies (in fixed and random effects model).
- `TE.fixed`, `seTE.fixed`
 - Estimated overall treatment effect and standard error (fixed effect model).
- `TE.random`, `seTE.random`
 - Estimated overall treatment effect and standard error (random effects model).
- `seTE.predict`
 - Standard error utilised for prediction interval.
- `lower.predict`, `upper.predict`
 - Lower and upper limits of prediction interval.
- `k`
 - Number of studies combined in meta-analysis.
- `Q`
 - Heterogeneity statistic Q.
- `tau`
 - Square-root of between-study variance.
- `method`
 - Pooling method: "Inverse".
- `call`
 - Function call.
- `n.iter`
 - Actual number of iterations to estimate number of missing studies.
- `trimfill`
 - A logical vector indicating studies that have been added by trim-and-fill method.
- `df.hakn`
 - Degrees of freedom for test of treatment effect for Hartung-Knapp method (only if `hakn=TRUE`).
- `title`
 - Title of meta-analysis / systematic review.
- `complab`
 - Comparison label.
- `outclab`
 - Outcome label.
label.e Label for experimental group.
label.c Label for control group.
label.left Graph label on left side of forest plot.
label.right Graph label on right side of forest plot.
k0 Number of studies added by trim-and-fill.
n.e Number of observations in experimental group (only for object x of class metabin or metacont).
n.c Number of observations in control group (only for object x of class metabin or metacont).
event.e Number of events in experimental group (only for object x of class metabin).
event.c Number of events in control group (only for object x of class metabin).
mean.e Estimated mean in experimental group (only for object x of class metacont).
sd.e Standard deviation in experimental group (only for object x of class metacont).
mean.c Estimated mean in control group (only for object x of class metacont).
sd.c Standard deviation in control group (only for object x of class metacont).
n Number of observations (only for object x of class metaprop).
event Number of events (only for object x of class metaprop).
cor Correlation (only for object x of class metacor).
class.x Main class of object x (e.g. 'metabin' or 'metacont').
version Version of R package meta used to create object.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also
metagen, metabias, funnel
Examples

```r
data(Fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin, sm = "OR")
tf1 <- trimfill(m1)
funnel(tf1)
funnel(tf1, pch = ifelse(tf1$trimfill, 1, 16), level = 0.9, random = FALSE)
  #
  # Use log odds ratios on x-axis
  #
  funnel(tf1, backtransf = FALSE)
  funnel(tf1, pch = ifelse(tf1$trimfill, 1, 16), level = 0.9, random = FALSE,
        backtransf = FALSE)
trimfill(m1$TE, m1$seTE, sm = m1$sm)
```

update.meta

Update a meta-analysis object

Description

Update an existing meta-analysis object.

Usage

```r
## S3 method for class 'meta'
update(
  object,
  data = object$data,
  subset,
  studlab,
  exclude,
  id,
  method = object$method,
  sm = object$sm,
  incr,
  allincr = object$allincr,
  addincr = object$addincr,
  allstudies = object$allstudies,
  MH.exact = object$MH.exact,
  RR.Cochrane = object$RR.Cochrane,
  Q.Cochrane = object$Q.Cochrane,
  model.glmm = object$model.glmm,
  level = object$level,
  level.ma = object$level.ma,
  fixed = object$fixed,
  random = object$random,
```
overall = object$overall,
overall.hetstat = object$overall.hetstat,
hakn = object$hakn,
adhoc.hakn = object$adhoc.hakn,
method.tau = object$method.tau,
method.tau.ci = object$method.tau.ci,
tau.preset = object$tau.preset,
TE.tau = object$TE.tau,
tau.common = object$tau.common,
prediction = object$prediction,
prediction.subgroup = object$prediction.subgroup,
teXt$data = object$teXt$data,
test.weight = object$test.weight,
test.predict = object$test.predict,
test.subgroup = object$test.subgroup,
test.E = object$test.E,
test.w.fixed = object$test.w.fixed,
test.w.random = object$test.w.random,
test.outliers = object$test.outliers,
test.print = object$test.print,
test.outliers = object$test.outliers,
print.CMH = object$print.CMH,
print.subgroup.name = object$print.subgroup.name,
pool.size = object$pool.size,
sd.glass = object$sd.glass,
irscale = object$irscale,
irunit = object$irunit,
text.fixed = object$text.fixed,
text.random = object$text.random,
text.predict = object$text.predict,
text.w.fixed = object$text.w.fixed,
text.w.random = object$text.w.random,
text.print = object$text.print,
text.outliers = object$text.outliers,
text.predict = object$text.predict,
text.w.fixed = object$text.w.fixed,
text.w.random = object$text.w.random,
text.print = object$text.print,
text.outliers = object$text.outliers,
text.predict = object$text.predict,
Arguments

object An object of class meta.
data Dataset.
subset Subset.
studlab Study label.
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
id An optional vector specifying which estimates come from the same study resulting in the use of a three-level meta-analysis model.
method A character string indicating which method is to be used for pooling of studies; see metabin and metainc function for admissible values.
sm A character string indicating which summary measure is used for pooling.
inr Either a numerical value or vector which can be added to each cell frequency for studies with a zero cell count or the character string "TA" which stands for treatment arm continuity correction.
allincr A logical indicating if incr is added to each cell frequency of all studies if at least one study has a zero cell count. If FALSE (default), incr is added only to each cell frequency of studies with a zero cell count.
addincr A logical indicating if incr is added to each cell frequency of all studies irrespective of zero cell counts.
allstudies A logical indicating if studies with zero or all events in both groups are to be included in the meta-analysis (applies only if sm is equal to "RR" or "OR").
MH.exact A logical indicating if incr is not to be added to all cell frequencies for studies with a zero cell count to calculate the pooled estimate based on the Mantel-Haenszel method.
RR.Cochrane A logical indicating if 2*incr instead of 1*incr is to be added to n.e and n.c in the calculation of the risk ratio (i.e., sm="RR") for studies with a zero cell. This is used in RevMan 5, the program for preparing and maintaining Cochrane reviews.
Q.Cochrane A logical indicating if the Mantel-Haenszel estimate is used in the calculation of the heterogeneity statistic Q which is implemented in RevMan 5, the program for preparing and maintaining Cochrane reviews.
model.glmm A character string indicating which GLMM model should be used.
level The level used to calculate confidence intervals for individual studies.
level.ma The level used to calculate confidence intervals for pooled estimates.
fixed A logical indicating whether a fixed effect meta-analysis should be conducted.
random A logical indicating whether a random effects meta-analysis should be conducted.
overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.
overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.
hakn A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.
adhoc.hakn A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate.
method.tau A character string indicating which method is used to estimate the between-study variance τ^2 and its square root τ. Either "DL", "PM", "REML", "ML", "HS", "SJ", "HE", or "EB", can be abbreviated. See function metagen.
method.tau.ci A character string indicating which method is used to estimate the confidence interval of τ^2 and τ. Either "QP", "BJ", or "J", can be abbreviated.
tau.preset Prespecified value for the square root of the between-study variance τ^2.
TE.tau Overall treatment effect used to estimate the between-study variance τ^2.
tau.common A logical indicating whether tau-squared should be the same across subgroups.
prediction A logical indicating whether a prediction interval should be printed.
level.predict The level used to calculate prediction interval for a new study.
null.effect A numeric value specifying the effect under the null hypothesis.
method.bias A character string indicating which test for funnel plot asymmetry is to be used, can be abbreviated. See function metabias.
backtransf A logical indicating whether results should be back transformed in printouts and plots. If backtransf = TRUE, results for sm = "OR" are printed as odds ratios rather than log odds ratios and results for sm = "ZCOR" are printed as correlations rather than Fisher’s z transformed correlations, for example.
pscale A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument sm is equal to "PLOGIT", "PLN", "PRAW", "PAS", "PFT", or "RD".
irscale A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument sm is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".
irunit A character specifying the time unit used to calculate rates, e.g. person-years.
text.fixed A character string used in printouts and forest plot to label the pooled fixed effect estimate.
text.random A character string used in printouts and forest plot to label the pooled random effects estimate.
A character string used in printouts and forest plot to label the prediction interval.

A character string used to label weights of fixed effect model.

A character string used to label weights of random effects model.

Title of meta-analysis / systematic review.

Comparison label.

Outcome label.

Label for experimental group.

Label for control group.

Graph label on left side of forest plot.

Graph label on right side of forest plot.

Number of observations in experimental group. (only for metagen object)

Number of observations in control group. (only for metagen object)

A logical indicating if a pooled variance should be used for the mean difference (only for metacont object with sm = "MD").

A character string indicating which method is used to estimate the standardised mean difference (only for metacont object with sm = "SMD"). Either "Hedges" for Hedges' g (default), "Cohen" for Cohen's d, or "Glass" for Glass' delta, can be abbreviated.

A character string indicating which standard deviation is used in the denominator for Glass' method to estimate the standardised mean difference (only for metacont object with sm = "SMD"). Either "control" using the standard deviation in the control group (sd.c) or "experimental" using the standard deviation in the experimental group (sd.e), can be abbreviated.

A logical indicating whether exact formulae should be used in estimation of the standardised mean difference and its standard error.

A character string indicating which method is used to calculate confidence intervals for individual studies. Either "z", "t", "WS", "WSCC", "AC", "SA", "SACC", or "NAsm", can be abbreviated. See functions metacont and metaprop.

An optional vector to conduct a meta-analysis with subgroups.

A character string with a name for the subgroup variable.

A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.

A character string defining the separator between name of subgroup variable and subgroup label.

A logical value indicating whether to print results of test for subgroup differences.

A logical indicating whether prediction intervals should be printed for subgroups.

Deprecated argument (replaced by 'subgroup').
print.CMH A logical indicating whether result of the Cochran-Mantel-Haenszel test for overall effect should be printed.

keepdata A logical indicating whether original data (set) should be kept in meta object.

left A logical indicating whether studies are supposed to be missing on the left or right side of the funnel plot. If NULL, the linear regression test for funnel plot symmetry (i.e., function metabias(..., method = "linreg")) is used to determine whether studies are missing on the left or right side.

ma.fixed A logical indicating whether a fixed effect or random effects model is used to estimate the number of missing studies.

type A character indicating which method is used to estimate the number of missing studies. Either "L" or "R".

n.iter.max Maximum number of iterations to estimate number of missing studies.

warn A logical indicating whether warnings should be printed (e.g., if incr is added to studies with zero cell frequencies).

warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.

control An optional list to control the iterative process to estimate the between-study variance τ^2. This argument is passed on to rma.uni or rma.glmm, respectively.

... Additional arguments (ignored at the moment).

Details
Wrapper function to update an existing meta-analysis object which was created with R function metabin, metacont, metacor, metagen, metainc, metamean, metaprop, or metarate. More details on function arguments are available in help files of respective R functions.
This function can also be used for objects of class 'trimfill', 'metacum', and 'metainf'.

Value
An object of class "meta" and "metabin", "metacont", "metacor", "metagen", "metainc", "metamean", "metaprop", or "metarate".

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also
metabin, metacont, metacor, metagen, metainc, metamean, metaprop, metarate

Examples
data(Fleiss1993cont)
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 data = Fleiss1993cont, studlab = paste(study, year), sm = "SMD")
m1
Change summary measure (from 'SMD' to 'MD')
update(m1, sm = "MD")

Restrict analysis to subset of studies
update(m1, subset = 1:2)

Use different levels for confidence intervals
m2 <- update(m1, level = 0.66, level.ma = 0.99)
print(m2, digits = 2)
forest(m2)

weights.meta

Calculate absolute and percentage weights for meta-analysis

Description

This function returns a data frame containing information on absolute and percentage weights of individual studies contributing to fixed effect and random effects meta-analysis.

Usage

```r
## S3 method for class 'meta'
weights(
  object,
  fixed = object$fixed,
  random = object$random,
  warn.deprecated = gs("warn.deprecated"),
  ...
)
```

Arguments

- `object` An object of class `meta`.
- `fixed` A logical indicating whether absolute and percentage weights from the fixed effect model should be calculated.
- `random` A logical indicating whether absolute and percentage weights from the random effects model should be calculated.
- `warn.deprecated` A logical indicating whether warnings should be printed if deprecated arguments are used.
- `...` Additional arguments (to catch deprecated arguments).
Value

A data frame with the following variables is returned:
Variable Definition Condition

- **w.fixed**: absolute weights in fixed effect model (if fixed = TRUE)
- **p.fixed**: percentage weights in fixed effect model (if fixed = TRUE)
- **w.random**: absolute weights in random effects model (if random = TRUE)
- **p.random**: percentage weights in random effects model (if random = TRUE)

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

- `metabin`
- `metacont`
- `metagen`

Examples

```r
## Do meta-analysis (fixed effect and random effects model)
meta1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, studlab = paste(study, year), sm = "SMD")

# Print weights for fixed effect and random effects meta-analysis
# weights(meta1)

## Do meta-analysis (only random effects model)
meta2 <- update(meta1, fixed = FALSE)

# Print weights for random effects meta-analysis
# weights(meta2)

# Print weights for fixed effect and random effects meta-analysis
# weights(meta2, fixed = TRUE)
```

woodyplants

Elevated CO₂ and total biomass of woody plants

Description

Meta-analysis on effects of elevated CO₂ on total biomass of woody plants

This dataset has been used as an example in Hedges et al. (1999) to describe methods for the meta-analysis of response ratios. The complete dataset with 102 observations and 26 variables is available online as a supplement. Here only a subset of 10 variables is provided and used in the examples.
Format

A data frame with the following columns:

- **obsno**: observation number
- **papno**: database paper number
- **treat**: treatment code
- **level**: treatment level
- **n.elev**: number of observations in experimental group (elevated CO₂-level)
- **mean.elev**: estimated mean in experimental group
- **sd.elev**: standard deviation in experimental group
- **n.amb**: number of observations in control group (ambient CO₂-level)
- **mean.amb**: estimated mean in control group
- **sd.amb**: standard deviation in control group

Source

Website http://www.esapubs.org/archive/ecol/E080/008/

References

Examples

data(woodyplants)

```r
# Meta-analysis of response ratios (Hedges et al., 1999)
#
m1 <- metacont(n.elev, mean.elev, sd.elev, n.amb, mean.amb, sd.amb,
               data = woodyplants, sm = "ROM", studlab = paste(obsno, papno, sep = " / "))
print(m1, prediction = TRUE)

# Meta-analysis for plants grown with low soil fertility treatment
#
m2 <- update(m1, subset = (treat == "fert" & level == "low"))
print(m2, prediction = TRUE)

# Meta-analysis for plants grown under low light conditions
#
m3 <- update(m1, subset = (treat == "light" & level == "low"))
print(m3, prediction = TRUE)
```
Index

* datagen
 longarm, 60
 read.mtv, 206
 read.rm5, 208
* datasets
 amlodipine, 6
 cisapride, 15
 Fleiss1993bin, 21
 Fleiss1993cont, 21
 Olkin1995, 192
 Pagliaro1992, 195
 smoking, 218
 woodyplants, 235
* hplot
 baujat.meta, 8
 bubble.metareg, 11
 drapery, 16
 forest.meta, 22
 forest.metabind, 45
 funnel.meta, 48
 labbe.metabin, 54
 radial.meta, 204
* htest
 metabias.rm5, 67
* models
 metareg, 187
* package
 meta-package, 3
* print
 print.summary.meta, 201
* regression
 metareg, 187

amlodipine, 6
as.data.frame.meta, 7

baujat (baujat.meta), 8
baujat.meta, 3, 8
bubble, 188
bubble (bubble.metareg), 11

bubble.metareg, 3, 11
ci, 14
cilayout (print.meta), 196
cisapride, 15
copas, 158
dev.copy2eps, 37, 47
dev.copy2pdf, 37, 47
drapery, 16
Fleiss1993.CR (read.rm5), 208
Fleiss1993bin, 21, 22
Fleiss1993cont, 21
Fleiss93 (Fleiss1993bin), 21
Fleiss93cont (Fleiss1993cont), 21
forest, 20, 82
forest (forest.meta), 22
forest.meta, 3, 7, 22, 47, 53, 59, 105, 124,
 152, 173, 214
forest.metabind, 3, 41, 45, 85
funnel, 67, 82, 205, 226
funnel (funnel.meta), 48
funnel.meta, 3, 48, 67
gpar, 33, 34
ggrid.xaxis, 30
gs, 52, 74, 91, 104, 120, 135, 150, 165, 180,
 212, 214
JAMAlabels, 53
labbe (labbe.metabin), 54
labbe.default, 3
labbe.metabin, 3, 54
labels.meta, 4, 41, 53, 58, 212, 214
legend, 19
limitmeta, 158
longarm, 60
lungcancer (smoking), 218
INDEX

metabias, 51, 68, 69, 72, 82, 90, 102, 118, 134, 148, 163, 178, 205, 226, 230
metabias (metabias.meta), 62
metabias.meta, 3, 62
metabias.rm5, 3, 67, 200, 211, 221
metabind, 4, 46, 47, 84, 159, 160
metacor, 3, 36, 37, 100, 212, 232
metacr, 4, 68, 69, 110, 200, 211, 212, 221
metacum, 3, 37, 38, 113
metainc, 3, 4, 36, 37, 39, 61, 62, 131, 179, 212, 218, 229, 232
metainf, 3, 10, 13, 37, 38, 143
metamean, 3, 37, 146, 156, 232
metamege, 85, 157
metaprop, 3, 4, 37, 161, 212, 231, 232
metarate, 3, 4, 36, 37, 176, 212, 232
metareg, 3, 76, 82, 94, 105, 123, 137, 152, 167, 181, 187

nnt, 190

Olkin1995, 192
Olkin95 (Olkin1995), 192
or2smd, 193, 217

Pagliaroi1992, 195
pairwise, 61, 62
par, 9, 19, 30
pdf, 37, 47

png, 37, 47
print.metabias (metabias.meta), 62
print.nnt.meta (nnt), 190
print.rm5, 199, 211
print.summary.meta, 201, 220
print.summary.rm5 (summary.rm5), 221

radial, 20, 51
radial (radial.meta), 204
radial.meta, 3, 204
read.mtv, 206
read.rm5, 4, 69, 113, 200, 208, 221
rma.glmm, 69, 73, 74, 76, 80, 131, 135–137, 141, 161, 164, 165, 167, 171, 176, 179–181, 185, 232
rma.mv, 116, 120
rma.uni, 63, 73, 91, 103, 120, 128, 135, 149, 164, 179, 187, 188, 232
robu, 158

settings.meta, 4, 39, 41, 47, 52, 74, 91, 104, 113, 120, 124, 129, 135, 150, 165, 180, 211
smd2or, 194, 215
smoking, 218
summary.meta, 188, 200, 203, 219, 221
summary.rm5, 69, 211, 221
svg, 37, 47

text, 9, 12, 50, 57
to.long, 62
trimfill, 158
trimfill (trimfill.meta), 222
trimfill.default, 3
trimfill.meta, 3, 222

unit, 34
update.meta, 74, 82, 91, 99, 104, 109, 120, 129, 135, 142, 150, 156, 165, 173, 180, 186, 203, 227

weights.meta, 233
weights.rma.mv, 120
woodyplants, 235