Package ‘meta’

October 13, 2022

Title General Package for Meta-Analysis
Version 6.0-0
Date 2022-09-17
Depends R (>= 4.0.0)
Imports metafor (>= 3.0-0), grid, lme4, CompQuadForm, xml2
Suggests BiasedUrn, pimeta
Author Guido Schwarzer [cre, aut] (<https://orcid.org/0000-0001-6214-9087>)
Maintainer Guido Schwarzer <sc@imbi.uni-freiburg.de>
URL https://github.com/guido-s/meta/
https://link.springer.com/book/10.1007/978-3-319-21416-0
Description User-friendly general package providing standard methods for meta-
analysis and supporting Schwarzer, Carpenter, and Rücker <DOI:10.1007/978-3-319-21416-
0>, ”Meta-Analysis with R” (2015):
- common effect and random effects meta-analysis;
- several plots (forest, funnel, Galbraith / radial, L'Abbe, Baujat, bubble);
- three-level meta-analysis model;
- generalised linear mixed model;
- Hartung-Knapp method for random effects model;
- Kenward-Roger method for random effects model;
- prediction interval;
- statistical tests for funnel plot asymmetry;
- trim-and-fill method to evaluate bias in meta-analysis;
- meta-regression;
- cumulative meta-analysis and leave-one-out meta-analysis;
- import data from 'RevMan 5';
- produce forest plot summarising several (subgroup) meta-analyses.
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.2.1
NeedsCompilation no
Repository CRAN
Date/Publication 2022-09-17 21:46:08 UTC
R topics documented:

meta-package .. 3
amlodipine .. 9
as.data.frame.meta .. 10
baujat.meta .. 12
bubble.metareg ... 14
ci ... 17
cisapride ... 19
drapery .. 21
Fleiss1993bin ... 26
Fleiss1993cont ... 26
forest.meta ... 27
forest.metabind ... 49
funnel.meta .. 53
gs ... 57
JAMAlabels ... 58
labbe.metabin ... 59
labels.meta ... 64
longarm .. 65
meta-object ... 68
metabias.meta .. 74
metabias.rm5 .. 79
metabin .. 81
metabind .. 91
metacon ... 93
metacor ... 103
metacr .. 108
metacum ... 112
metagen ... 114
metainc ... 124
metainf .. 131
metamean .. 133
metamerger ... 140
metaprop .. 143
metarate ... 153
metareg ... 160
nnt ... 162
Olkin1995 .. 165
or2smd ... 165
Pagliaro1992 .. 167
print.meta .. 168
print.rm5 .. 172
print.summary.meta .. 173
radial.meta ... 176
read.mtv .. 179
read.rm5 ... 181
settings.meta .. 184
meta-package

Details

R package **meta** (Schwarzer, 2007; Balduzzi et al., 2019) provides the following statistical methods for meta-analysis.

1. Common effect (also called fixed effect) and random effects model:
 - Meta-analysis of continuous outcome data (**metacont**)
 - Meta-analysis of binary outcome data (**metabin**)
 - Meta-analysis of incidence rates (**metainc**)
 - Generic inverse variance meta-analysis (**metagen**)
 - Meta-analysis of single correlations (**metacor**)
 - Meta-analysis of single means (**metamean**)
 - Meta-analysis of single proportions (**metaprop**)
 - Meta-analysis of single incidence rates (**metarate**)

2. Several plots for meta-analysis:
 - Forest plot (**forest.meta, forest.metabind**)
 - Funnel plot (**funnel.meta**)
 - Galbraith plot / radial plot (**radial.meta**)
 - L’Abbe plot for meta-analysis with binary outcome data (**labbe.metabin, labbe.default**)
 - Baujat plot to explore heterogeneity in meta-analysis (**baujat.meta**)
 - Bubble plot to display the result of a meta-regression (**bubble.metareg**)

3. Three-level meta-analysis model (Van den Noortgate et al., 2013)

4. Generalised linear mixed models (GLMMs) for binary and count data (Stijnen et al., 2010) (**metabin, metainc, metaprop, and metarate**).
5. Various estimators for the between-study variance τ^2 in a random effects model (Veroniki et al., 2016); see description of argument method.tau below

6. Hartung-Knapp method for random effects meta-analysis (Hartung & Knapp, 2001a,b), see description of arguments method.random.ci and adhoc.hakn.ci below

7. Kenward-Roger method for random effects meta-analysis (Partlett and Riley, 2017), see description of arguments method.random.ci and method.predict below

8. Prediction interval for the treatment effect of a new study (Higgins et al., 2009; Partlett and Riley, 2017; Nagashima et al., 2019), see description of argument method.predict below

9. Statistical tests for funnel plot asymmetry (metabias.meta, metabias.rm5) and trim-and-fill method (trimfill.meta, trimfill.default) to evaluate bias in meta-analysis

10. Meta-regression (metareg)

11. Cumulative meta-analysis (metacum) and leave-one-out meta-analysis (metainf)

12. Import data from Review Manager 5 (read.rm5), see also metacr to conduct meta-analysis for a single comparison and outcome from a Cochrane review

Additional statistical meta-analysis methods are provided by add-on R packages:

- Frequentist methods for network meta-analysis (R package netmeta)
- Statistical methods for sensitivity analysis in meta-analysis (R package metasens)
- Statistical methods for meta-analysis of diagnostic accuracy studies with several cutpoints (R package diagmeta)

In the following, more details on available and default statistical meta-analysis methods are provided. In addition, R function settings.meta is briefly described which can be used to change the default settings.

Estimation of between-study variance:

The following methods are available in all meta-analysis functions to estimate the between-study variance τ^2.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.tau = "REML"</td>
<td>Restricted maximum-likelihood estimator (Viechtbauer, 2005) (default)</td>
</tr>
<tr>
<td>method.tau = "PM"</td>
<td>Paule-Mandel estimator (Paule and Mandel, 1982)</td>
</tr>
<tr>
<td>method.tau = "DL"</td>
<td>DerSimonian-Laird estimator (DerSimonian and Laird, 1986)</td>
</tr>
<tr>
<td>method.tau = "ML"</td>
<td>Maximum-likelihood estimator (Viechtbauer, 2005)</td>
</tr>
<tr>
<td>method.tau = "HS"</td>
<td>Hunter-Schmidt estimator (Hunter and Schmidt, 2015)</td>
</tr>
<tr>
<td>method.tau = "SJ"</td>
<td>Sidik-Jonkman estimator (Sidik and Jonkman, 2005)</td>
</tr>
<tr>
<td>method.tau = "HE"</td>
<td>Hedges estimator (Hedges and Olkin, 1985)</td>
</tr>
<tr>
<td>method.tau = "EB"</td>
<td>Empirical Bayes estimator (Morris, 1983)</td>
</tr>
</tbody>
</table>

For GLMMs, only the maximum-likelihood method is available.

Historically, the DerSimonian-Laird method was the de facto standard to estimate the between-study variance τ^2 and is the default in some software packages including Review Manager 5 (RevMan 5) and R package meta, version 4 and below. However, its role has been challenged and especially the REML and Paule-Mandel estimators have been recommended (Veroniki et al.,...
Accordingly, the current default in R package meta is the REML estimator.

The following R command could be used to employ the Paule-Mandel instead of the REML estimator in all meta-analyses of the current R session:

```r
• settings.meta(method.tau = "PM")
```

Other estimators for $$\tau^2$$ could be selected in a similar way.

Confidence interval for random effects estimate:

The following methods are available in all meta-analysis functions to calculate a confidence interval for the random effects estimate.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.random.ci</td>
<td>Based on standard normal quantile</td>
</tr>
<tr>
<td></td>
<td>(DerSimonian and Laird, 1986) (default)</td>
</tr>
<tr>
<td>method.random.ci</td>
<td>Method by Hartung and Knapp (2001a/b)</td>
</tr>
<tr>
<td>method.random.ci</td>
<td>Kenward-Roger method (Partlett and Riley, 2017)</td>
</tr>
</tbody>
</table>

DerSimonian and Laird (1986) introduced the classic random effects model using a quantile of the standard normal distribution to calculate a confidence interval for the random effects estimate. This method implicitly assumes that the weights in the random effects meta-analysis are not estimated but given. Particularly, the uncertainty in the estimation of the between-study variance $$\tau^2$$ is ignored.

Hartung and Knapp (2001a,b) proposed an alternative method for random effects meta-analysis based on a refined variance estimator for the treatment estimate and a quantile of a t-distribution with $$k-1$$ degrees of freedom where $$k$$ corresponds to the number of studies in the meta-analysis. Simulation studies (Hartung and Knapp, 2001a,b; IntHout et al., 2014; Langan et al., 2019) show improved coverage probabilities compared to the classic random effects method. However, in rare settings with very homogeneous treatment estimates, the Hartung-Knapp variance estimate can be arbitrarily small resulting in a very narrow confidence interval (Knapp and Hartung, 2003; Wiksten et al., 2016). In such cases, an ad hoc variance correction has been proposed by utilising the variance estimate from the classic random effects model with the Hartung-Knapp method (Knapp and Hartung, 2003; IQWiQ, 2022). An alternative ad hoc approach is to use the confidence interval of the classic common or random effects meta-analysis if it is wider than the interval from the Hartung-Knapp method (Wiksten et al., 2016; Jackson et al., 2017).

Argument `adhoc.hakn.ci` can be used to choose the ad hoc correction for the Hartung-Knapp (HK) method:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Ad hoc method</th>
</tr>
</thead>
<tbody>
<tr>
<td>adhoc.hakn.ci</td>
<td>no ad hoc correction (default)</td>
</tr>
<tr>
<td>adhoc.hakn.ci</td>
<td>use variance correction if HK standard error is smaller than standard error from classic random effects meta-analysis (Knapp and Hartung, 2003)</td>
</tr>
<tr>
<td>adhoc.hakn.ci</td>
<td>use variance correction if HK confidence interval is narrower than CI from classic random effects model with DerSimonian-Laird estimator (IQWiG, 2022)</td>
</tr>
<tr>
<td>adhoc.hakn.ci</td>
<td>use wider confidence interval of classic random effects and HK meta-analysis</td>
</tr>
<tr>
<td></td>
<td>(Hybrid method 2 in Jackson et al., 2017)</td>
</tr>
</tbody>
</table>
The Kenward-Roger method is only available for the REML estimator (method.tau = "REML") of the between-study variance \(\tau^2 \) (Partlett and Riley, 2017). This method is based on an adjusted variance estimate for the random effects estimate. Furthermore, a quantile of a \(t \)-distribution with adequately modified degrees of freedom is used to calculate the confidence interval.

For GLMMs, the Kenward-Roger method is not available, but a method similar to Knapp and Hartung (2003) is implemented, see description of argument tdist in rma.glmm, and the \emph{ad hoc} variance correction is not available.

Prediction interval:

The following methods are available in all meta-analysis functions to calculate a prediction interval for the treatment effect in a single new study.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.predict = "HTS"</td>
<td>Based on (t)-distribution (Higgins et al., 2009) (default)</td>
</tr>
<tr>
<td>method.predict = "HK"</td>
<td>Hartung-Knapp method (Partlett and Riley, 2017)</td>
</tr>
<tr>
<td>method.predict = "NNF"</td>
<td>Bootstrap approach (Nagashima et al., 2019)</td>
</tr>
<tr>
<td>method.predict = "S"</td>
<td>Based on standard normal quantile (Skipka, 2006)</td>
</tr>
</tbody>
</table>

By default (method.predict = "HTS"), the prediction interval is based on a \(t \)-distribution with \(k-2 \) degrees of freedom where \(k \) corresponds to the number of studies in the meta-analysis, see equation (12) in Higgins et al. (2009).

Argument adhoc.hakn.pi can be used to choose the \emph{ad hoc} correction for the Hartung-Knapp method:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Ad hoc method</th>
</tr>
</thead>
<tbody>
<tr>
<td>adhoc.hakn.pi = ""</td>
<td>no \emph{ad hoc} correction (default)</td>
</tr>
<tr>
<td>adhoc.hakn.pi = "se"</td>
<td>use variance correction if HK standard error is smaller</td>
</tr>
</tbody>
</table>

The Kenward-Roger method is only available for the REML estimator (method.tau = "REML") of the between-study variance \(\tau^2 \) (Partlett and Riley, 2017). This method is based on an adjusted variance estimate for the random effects estimate. Furthermore, a quantile of a \(t \)-distribution with adequately modified degrees of freedom minus 1 is used to calculate the prediction interval.

The bootstrap approach is only available if R package \texttt{pimeta} is installed (Nagashima et al., 2019). Internally, the \texttt{pima} function is called with argument method = "boot".

The method of Skipka (2006) ignores the uncertainty in the estimation of the between-study variance \(\tau^2 \) and thus has too narrow limits for meta-analyses with a small number of studies.

Confidence interval for the between-study variance:

The following methods are available in all meta-analysis functions to calculate a confidence interval for \(\tau^2 \) and \(\tau \).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.tau.ci = "J"</td>
<td>Method by Jackson (2013)</td>
</tr>
<tr>
<td>method.tau.ci = "BJ"</td>
<td>Method by Biggerstaff and Jackson (2008)</td>
</tr>
<tr>
<td>method.tau.ci = "QP"</td>
<td>Q-Profile method (Viechtbauer, 2007)</td>
</tr>
<tr>
<td>method.tau.ci = "PL"</td>
<td>Profile-Likelihood method for three-level meta-analysis model (Van den Noortgate et al., 2013)</td>
</tr>
<tr>
<td>method.tau.ci = ""</td>
<td>No confidence interval</td>
</tr>
</tbody>
</table>
The first three methods have been recommended by Veroniki et al. (2016). By default, the Jackson method is used for the DerSimonian-Laird estimator of τ^2 and the Q-profile method for all other estimators of τ^2.

The Profile-Likelihood method is the only method available for the three-level meta-analysis model.

For GLMMs, no confidence intervals for τ^2 and τ are calculated.

Change default settings for R session:

R function `settings.meta` can be used to change the previously described and several other default settings for the current R session.

Some pre-defined general settings are available:

- `settings.meta("RevMan5")`
- `settings.meta("JAMA")`
- `settings.meta("IQWiG5")`
- `settings.meta("IQWiG6")`
- `settings.meta("geneexpr")`

The first command can be used to reproduce meta-analyses from Cochrane reviews conducted with Review Manager 5 (RevMan 5, https://training.cochrane.org/online-learning/core-software/revman) and specifies to use a RevMan 5 layout in forest plots.

The second command can be used to generate forest plots following instructions for authors of the Journal of the American Medical Association (https://jamanetwork.com/journals/jama/pages/instructions-for-authors/). Study labels according to JAMA guidelines can be generated using `labels.meta`.

The next two commands implement the recommendations of the Institute for Quality and Efficiency in Health Care (IQWiG), Germany accordinging to General Methods 5 and 6, respectively (https://www.iqwig.de/en/about-us/methods/methods-paper/).

The last setting can be used to print p-values in scientific notation and to suppress the calculation of confidence intervals for the between-study variance.

See `settings.meta` for more details on these pre-defined general settings.

In addition, `settings.meta` can be used to define individual settings for the current R session. For example, the following R command specifies the use of Hartung-Knapp and Paule-Mandel method, and the printing of prediction intervals for any meta-analysis generated after execution of this command:

- `settings.meta(method.random.ci = "HK", method.tau = "PM", prediction = TRUE)`

Note

Balduzzi et al. (2019) is the preferred citation in publications for `meta`. Type `citation("meta")` for a BibTeX entry of this publication.

Type `help(package = "meta")` for a listing of all R functions and datasets available in `meta`. For example, results of several meta-analyses can be combined with `metabind` which is useful to generate a forest plot with results of several subgroup analyses.

R package `meta` imports R functions from `metafor` (Viechtbauer, 2010) to

- estimate the between-study variance τ^2,
- conduct meta-regression,
• estimate three-level models,
• estimate generalised linear mixed models.

To report problems and bugs
• type `bug.report(package = "meta")` if you do not use RStudio,
• send an email to Guido Schwarzer <sc@imbi.uni-freiburg.de> if you use RStudio.

The development version of `meta` is available on GitHub https://github.com/guido-s/meta/.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Viechtbauer W (2007): Confidence intervals for the amount of heterogeneity in meta-analysis. Statistics in Medicine, 26, 37–52

amlodipine

Amlodipine for Work Capacity

Description

Meta-analysis on the effect of amlodipine on work capacity.

This meta-analysis is used as a data example in Hartung and Knapp (2001).

Format

A data frame with the following columns:

- **study**: study label
- **n.amlo**: number of observations in amlodipine group
- **mean.amlo**: estimated mean in amlodipine group
- **var.amlo**: variance in amlodipine group
- **n.plac**: number of observations in placebo group
- **mean.plac**: estimated mean in placebo group
- **var.plac**: variance in placebo group
Source

See Also

metacont

Examples

data(amlodipine)

m <- metacont(n.amlo, mean.amlo, sqrt(var.amlo),
 n.plac, mean.plac, sqrt(var.plac),
 data = amlodipine, studlab = study,
 method.tau = "DL")
m.hk <- update(m, method.random.ci = "HK")

Same results for mean difference as in Table III in Hartung and
Knapp (2001)
#
vars.common <- c("TE.common", "lower.common", "upper.common")
vars.random <- c("TE.random", "lower.random", "upper.random")

#
res.common <- as.data.frame(m[vars.common])
names(res.common) <- vars.random
#
res.md <- rbind(res.common,
 as.data.frame(m[vars.random]),
 as.data.frame(m.hk[vars.random]))

#
res.md <- round(res.md, 5)
#
row.names(res.md) <- c("CE", "RE", "RE (HaKn)"
names(res.md) <- c("Absolute difference", "CI lower", "CI upper")
#
res.md

as.data.frame.meta Additional functions for objects of class meta

Description

The as.data.frame method returns a data frame containing information on individual studies, e.g., estimated treatment effect and its standard error.

Usage

S3 method for class 'meta'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
as.data.frame.meta

Arguments

- **x**: An object of class `meta`.
- **row.names**: `NULL` or a character vector giving the row names for the data frame.
- **optional**: logical. If `TRUE`, setting row names and converting column names (to syntactic names) is optional.
- **...**: other arguments

Value

A data frame is returned by the function `as.data.frame`.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

`metabin`, `metacont`, `metagen`, `forest.meta`

Examples

data(Fleiss1993cont)

 # Generate additional variable with grouping information
 # Fleiss1993cont$group <- c(1, 2, 1, 1, 2)
 # # Do meta-analysis without grouping information
 # m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 # data = Fleiss1993cont, sm = "SMD", studlab = paste(study, year))
 # # Update meta-analysis object and do subgroup analyses
 # update(m1, subgroup = group)

 # Same result using metacont function directly
 # m2 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 # data = Fleiss1993cont, sm = "SMD", studlab = paste(study, year),
 # subgroup = group)
 m2

 # Compare printout of the following two commands
 # as.data.frame(m1)
 m1$data
baujat.meta
Baujat plot to explore heterogeneity in meta-analysis

Description

Draw a Baujat plot to explore heterogeneity in meta-analysis.

Usage

```r
## S3 method for class 'meta'
baujat(
x,  
yscale = 1,  
xlim,  
ylim,  
xlab = "Contribution to overall heterogeneity",  
ylab = "Influence on overall result",  
pch = 21,  
cex = 1,  
col = "black",  
bg = "darkgray",  
studlab = TRUE,  
cex.studlab = 0.8,  
pos.studlab,  
offset = 0.5,  
xmin = 0,  
ymin = 0,  
grid = TRUE,  
col.grid = "lightgray",  
lty.grid = "dotted",  
lwd.grid = par("lwd"),  
pty = "s",  
...)
```

Arguments

- **x**
 An object of class `meta`.
- **yscale**
 Scaling factor for values on y-axis.
- **xlim**
 The x limits (min,max) of the plot.
- **ylim**
 The y limits (min,max) of the plot.
- **xlab**
 A label for the x-axis.
- **ylab**
 A label for the y-axis.
- **pch**
 The plotting symbol used for individual studies.
- **cex**
 The magnification to be used for plotting symbol.
baujat.meta

- **col**: A vector with colour of plotting symbols.
- **bg**: A vector with background colour of plotting symbols (only used if pch in \(21:25\)).
- **studlab**: A logical indicating whether study labels should be printed in the graph. A vector with study labels can also be provided (must be of same length as \(x \$ TE\) then).
- **cex.studlab**: The magnification for study labels.
- **pos.studlab**: Position of study labels, see argument pos in `text`
- **offset**: Offset for study labels (see `text`).
- **xmin**: A numeric specifying minimal value to print study labels (on x-axis).
- **ymin**: A numeric specifying minimal value to print study labels (on y-axis).
- **grid**: A logical indicating whether a grid is printed in the plot.
- **col.grid**: Colour for grid lines.
- **lty.grid**: The line type for grid lines.
- **lwd.grid**: The line width for grid lines.
- **pty**: A character specifying type of plot region (see `par`).
- **...**: Graphical arguments as in `par` may also be passed as arguments.

Details

Baujat et al. (2002) introduced a scatter plot to explore heterogeneity in meta-analysis. On the x-axis the contribution of each study to the overall heterogeneity statistic (see list object Q of the meta-analysis object \(x\)) is plotted. On the y-axis the standardised difference of the overall treatment effect with and without each study is plotted; this quantity describes the influence of each study on the overall treatment effect.

Internally, the `metainf` function is used to calculate the values on the y-axis.

Value

A data.frame with the following variables:

- **x**: Coordinate on x-axis (contribution to heterogeneity statistic)
- **y**: Coordinate on y-axis (influence on overall treatment effect)

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`metagen`, `metainf`
Examples

```r
data(Olkin1995)

# Only consider first ten studies
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
  data = Olkin1995, sm = "OR", method = "I", studlab = paste(author, year),
  subset = 1:10)

# Generate Baujat plot
baujat(m1)

## Not run:
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
  data = Olkin1995, sm = "OR", method = "I", studlab = paste(author, year))

# Do not print study labels if the x-value is smaller than 4 and
# the y-value is smaller than 1
baujat(m1, yscale = 10, xmin = 4, ymin = 1)

# Change position of study labels
baujat(m1, yscale = 10, xmin = 4, ymin = 1,
  pos = 1, xlim = c(0, 6.5))

# Generate Baujat plot and assign x- and y- coordinates to R object
# b1
b1 <- baujat(m1)

# Calculate overall heterogeneity statistic
sum(b1$x)
m1$Q

## End(Not run)
```

bubble.metareg

Bubble plot to display the result of a meta-regression

Description

Draw a bubble plot to display the result of a meta-regression.

Usage

```r
## S3 method for class 'metareg'
bubble(
  x,
  xlim,
  ylim,
  xlab,
  ylab,
  title,
  # other arguments
)
```
bubble.metareg

bubble(x, ...)

Arguments

x An object of class metareg.
xlim The x limits (min,max) of the plot.
ylim The y limits (min,max) of the plot.
xlab A label for the x-axis.
ylab A label for the y-axis.
cex The magnification to be used for plotting symbols.
min.cex Minimal magnification for plotting symbols.
max.cex Maximal magnification for plotting symbols.
pch The plotting symbol used for individual studies.
col A vector with colour of plotting symbols.
bg A vector with background colour of plotting symbols (only used if pch in 21:25).
lty The line type for the meta-regression line.
lwd The line width for the meta-regression line.
col.line Colour for the meta-regression line.
studlab A logical indicating whether study labels should be printed in the graph. A vector with study labels can also be provided (must be of same length as the number of studies in the meta-analysis then).

cex.studlab The magnification for study labels.
pos.studlab Position of study labels, see argument pos in text.
offset Offset for study labels (see text).
regline A logical indicating whether a regression line should be added to the bubble plot.
backtransf A logical indicating whether results for relative summary measures (argument sm equal to "OR", "RR", "HR", or "IRR") should be back transformed. If backtransf=TRUE, results for sm="OR" are printed as odds ratios rather than log odds ratios, for example.
ref A numerical giving the reference value to be plotted as a line in the bubble plot. No reference line is plotted if argument ref is equal to NA.
col.ref Colour of the reference line.
lty.ref The line type for the reference line.
lwd.ref The line width for the reference line.
axes A logical indicating whether axes should be printed.
box A logical indicating whether a box should be printed.
... Graphical arguments as in par may also be passed as arguments.

Details

A bubble plot can be used to display the result of a meta-regression. It is a scatter plot with the treatment effect for each study on the y-axis and the covariate used in the meta-regression on the x-axis. Typically, the size of the plotting symbol is inversely proportional to the variance of the estimated treatment effect (Thompson & Higgins, 2002).

Argument cex specifies the plotting size for each individual study. If this argument is missing the weights from the meta-regression model will be used (which typically is a random effects model). Use cex="common" in order to utilise weights from a common effect model to define the size of the plotted symbols (even for a random effects meta-regression). If a vector with individual study weights is provided, the length of this vector must be of the same length as the number of studies.

Arguments min.cex and max.cex can be used to define the size of the smallest and largest plotting symbol. The plotting size of the most precise study is set to max.cex whereas the plotting size of all studies with a plotting size smaller than min.cex will be set to min.cex.

For a meta-regression with more than one covariate. Only a scatter plot of the first covariate in the regression model is shown. In this case the effect of the first covariate adjusted for other covariates in the meta-regression model is shown.

For a factor or categorial covariate separate bubble plots for each group compared to the baseline group are plotted.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>
References

See Also

`metagen, metainf`

Examples

```r
data(Fleiss1993cont)

# Add some (fictitious) grouping variables:
Fleiss1993cont$age <- c(55, 65, 52, 65, 58)
Fleiss1993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")

m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
               data = Fleiss1993cont, sm = "MD")

mr1 <- metareg(m1, region)

bubble(mr1)
bubble(mr1, lwd = 2, col.line = "blue")

mr2 <- metareg(m1, age)

bubble(mr2, lwd = 2, col.line = "blue", xlab = c(50, 70))
bubble(mr2, lwd = 2, col.line = "blue", xlab = c(50, 70), cex = "common")

# Do not print regression line
#
bubble(mr2, lwd = 2, col.line = "blue", xlab = c(50, 70), regline = FALSE)
```

ci

Calculation of confidence intervals (based on normal approximation or t-distribution)

Description

Calculation of confidence intervals; based on normal approximation or t-distribution.

Usage

```r
CI(TE, seTE, level = 0.95, df = NULL, null.effect = 0)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE</td>
<td>Estimated treatment effect.</td>
</tr>
<tr>
<td>seTE</td>
<td>Standard error of treatment estimate.</td>
</tr>
<tr>
<td>level</td>
<td>The confidence level required.</td>
</tr>
<tr>
<td>df</td>
<td>Degrees of freedom (for confidence intervals based on t-distribution).</td>
</tr>
<tr>
<td>null.effect</td>
<td>A numeric value specifying the effect under the null hypothesis.</td>
</tr>
</tbody>
</table>

Value

List with components

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE</td>
<td>Estimated treatment effect</td>
</tr>
<tr>
<td>seTE</td>
<td>Standard error of treatment estimate</td>
</tr>
<tr>
<td>lower</td>
<td>Lower confidence limits</td>
</tr>
<tr>
<td>upper</td>
<td>Upper confidence limits</td>
</tr>
<tr>
<td>statistic</td>
<td>Test statistic (either z-score or t-score)</td>
</tr>
<tr>
<td>p</td>
<td>P-value of test with null hypothesis TE=0</td>
</tr>
<tr>
<td>level</td>
<td>The confidence level required</td>
</tr>
<tr>
<td>df</td>
<td>Degrees of freedom (t-distribution)</td>
</tr>
</tbody>
</table>

Note

This function is primarily called from other functions of the library meta, e.g. forest.meta, summary.meta.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

Examples

```r
data.frame(ci(170, 10))
data.frame(ci(170, 10, 0.99))
data.frame(ci(1.959964, 1))
data.frame(ci(2.2621571628, 1, df = 9))
```
Description

Meta-analysis on cisapride in non-ulcer dispepsia.
This meta-analysis is used as a data example in Hartung and Knapp (2001).

Format

A data frame with the following columns:
cisapride

study study label
event.cisa number of events in cisapride group
n.cisa number of observations in cisapride group
event.plac number of events in placebo group
n.plac number of observations in placebo group

Source

See Also

metabin

Examples

data(cisapride)

m.or <- metabin(event.cisa, n.cisa, event.plac, n.plac,
data = cisapride, sm = "OR",
method = "Inverse", method.tau = "DL",
studlab = study, method.incr = "all")
m.or.hk <- update(m.or, method.random.ci = "HK")
m.rr <- update(m.or, sm = "RR")
m.rr.hk <- update(m.or, sm = "RR", method.random.ci = "HK")

vars.common <- c("TE.common", "lower.common", "upper.common")
vars.random <- c("TE.random", "lower.random", "upper.random")

res.common.or <- as.data.frame(m.or[vars.common])
names(res.common.or) <- vars.random
#
res.common.rr <- as.data.frame(m.rr[vars.common])
names(res.common.rr) <- vars.random

Results for log risk ratio - see Table VII in Hartung and Knapp (2001)
res.rr <- rbind(res.common.rr,
as.data.frame(m.rr[vars.random]),
as.data.frame(m.rr.hk[vars.random]))
#
row.names(res.rr) <- c("CE", "RE", "RE (HaKn)"
names(res.rr) <- c("Log risk ratio", "CI lower", "CI upper")
#
res.rr

Results for log odds ratio (Table VII in Hartung and Knapp 2001)
res.or <- rbind(res.common.or,
as.data.frame(m.or[,vars.random]),
as.data.frame(m.or.hk[,vars.random])
#
row.names(res.or) <- c("CE", "RE", "RE (HaKn)"
names(res.or) <- c("Log odds ratio", "CI lower", "CI upper")
#
res.or

drapey

Drapery plot

Description

Draw a drapery plot with (scaled) p-value curves for individual studies and meta-analysis estimates.

Usage

```r
drapery(
  x,
  type = "zvalue",
  layout = "grayscale",
  study.results = TRUE,
  lty.study = 1,
  lwd.study = 1,
  col.study = "darkgray",
  labels,
  col.labels = "black",
  cex.labels = 0.7,
  subset.labels,
  srt.labels,
  common = x$common,
  random = x$random,
  lty.common = 1,
  lwd.common = max(3, lwd.study),
  col.common = "blue",
  lty.random = 1,
  lwd.random = lwd.common,
  col.random = "red",
  sign = NULL,
  lty.sign = 1,
  lwd.sign = 1,
  col.sign = "black",
  prediction = random,
  col.predict = "lightblue",
  alpha = if (type == "zvalue") c(0.001, 0.01, 0.05, 0.1) else c(0.01, 0.05, 0.1),
  lty.alpha = 2,
  lwd.alpha = 1,
)```
col.alpha = "black",
cex.alpha = 0.7,
col.null.effect = "black",
legend = TRUE,
pos.legend = "topleft",
bg = "white",
bty = "o",
backtransf = x$backtransf,
xlab,
ylab,
xlim,
ylim,
lwd.max = 2.5,
lwd.study.weight = if (random) "random" else "common",
at = NULL,
n.grid = if (type == "zvalue") 10000 else 1000,
mar = c(5.1, 4.1, 4.1, 4.1),
plot = TRUE,
warn.deprecated = gs("warn.deprecated"),
fixed,
lwd.fixed,
lty.fixed,
col.fixed,
...
)

Arguments

x An object of class meta.
type A character string indicating whether to plot test statistics ("zvalue") or p-values ("pvalue"), can be abbreviated.
layout A character string for the line layout of individual studies: "grayscale", "equal", or "linewidth" (see Details), can be abbreviated.
study.results A logical indicating whether results for individual studies should be shown in the figure.
lty.study Line type for individual studies.
lwd.study Line width for individual studies.
col.study Colour of lines for individual studies.
labels A logical or character string indicating whether study labels should be shown at the top of the drapery plot; either FALSE, "id", or "studlab"; see Details.
col.labels Colour of study labels.
cex.labels The magnification for study labels.
subset.labels A vector specifying which study labels should be shown in the drapery plot.
srt.labels A numerical vector or single numeric (between 0 and 90) specifying the angle to rotate study labels; see Details.
common
A logical indicating whether to show result for the common effect model.

random
A logical indicating whether to show result for the random effects model.

lty.common
Line type for common effect meta-analysis.

lwd.common
Line width for common effect meta-analysis.

col.common
Colour of lines for common effect meta-analysis.

lty.random
Line type for random effects meta-analysis.

lwd.random
Line width for random effects meta-analysis.

col.random
Colour of lines for random effects meta-analysis.

sign
Significance level used to highlight significant values in curves.

lty.sign
Line type for significant values.

lwd.sign
Line width for significant values.

col.sign
Line colour for significant values.

prediction
A logical indicating whether to show prediction region.

col.predict
Colour of prediction region

alpha
Horizontal lines are printed for the specified alpha values.

lty.alpha
Line type of horizontal lines for alpha values.

lwd.alpha
Line width of horizontal lines for alpha values.

col.alpha
Colour of horizontal lines for alpha values.

cex.alpha
The magnification for the text of the alpha

col.null.effect
Colour of vertical line indicating null effect.

legend
A logical indicating whether a legend should be printed.

pos.legend
A character string with position of legend (see legend).

bg
Background colour of legend (see legend).

bty
Type of the box around the legend; either "o" or "n" (see legend).

backtransf
A logical indicating whether results should be back transformed on the x-axis. For example, if backtransf = FALSE, log odds ratios instead of odds ratios are shown on the x-axis.

xlab
A label for the x-axis.

ylab
A label for the y-axis.

xlim
The x limits (min, max) of the plot.

ylim
The y limits (min, max) of the plot (ignored if type = "pvalue").

lwd.max
The maximum line width (only considered if argument layout is equal to "linewidth").

lwd.study.weight
A character string indicating whether to determine line width for individual studies using weights from common effect ("common") or random effects model ("random"), can be abbreviated (only considered if argument layout is equal to "linewidth").

at
Points at which tick-marks are to be drawn on the x-axis.
n.grid
The number of grid points to calculate the p-value or test statistic functions.

mar
Physical plot margin, see \texttt{par}.

plot
A logical indicating whether to generate a figure.

warn.deprecated
A logical indicating whether warnings should be printed if deprecated arguments are used.

fixed
Deprecated argument (replaced by 'common').

lwd.fixed
Deprecated argument (replaced by 'lwd.common').

lty.fixed
Deprecated argument (replaced by 'lty.common').

col.fixed
Deprecated argument (replaced by 'col.common').

...
Graphical arguments as in \texttt{par} may also be passed as arguments.

\textbf{Details}

The concept of a p-value function, also called confidence curve, goes back to Birnbaum (1961). A drapery plot, showing p-value functions (or a scaled version based on the corresponding test statistics) for individual studies as well as meta-analysis estimates, is drawn in the active graphics window. Furthermore, a prediction region for a single future study is shown as a shaded area. In contrast to a forest plot, a drapery plot does not provide information for a single confidence level however for any confidence level.

Argument \texttt{type} can be used to either show p-value functions (Birnbaum, 1961) or a scaled version (Infanger, 2019) with test statistics (default).

Argument \texttt{layout} determines how curves for individual studies are presented:

- darker gray tones with increasing precision (\texttt{layout = "grayscale"})
- thicker lines with increasing precision (\texttt{layout = "lineweight"})
- equal lines (\texttt{layout = "equal"})

Argument \texttt{labels} determines how curves of individual studies are labelled:

- number of the study in the (unsorted) forest plot / printout of a meta-analysis (\texttt{labels = "id"})
- study labels provided by argument \texttt{studlab} in meta-analysis functions (\texttt{labels = "studlab"})
- no study labels (\texttt{labels = FALSE})

By default, study labels are used (\texttt{labels = "studlab"}) if no label has more than three characters; otherwise IDs are used (\texttt{labels = "id"}). The connection between IDs and study labels (among other information) is part of a data frame which is invisibly returned (if argument \texttt{study.results = TRUE}).

Argument \texttt{srt.labels} can be used to change the rotation of IDs or study labels. By default, study labels are rotated by +/- 45 degrees if at least one study label has more than three characters; otherwise labels are not rotated.

If \texttt{labels = "studlab"}, labels are rotated by -45 degrees for studies with a treatment estimate below the common effect estimate and otherwise by 45 degrees.
Author(s)

Gerta Rücker <sc@imbi.uni-freiburg.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

References


See Also

*forest, radial*

Examples

data("lungcancer")
m1 <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
  data = lungcancer, studlab = study)

  # Drapery plot
  #
  drapery(m1, xlim = c(0.5, 50))

  ## Not run:
data(Fleiss1993bin)
m2 <- metabin(d.asp, n.asp, d.plac, n.plac,
  data = Fleiss1993bin, studlab = paste(study, year),
  sm = "OR", random = FALSE)

  # Produce drapery plot and print data frame with connection between
  # IDs and study labels
  #
  (drapery(m2))

  # For studies with a significant effect (p < 0.05), show
  # study labels and print labels and lines in red
  #
  drapery(m2,
    labels = "studlab", subset.labels = pval < 0.05,
    srt.labels = 0, col.labels = "red",
    col.study = ifelse(pval < 0.05, "red", "darkgray"))

  ## End(Not run)
Fleiss1993bin  
Aspirin after Myocardial Infarction

Description
Meta-analysis on aspirin in preventing death after myocardial infarction.
Data example in Fleiss (1993) for meta-analysis with binary outcomes.

Format
A data frame with the following columns:

- **study**: study label
- **year**: year of publication
- **d.asp**: number of deaths in aspirin group
- **n.asp**: number of observations in aspirin group
- **d.plac**: number of deaths in placebo group
- **n.plac**: number of observations in placebo group

Source

Examples
```
data(Fleiss1993bin)
metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin,
studylab = paste(study, year), sm = "OR", random = FALSE)
```

Fleiss1993cont  
Mental Health Treatment

Description
Meta-analysis on the Effect of Mental Health Treatment on Medical Utilisation.
Data example in Fleiss (1993) for meta-analysis with continuous outcomes.

Format
A data frame with the following columns:

- **study**: study label
- **year**: year of publication
- **n.psyc**: number of observations in psychotherapy group
forest.meta

\textit{mean.psyc} estimated mean in psychotherapy group
\textit{sd.psyc} standard deviation in psychotherapy group
\textit{n.cont} number of observations in control group
\textit{mean.cont} estimated mean in control group
\textit{sd.cont} standard deviation in control group

Source


See Also

Fleiss1993bin

Examples

\begin{verbatim}
data(Fleiss1993cont)
metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, studlab = paste(study, year),
random = FALSE)
\end{verbatim}

\begin{verbatim}
forest.meta
\end{verbatim}

Forest plot to display the result of a meta-analysis

Description

Draws a forest plot in the active graphics window (using grid graphics system).

Usage

\begin{verbatim}
## S3 method for class 'meta'
forest(
x, 
sortvar,
studlab = TRUE,
layout = gs("layout"),
common = x$common,
random = x$random,
overall = x$overall,
text.common = x$text.common,
text.random = x$text.random,
lty.common = gs("lty.common"),
lty.random = gs("lty.random"),
col.common = gs("col.common"),
col.random = gs("col.random"),
text.w.common = x$text.w.common,
text.w.random = x$text.w.random, 
\end{verbatim}
prediction = x$prediction,
text.predict = x$text.predict,
subgroup = TRUE,
subgroup.hetstat = subgroup & (is.character(hetstat) || hetstat),
print.subgroup.labels = TRUE,
subgroup.name = x$subgroup.name,
print.subgroup.name = x$print.subgroup.name,
sep.subgroup = x$sep.subgroup,
text.common.w = text.common,
text.random.w = text.random,
text.predict.w = text.predict,
sort.subgroup = gs("sort.subgroup"),
pooled.totals = common | random,
pooled.events = gs("pooled.events"),
pooled.times = gs("pooled.times"),
study.results = gs("study.results"),
xlab = "",
xlab.pos,
smlab = NULL,
smlab.pos,
xlim = "symmetric",
allstudies = TRUE,
weight.study = NULL,
pscale = x$pscale,
irscale = x$irscale,
irunit = x$irunit,
ref = elseif(backtransf & is.relative.effect(x$sm), 1, 0),
lower.equi = gs("lower.equi"),
upper.equi = gs("upper.equi"),
lty.equi = gs("lty.equi"),
col.equi = gs("col.equi"),
fill.equi = gs("fill.equi"),
leftcols = NULL,
rightcols = NULL,
leftlabs = NULL,
rightlabs = NULL,
label.e = x$label.e,
label.c = x$label.c,
label.e.attach = NULL,
label.c.attach = NULL,
label.right = x$label.right,
label.left = x$label.left,
bottom.lr = gs("bottom.lr"),
lab.NA = gs("lab.NA"),
lab.NA.effect = gs("lab.NA.effect"),
lab.NA.weight = gs("lab.NA.weight"),
lwd = gs("lwd"),
at = NULL,
label = TRUE,
type.study = gs("type.study"),
type.common = gs("type.common"),
type.random = type.common,
type.subgroup = ifelse(study.results, "diamond", "square"),
type.subgroup.common = type.subgroup,
type.subgroup.random = type.subgroup,
col.study = gs("col.study"),
col.square = gs("col.square"),
col.square.lines = col.square,
col.inside = gs("col.inside"),
col.inside.common = col.inside,
col.inside.random = col.inside,
col.diamond = gs("col.diamond"),
col.diamond.common = col.diamond,
col.diamond.random = col.diamond,
col.diamond.lines = gs("col.diamond.lines"),
col.diamond.lines.common = col.diamond.lines,
col.diamond.lines.random = col.diamond.lines,
col.predict = gs("col.predict"),
col.predict.lines = gs("col.predict.lines"),
col.subgroup = gs("col.subgroup"),
col.label.right = gs("col.label.right"),
col.label.left = gs("col.label.left"),
hetstat = common | random | overall.hetstat,
overall.hetstat = x$overall.hetstat,
hetlab = gs("hetlab"),
resid.hetstat = gs("resid.hetstat"),
resid.hetlab = gs("resid.hetlab"),
print.I2 = gs("forest.I2"),
print.I2.ci = gs("forest.I2.ci"),
print.tau2 = gs("forest.tau2"),
print.tau2.ci = gs("forest.tau2.ci"),
print.tau = gs("forest.tau"),
print.tau.ci = gs("forest.tau.ci"),
print.Q = gs("forest.Q"),
print.pval.Q = gs("forest.pval.Q"),
print.Rb = gs("forest.Rb"),
print.Rb.ci = gs("forest.Rb.ci"),
text.subgroup.nohet = gs("text.subgroup.nohet"),
LRT = gs("LRT"),
test.overall = gs("test.overall"),
test.overall.common = common & overall & test.overall,
test.overall.random = random & overall & test.overall,
label.test.overall.common,
label.test.overall.random,
print.stat = gs("forest.stat"),
test.subgroup = x$test.subgroup,
test.subgroup.common = test.subgroup & common,
test.subgroup.random = test.subgroup & random,
prediction.subgroup = x$prediction.subgroup,
print.Q.subgroup = gs("forest.Q.subgroup"),
label.test.subgroup.common,
label.test.subgroup.random,
test.effect.subgroup = gs("test.effect.subgroup"),
test.effect.subgroup.common,
test.effect.subgroup.random,
label.test.effect.subgroup.common,
label.test.effect.subgroup.random,
test.addline1,
test.addline2,
fs.size = gs("fs.size"),
fs.family = gs("fs.family"),
fs.heading = fontsize,
fs.common = gs("fs.common"),
fs.random = gs("fs.random"),
fs.predict = gs("fs.predict"),
fs.common.labels = gs("fs.common.labels"),
fs.random.labels = gs("fs.random.labels"),
fs.predict.labels = gs("fs.predict.labels"),
fs.study = fontsize,
fs.study.labels = fs.study,
fs.hetstat = gs("fs.hetstat"),
fs.test.overall = gs("fs.test.overall"),
fs.test.subgroup = gs("fs.test.subgroup"),
fs.test.effect.subgroup = gs("fs.test.effect.subgroup"),
fs.addline = gs("fs.addline"),
fs.axis = fontsize,
fs.smlab = fontsize,
fs.xlab = fontsize,
fs.lr = fontsize,
ffheading = "bold",
ff.common = gs("ff.common"),
ff.random = gs("ff.random"),
ff.predict = gs("ff.predict"),
ff.common.labels = gs("ff.common.labels"),
ff.random.labels = gs("ff.random.labels"),
ff.predict.labels = gs("ff.predict.labels"),
fs.study = "plain",
fs.study.labels = fs.study,
ff.hetstat = gs("ff.hetstat"),
ff.test.overall = gs("ff.test.overall"),
ff.test.subgroup = gs("ff.test.subgroup"),
ff.test.effect.subgroup = gs("ff.test.effect.subgroup"),
ff.addline = gs("ff.addline"),
ff.axis = gs("ff.axis"),
ff.smlab = gs("ff.smlab"),
ff.xlab = gs("ff.xlab"),
ff.lr = gs("ff.lr"),
squaresize = 0.8/spacing,
plotwidth = if (layout == "JAMA") "8cm" else "6cm",
colgap = gs("colgap"),
colgap.left = colgap,
colgap.right = colgap,
colgap.studlab = colgap.left,
colgap.forest = colgap,
colgap.forest.left = colgap.forest,
colgap.forest.right = colgap.forest,
calcwidth.pooled = (common | random) & (overall | !is.null(x$subgroup)),
calcwidth.common = calcwidth.pooled,
calcwidth.random = calcwidth.pooled,
calcwidth.predict = gs("calcwidth.predict"),
calcwidth.hetstat = gs("calcwidth.hetstat"),
calcwidth.tests = gs("calcwidth.tests"),
calcwidth.subgroup = gs("calcwidth.subgroup"),
calcwidth.addline = gs("calcwidth.addline"),
just = if (layout == "JAMA") "left" else "right",
just.studlab = gs("just.studlab"),
just.addcols = gs("just.addcols"),
just.addcols.left = just.addcols,
just.addcols.right = just.addcols,
spacing = gs("spacing"),
addrow = gs("addrow"),
addrow.overall = gs("addrow.overall"),
addrow.subgroups = gs("addrow.subgroups"),
addrows.below.overall = gs("addrows.below.overall"),
new = TRUE,
backtransf = x$backtransf,
digits = gs("digits.forest"),
digits.se = gs("digits.se"),
digits.stat = gs("digits.stat"),
digits.pval = max(gs("digits.pval") - 2, 2),
digits.pval.Q = max(gs("digits.pval.Q") - 2, 2),
digits.Q = gs("digits.Q"),
digits.tau2 = gs("digits.tau2"),
digits.tau = gs("digits.tau"),
digits.I2 = max(gs("digits.I2") - 1, 0),
digits.weight = gs("digits.weight"),
digits.mean = digits,
digits.sd = digits.se,
digits.cor = digits,
digits.time = digits,
digits.addcols = digits,
digits.addcols.right = digits.addcols,
digits.addcols.left = digits.addcols,
scientific.pval = gs("scientific.pval"),
big.mark = gs("big.mark"),
zero.pval = if (layout == "JAMA") FALSE else gs("zero.pval"),
JAMA.pval = if (layout == "JAMA") TRUE else gs("JAMA.pval"),
warn.deprecated = gs("warn.deprecated"),
...
}

**Arguments**

- **x**
  An object of class `meta`.

- **sortvar**
  An optional vector used to sort the individual studies (must be of same length as `x$TE`).

- **studlab**
  A logical indicating whether study labels should be printed in the graph. A vector with study labels can also be provided (must be of same length as `x$TE` then).

- **layout**
  A character string specifying the layout of the forest plot (see Details).

- **common**
  A logical indicating whether common effect estimate should be plotted.

- **random**
  A logical indicating whether random effects estimate should be plotted.

- **overall**
  A logical indicating whether overall summaries should be plotted. This argument is useful in a meta-analysis with subgroups if summaries should only be plotted on group level.

- **text.common**
  A character string used in the plot to label the pooled common effect estimate.

- **text.random**
  A character string used in the plot to label the pooled random effects estimate.

- **lty.common**
  Line type (pooled common effect estimate).

- **lty.random**
  Line type (pooled random effects estimate).

- **col.common**
  Line colour (pooled common effect estimate).

- **col.random**
  Line colour (pooled random effects estimate).

- **text.w.common**
  A character string used to label weights of common effect model.

- **text.w.random**
  A character string used to label weights of random effects model.

- **prediction**
  A logical indicating whether a prediction interval should be printed.

- **text.predict**
  A character string used in the plot to label the prediction interval.

- **subgroup**
  A single logical or logical vector indicating whether / which subgroup results should be shown in forest plot. This argument is useful in a meta-analysis with subgroups if summaries should not be plotted for (some) subgroups.

- **subgroup.hetstat**
  A single logical or logical vector indicating whether / which information on heterogeneity in subgroups should be shown in forest plot. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should not be printed for (some) subgroups.

- **print.subgroup.labels**
  A logical indicating whether subgroup label should be printed.
subgroup.name: A character string with a label for the grouping variable.

print.subgroup.name: A logical indicating whether the name of the grouping variable should be printed in front of the group labels.

sep.subgroup: A character string defining the separator between label and levels of grouping variable.

text.common.w: A character string to label the pooled common effect estimate within subgroups, or a character vector of same length as number of subgroups with corresponding labels.

text.random.w: A character string to label the pooled random effect estimate within subgroups, or a character vector of same length as number of subgroups with corresponding labels.

text.predict.w: A character string to label the prediction interval within subgroups, or a character vector of same length as number of subgroups with corresponding labels.

sort.subgroup: A logical indicating whether groups should be ordered alphabetically.

pooled.totals: A logical indicating whether total number of observations should be given in the figure.

pooled.events: A logical indicating whether total number of events should be given in the figure.

pooled.times: A logical indicating whether total person time at risk should be given in the figure.

study.results: A logical indicating whether results for individual studies should be shown in the figure (useful to only plot subgroup results).

xlab: A label for the x-axis.

xlab.pos: A numeric specifying the center of the label on the x-axis.

smlab: A label for the summary measure (printed at top of figure).

smlab.pos: A numeric specifying the center of the label for the summary measure.

xlim: The x limits (min,max) of the plot, or the character string "symmetric" to produce symmetric forest plots.

allstudies: A logical indicating whether studies with inestimable treatment effects should be included in the forest plot.

weight.study: A character string indicating weighting used to determine size of squares or diamonds (argument type.study) to plot individual study results. One of missing, "same", "common", or "random", can be abbreviated. Plot symbols have the same size for all studies or represent study weights from common effect or random effects model.

pscale: A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument sm is equal to "PLOGIT", "PLN", "PRAW", "PAS", "PFT", or "RD".

irscale: A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument sm is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".

irunit: A character specifying the time unit used to calculate rates, e.g., person-years.
ref A numerical giving the reference value to be plotted as a line in the forest plot. No reference line is plotted if argument ref is equal to NA.

lower.equi A numerical giving the lower limit of equivalence to be plotted as a line in the forest plot. No line is plotted if argument lower.equi is equal to NA.

upper.equi A numerical giving the upper limit of equivalence to be plotted as a line in the forest plot. No line is plotted if argument upper.equi is equal to NA.

lty.equi Line type (limits of equivalence).

col.equi Line colour (limits of equivalence).

fill.equi Colour of area between limits of equivalence.

leftcols A character vector specifying (additional) columns to be printed on the left side of the forest plot or a logical value (see Details).

rightcols A character vector specifying (additional) columns to be printed on the right side of the forest plot or a logical value (see Details).

leftlabs A character vector specifying labels for (additional) columns on left side of the forest plot (see Details).

rightlabs A character vector specifying labels for (additional) columns on right side of the forest plot (see Details).

label.e Label to be used for experimental group in table heading.

label.c Label to be used for control group in table heading.

label.e.attach A character specifying the column name where label label.e should be attached to in table heading.

label.c.attach A character specifying the column name where label label.c should be attached to in table heading.

label.right Graph label on right side of forest plot.

label.left Graph label on left side of forest plot.

bottom.lr A logical indicating whether labels on right and left side should be printed at bottom or top of forest plot.

lab.NA A character string to label missing values.

lab.NA.effect A character string to label missing values in individual treatment estimates and confidence intervals.

lab.NA.weight A character string to label missing weights.

lwd The line width, see par.

at The points at which tick-marks are to be drawn, see grid.xaxis.

label A logical value indicating whether to draw the labels on the tick marks, or an expression or character vector which specify the labels to use. See grid.xaxis.

type.study A character string or vector specifying how to plot treatment effects and confidence intervals for individual studies (see Details).

type.common A character string specifying how to plot treatment effect and confidence interval for common effect meta-analysis (see Details).

type.random A character string specifying how to plot treatment effect and confidence interval for random effects meta-analysis (see Details).
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type.subgroup</code></td>
<td>A character string specifying how to plot treatment effect and confidence interval for subgroup results (see Details).</td>
</tr>
<tr>
<td><code>type.subgroup.common</code></td>
<td>A character string specifying how to plot treatment effect and confidence interval for subgroup results (common effect model).</td>
</tr>
<tr>
<td><code>type.subgroup.random</code></td>
<td>A character string specifying how to plot treatment effect and confidence interval for subgroup results (random effects model).</td>
</tr>
<tr>
<td><code>col.study</code></td>
<td>The colour for individual study results and confidence limits.</td>
</tr>
<tr>
<td><code>col.square</code></td>
<td>The colour for squares reflecting study’s weight in the meta-analysis.</td>
</tr>
<tr>
<td><code>col.square.lines</code></td>
<td>The colour for the outer lines of squares reflecting study’s weight in the meta-analysis.</td>
</tr>
<tr>
<td><code>col.inside</code></td>
<td>The colour for individual study results and confidence limits if confidence limits are completely within squares.</td>
</tr>
<tr>
<td><code>col.inside.common</code></td>
<td>The colour for result of common effect meta-analysis if confidence limit lies completely within square.</td>
</tr>
<tr>
<td><code>col.inside.random</code></td>
<td>The colour for result of random effects meta-analysis if confidence limit lies completely within square.</td>
</tr>
<tr>
<td><code>col.diamond</code></td>
<td>The colour of diamonds representing the results for common effect and random effects models.</td>
</tr>
<tr>
<td><code>col.diamond.common</code></td>
<td>The colour of diamonds for common effect estimates.</td>
</tr>
<tr>
<td><code>col.diamond.random</code></td>
<td>The colour of diamonds for random effects estimates.</td>
</tr>
<tr>
<td><code>col.diamond.lines</code></td>
<td>The colour of the outer lines of diamonds representing the results for common effect and random effects models.</td>
</tr>
<tr>
<td><code>col.diamond.lines.common</code></td>
<td>The colour of the outer lines of diamond for common effect estimate.</td>
</tr>
<tr>
<td><code>col.diamond.lines.random</code></td>
<td>The colour of the outer lines of diamond for random effects estimate.</td>
</tr>
<tr>
<td><code>col.predict</code></td>
<td>Background colour of prediction interval.</td>
</tr>
<tr>
<td><code>col.predict.lines</code></td>
<td>Colour of outer lines of prediction interval.</td>
</tr>
<tr>
<td><code>col.subgroup</code></td>
<td>The colour to print information on subgroups.</td>
</tr>
<tr>
<td><code>col.label.right</code></td>
<td>The colour for label on right side of null effect.</td>
</tr>
<tr>
<td><code>col.label.left</code></td>
<td>The colour for label on left side of null effect.</td>
</tr>
<tr>
<td><code>hetstat</code></td>
<td>Either a logical value indicating whether to print results for heterogeneity measures at all or a character string (see Details).</td>
</tr>
</tbody>
</table>
overall.hetstat
A logical value indicating whether to print heterogeneity measures for overall
treatment comparisons. This argument is useful in a meta-analysis with sub-
groups if heterogeneity statistics should only be printed on subgroup level.

hetlab
Label printed in front of results for heterogeneity measures.

resid.hetstat
A logical value indicating whether to print measures of residual heterogeneity
in a meta-analysis with subgroups.

resid.hetlab
Label printed in front of results for residual heterogeneity measures.

print.I2
A logical value indicating whether to print the value of the I-squared statistic.

print.I2.ci
A logical value indicating whether to print the confidence interval of the I-
squared statistic.

print.tau2
A logical value indicating whether to print the value of the between-study varia-
tance $\tau^2$.

print.tau2.ci
A logical value indicating whether to print the confidence interval of $\tau^2$.

print.tau
A logical value indicating whether to print $\tau$, the square root of the between-
study variance $\tau^2$.

print.tau.ci
A logical value indicating whether to print the confidence interval of $\tau$.

print.Q
A logical value indicating whether to print the value of the heterogeneity statistic
Q.

print.pval.Q
A logical value indicating whether to print the p-value of the heterogeneity
statistic Q.

print.Rb
A logical value indicating whether to print the value of the I-squared statistic.

print.Rb.ci
A logical value indicating whether to print the confidence interval of the I-
squared statistic.

text.subgroup.nohet
A logical value or character string which is printed to indicate subgroups with
less than two studies contributing to meta-analysis (and thus without hetero-
geneity). If FALSE, heterogeneity statistics are printed (with NAs).

LRT
A logical value indicating whether to report Likelihood-Ratio or Wald-type test
of heterogeneity for generalized linear mixed models.

test.overall
A logical value indicating whether to print results of test for overall effect.

test.overall.common
A logical value indicating whether to print results of test for overall effect (com-
mon effect model).

test.overall.random
A logical value indicating whether to print results of test for overall effect (ran-
dom effects model).

label.test.overall.common
Label printed in front of results of test for overall effect (common effect model).

label.test.overall.random
Label printed in front of results of test for overall effect (random effects model).

print.stat
A logical value indicating whether z- or t-value for test of treatment effect should
be printed.
test.subgroup A logical value indicating whether to print results of test for subgroup differences.

test.subgroup.common
A logical value indicating whether to print results of test for subgroup differences (common effect model).

test.subgroup.random
A logical value indicating whether to print results of test for subgroup differences (random effects model).

prediction.subgroup
A single logical or logical vector indicating whether / which prediction intervals should be printed for subgroups.

print.Q.subgroup
A logical value indicating whether to print the value of the heterogeneity statistic Q (test for subgroup differences).

label.test.subgroup.common
Label printed in front of results of test for subgroup differences (common effect model).

label.test.subgroup.random
Label printed in front of results of test for subgroup differences (random effects model).

test.effect.subgroup
A single logical or logical vector indicating whether / which tests for effect in subgroups should be printed.


test.effect.subgroup.common
A single logical or logical vector indicating whether / which tests for effect in subgroups should be printed (common effect model).

test.effect.subgroup.random
A single logical or logical vector indicating whether / which tests for effect in subgroups should be printed (random effects model).

label.test.effect.subgroup.common
Label printed in front of results of test for effect in subgroups (common effect model).

label.test.effect.subgroup.random
Label printed in front of results of test for effect in subgroups (random effects model).

text.addline1 Text for first additional line (below meta-analysis results).

text.addline2 Text for second additional line (below meta-analysis results).

fontsize The size of text (in points), see gpar.

fontfamily The font family, see gpar.

fs.heading The size of text for column headings, see gpar.

fs.common The size of text for results of common effect model, see gpar.

fs.random The size of text for results of random effects model, see gpar.

fs.predict The size of text for results of prediction interval, see gpar.
fs.common.labels
The size of text for label of common effect model, see gpar.

fs.random.labels
The size of text for label of random effects model, see gpar.

fs.predict.labels
The size of text for label of prediction interval, see gpar.

fs.study
The size of text for results of individual studies, see gpar.

fs.study.labels
The size of text for labels of individual studies, see gpar.

fs.hetstat
The size of text for heterogeneity measures, see gpar.

fs.test.overall
The size of text of test for overall effect, see gpar.

fs.test.subgroup
The size of text of test of subgroup differences, see gpar.

fs.test.effect.subgroup
The size of text of test of effect in subgroups, see gpar.

fs.addline
The size of text for additional lines, see gpar.

fs.axis
The size of text on x-axis, see gpar.

fs.smlab
The size of text of label for summary measure, see gpar.

fs.xlab
The size of text of label on x-axis, see gpar.

fs.lr
The size of text of label on left and right side of forest plot, see gpar.

ff.heading
The fontface for column headings, see gpar.

ff.common
The fontface of text for results of common effect model, see gpar.

ff.random
The fontface of text for results of random effects model, see gpar.

ff.predict
The fontface of text for results of prediction interval, see gpar.

ff.common.labels
The fontface of text for label of common effect model, see gpar.

ff.random.labels
The fontface of text for label of random effects model, see gpar.

ff.predict.labels
The fontface of text for label of prediction interval, see gpar.

ff.study
The fontface of text for results of individual studies, see gpar.

ff.study.labels
The fontface of text for labels of individual studies, see gpar.

ff.hetstat
The fontface of text for heterogeneity measures, see gpar.

ff.test.overall
The fontface of text of test for overall effect, see gpar.

ff.test.subgroup
The fontface of text for test of subgroup differences, see gpar.

ff.test.effect.subgroup
The fontface of text of test of effect in subgroups, see gpar.

ff.addline
The fontface of text for additional lines, see gpar.
ff.axis  The fontface of text on x-axis, see gpar.
ff.smlab The fontface of text of label for summary measure, see gpar.
ff.xlab  The fontface of text of label on x-axis, see gpar.
ff.lr    The fontface of text on left and right side of forest plot, see gpar.
squaresize A numeric used to increase or decrease the size of squares in the forest plot.
plotwidth Either a character string, e.g., "8cm", "60mm", or "3inch", or a unit object specifying width of the forest plot.
colgap Either a character string or a unit object specifying gap between columns printed on left and right side of forest plot.
colgap.left Either a character string or a unit object specifying gap between columns printed on left side of forest plot.
colgap.right Either a character string or a unit object specifying gap between columns printed on right side of forest plot.
colgap.studlab Either a character string or a unit object specifying gap between column with study labels and subsequent column.
colgap.forest Either a character string or a unit object specifying gap between column adjacent to forest plot and the forest plot.
colgap.forest.left Either a character string or a unit object specifying gap between column on the left side of forest plot and the forest plot.
colgap.forest.right Either a character string or a unit object specifying gap between column on the right side of forest plot and the forest plot.
calcwidth.pooled A logical indicating whether text for common effect and random effects model should be considered to calculate width of the column with study labels.
calcwidth.common A logical indicating whether text given in arguments text.common and text.common.w should be considered to calculate width of the column with study labels.
calcwidth.random A logical indicating whether text given in arguments text.random and text.random.w should be considered to calculate width of the column with study labels.
calcwidth.predict A logical indicating whether text given in argument text.predict and text.predict.w should be considered to calculate width of the column with study labels.
calcwidth.hetstat A logical indicating whether text for heterogeneity statistics should be considered to calculate width of the column with study labels.
calcwidth.tests A logical indicating whether text for tests of overall effect or subgroup differences should be considered to calculate width of the column with study labels.
calcwidth.subgroup A logical indicating whether text with subgroup labels should be considered to calculate width of the column with study labels.
calcwidth.addline
A logical indicating whether text for additional lines should be considered to calculate width of the column with study labels.

just
Justification of text in all columns but columns with study labels and additional variables (possible values: "left", "right", "center").

just.studlab
Justification of text for study labels (possible values: "left", "right", "center").

just.addcols
Justification of text for additional columns (possible values: "left", "right", "center").

just.addcols.left
Justification of text for additional columns on left side of forest plot (possible values: "left", "right", "center"). Can be of same length as number of additional columns on left side of forest plot.

just.addcols.right
Justification of text for additional columns on right side of forest plot (possible values: "left", "right", "center"). Can be of same length as number of additional columns on right side of forest plot.

spacing
A numeric determining line spacing in a forest plot.

addrow
A logical value indicating whether an empty row is printed above study results.

addrow.overall
A logical value indicating whether an empty row is printed above overall meta-analysis results.

addrow.subgroups
A logical value indicating whether an empty row is printed between results for subgroups.

addrows.below.overall
A numeric value indicating how many empty rows are printed between meta-analysis results and heterogeneity statistics and test results.

new
A logical value indicating whether a new figure should be printed in an existing graphics window.

backtransf
A logical indicating whether results should be back transformed in forest plots. If \( \text{backtransf} = \text{TRUE} \), results for \( \text{sm} = \text{"OR"} \) are presented as odds ratios rather than log odds ratios and results for \( \text{sm} = \text{"ZCOR"} \) are presented as correlations rather than Fisher's z transformed correlations, for example.

digits
Minimal number of significant digits for treatment effects, see print.default.

digits.se
Minimal number of significant digits for standard errors, see print.default.

digits.stat
Minimal number of significant digits for z- or t-statistic for test of overall effect, see print.default.

digits.pval
Minimal number of significant digits for p-value of overall treatment effect, see print.default.

digits.pval.Q
Minimal number of significant digits for p-value of heterogeneity test, see print.default.

digits.Q
Minimal number of significant digits for heterogeneity statistic Q, see print.default.

digits.tau2
Minimal number of significant digits for between-study variance, see print.default.

digits.tau
Minimal number of significant digits for square root of between-study variance, see print.default.
digits.I2  Minimal number of significant digits for I-squared statistic, see print.default.
digits.weight  Minimal number of significant digits for weights, see print.default.
digits.mean  Minimal number of significant digits for means; only applies to metacont objects.
digits.sd  Minimal number of significant digits for standard deviations; only applies to metacont objects.
digits.cor  Minimal number of significant digits for correlations; only applies to metacor objects.
digits.time  Minimal number of significant digits for times; only applies to metainc and metarate objects.
digits.addcols  A vector or scalar with minimal number of significant digits for additional columns.
digits.addcols.right  A vector or scalar with minimal number of significant digits for additional columns on right side of forest plot.
digits.addcols.left  A vector or scalar with minimal number of significant digits for additional columns on left side of forest plot.
scientific.pval  A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.
big.mark  A character used as thousands separator.
zero.pval  A logical specifying whether p-values should be printed with a leading zero.
JAMA.pval  A logical specifying whether p-values for test of overall effect should be printed according to JAMA reporting standards.
warn.deprecated  A logical indicating whether warnings should be printed if deprecated arguments are used.
...
  Additional graphical arguments.

Details

A forest plot, also called confidence interval plot, is drawn in the active graphics window. The forest functions in R package meta are based on the grid graphics system. In order to print the forest plot, resize the graphics window and either use dev.copy2eps or dev.copy2pdf. Another possibility is to create a file using pdf, png, or svg and to specify the width and height of the graphic (see Examples).

Default layout for studies and pooled effects:

By default, treatment estimates and confidence intervals are plotted in the following way:

- For an individual study, a square with treatment estimate in the center and confidence interval as line extending either side of the square (type.study = "square")
- For meta-analysis results, a diamond with treatment estimate in the center and right and left side corresponding to lower and upper confidence limits (type.common = "diamond", type.random = "diamond", and type.subgroup = "diamond")
In a forest plot, size of the squares typically reflects the precision of individual treatment estimates based either on the common effect (\texttt{weight.study = "common"}) or random effects meta-analysis (\texttt{weight.study = "random"). Information from meta-analysis object \texttt{x} is utilised if argument \texttt{weight.study} is missing. Weights from the common effect model are used if argument \texttt{x$common} is \texttt{TRUE}; weights from the random effects model are used if argument \texttt{x$random} is \texttt{TRUE} and \texttt{x$common} is \texttt{FALSE}. The same square sizes are used if \texttt{weight.study = "same"}.

A prediction interval for treatment effect of a new study (Higgins et al., 2009) is given in the forest plot if arguments \texttt{prediction} and \texttt{random} are \texttt{TRUE}. For graphical presentation of prediction intervals the approach by Guddat et al. (2012) is used.

**Columns printed on left side of forest plot:**

Argument \texttt{leftcols} can be used to specify columns which are printed on the left side of the forest plot. By default, i.e. if argument \texttt{leftcols} is \texttt{NULL} and \texttt{layout = "meta"}, and depending on the class of the meta-analysis object (which is defined by the R function used to generate the object) a different set of columns is printed on the left side of the forest plot:

<table>
<thead>
<tr>
<th>Function</th>
<th>Value of argument \texttt{leftcols}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{metabin}</td>
<td>\texttt{c(&quot;studlab&quot;, &quot;event.e&quot;, &quot;n.e&quot;, &quot;event.c&quot;, &quot;n.c&quot;)}</td>
</tr>
<tr>
<td>\texttt{metacont}</td>
<td>\texttt{c(&quot;studlab&quot;, &quot;n.e&quot;, &quot;mean.e&quot;, &quot;sd.e&quot;, &quot;n.c&quot;, &quot;mean.c&quot;, &quot;sd.c&quot;)}</td>
</tr>
<tr>
<td>\texttt{metacor}</td>
<td>\texttt{c(&quot;studlab&quot;, &quot;n&quot;)}</td>
</tr>
<tr>
<td>\texttt{metagen}</td>
<td>\texttt{c(&quot;studlab&quot;, &quot;TE&quot;, &quot;seTE&quot;)}</td>
</tr>
<tr>
<td>\texttt{metainc}</td>
<td>\texttt{c(&quot;studlab&quot;, &quot;event.e&quot;, &quot;time.e&quot;, &quot;event.c&quot;, &quot;time.c&quot;)}</td>
</tr>
<tr>
<td>\texttt{metamean}</td>
<td>\texttt{c(&quot;studlab&quot;, &quot;n&quot;, &quot;mean&quot;, &quot;sd&quot;)}</td>
</tr>
<tr>
<td>\texttt{metaprop}</td>
<td>\texttt{c(&quot;studlab&quot;, &quot;event&quot;, &quot;n&quot;)}</td>
</tr>
<tr>
<td>\texttt{metarate}</td>
<td>\texttt{c(&quot;studlab&quot;, &quot;event&quot;, &quot;time&quot;, &quot;n&quot;)}</td>
</tr>
<tr>
<td>\texttt{metacum}</td>
<td>&quot;studlab&quot;</td>
</tr>
<tr>
<td>\texttt{metainf}</td>
<td>&quot;studlab&quot;</td>
</tr>
</tbody>
</table>

For three-level models, the cluster variable is printed next to the study labels (value \texttt{"cluster"} in argument \texttt{leftcols}).

By default, study labels and labels for pooled estimates and heterogeneity statistics will be printed in the first column on the left side of the forest plot. The character string \texttt{"studlab"} is used to identify study labels as this is the name of the list element of a meta-analysis object.

If the character string \texttt{"studlab"} is not provided in \texttt{leftcols} and \texttt{rightcols}, the first additional variable specified by the user is used as study labels (and labels for pooled estimates are printed in this column). Additional variables are any variables not mentioned in the section on predefined column names below. For example, \texttt{leftcols = "studlab"} and \texttt{leftcols = "study"} would result in the same forest plot if the variable \texttt{"study"} was used in the command to conduct the meta-analysis. If no additional variable is provided by the user, no study labels will be printed.

**Overlapping information on left side of forest plot:**

Depending on the number of columns printed on the left side of the forest plot, information on heterogeneity measures or statistical tests (see below) can be overlapping with the x-axis. Argument \texttt{addrows.below.overall} can be used to specify the number of empty rows that are printed between meta-analysis results and information on heterogeneity measures and statistical tests. By default, no additional rows are added to the forest plot. If \texttt{addrows.below.overall = NULL}, the function tries to add a sufficient number of empty rows to prevent overlapping text. Another possibility is to manually increase the space between the columns on the left side (ar-
Columns printed on right side of forest plot:

Argument rightcols can be used to specify columns which are printed on the right side of the forest plot. If argument rightcols is FALSE, no columns will be printed on the right side. By default, i.e. if argument rightcols is NULL and layout = "meta", the following columns will be printed on the right side of the forest plot:

<table>
<thead>
<tr>
<th>Meta-analysis results</th>
<th>Value of argument rightcols</th>
</tr>
</thead>
<tbody>
<tr>
<td>No summary</td>
<td>c(&quot;effect&quot;, &quot;ci&quot;)</td>
</tr>
<tr>
<td>Only common effect model</td>
<td>c(&quot;effect&quot;, &quot;ci&quot;, &quot;w.common&quot;)</td>
</tr>
<tr>
<td>Only random effects model</td>
<td>c(&quot;effect&quot;, &quot;ci&quot;, &quot;w.random&quot;)</td>
</tr>
<tr>
<td>Both models</td>
<td>c(&quot;effect&quot;, &quot;ci&quot;, &quot;w.common&quot;, &quot;w.random&quot;)</td>
</tr>
</tbody>
</table>

By default, estimated treatment effect and corresponding confidence interval will be printed. Depending on arguments common and random, weights of the common effect and/or random effects model will be given too.

For an object of class metacum or metainf the following columns will be printed: c("effect", "ci", "pval", "tau2", "tau", "I2"). This information corresponds to the printout with print.meta.

Predefined column names:

The arguments leftlabs and rightlabs can be used to specify column headings which are printed on left or right side of the forest plot. For certain columns predefined labels exist which are used by default, i.e., if arguments leftlabs and rightlabs are NULL:

<table>
<thead>
<tr>
<th>Column: studlab</th>
<th>TE</th>
<th>seTE</th>
<th>cluster</th>
<th>n.e</th>
<th>n.c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label: &quot;Study&quot;</td>
<td>&quot;TE&quot;</td>
<td>&quot;seTE&quot;</td>
<td>&quot;Cluster&quot;</td>
<td>&quot;Total&quot;</td>
<td>&quot;Total&quot;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column: n</th>
<th>event.e</th>
<th>event.c</th>
<th>event</th>
<th>mean.e</th>
<th>mean.c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label: &quot;Total&quot;</td>
<td>&quot;Events&quot;</td>
<td>&quot;Events&quot;</td>
<td>&quot;Mean&quot;</td>
<td>&quot;Mean&quot;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column: sd.e</th>
<th>sd.c</th>
<th>time.e</th>
<th>time.c</th>
<th>effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label: &quot;SD&quot;</td>
<td>&quot;SD&quot;</td>
<td>&quot;Time&quot;</td>
<td>&quot;Time&quot;</td>
<td>x$sm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column: ci</th>
<th>effect.ci</th>
<th>w.common</th>
<th>w.random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label: x$level&quot;%-CI&quot;</td>
<td>effect+ci</td>
<td>&quot;W(common)&quot;</td>
<td>&quot;W(random)&quot;</td>
</tr>
</tbody>
</table>

For other columns, the column name will be used as a label if no column label is defined. It is possible to only provide labels for new columns (see Examples). Otherwise the length of leftlabs and rightlabs must be the same as the number of printed columns. The value NA can be used to specify columns which should use default labels (see Examples).

In pairwise meta-analysis comparing two groups (i.e., metabin, metacont, metainc, and metagen depending on the outcome), arguments label.e and label.c are used to label columns belonging to the two treatment groups. By default, labels defined in the meta-analysis object are used. The columns where treatment labels are attached can be changed using arguments label.e.attach and label.c.attach.

Information on heterogeneity and statistical tests:
Argument `hetstat` can be a character string to specify where to print heterogeneity information:

- row with results for common effect model (`hetstat = "common"`),
- row with results for random effects model (`hetstat = "random"`).

Otherwise, information on heterogeneity measures is printed below the meta-analysis results if argument `overall.hetstat = TRUE` (default). The heterogeneity measures to print can be specified (see list of arguments following `overall.hetstat`).

In addition, the following arguments can be used to print results for various statistical tests:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Statistical test</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>test.overall.common</code></td>
<td>Test for overall effect (common effect model)</td>
</tr>
<tr>
<td><code>test.overall.random</code></td>
<td>Test for overall effect (random effects model)</td>
</tr>
<tr>
<td><code>test.effect.subgroup.common</code></td>
<td>Test for effect in subgroup (CE model)</td>
</tr>
<tr>
<td><code>test.effect.subgroup.random</code></td>
<td>Test for effect in subgroup (RE model)</td>
</tr>
<tr>
<td><code>test.subgroup.common</code></td>
<td>Test for subgroup differences (CE model)</td>
</tr>
<tr>
<td><code>test.subgroup.random</code></td>
<td>Test for subgroup differences (RE model)</td>
</tr>
</tbody>
</table>

By default, these arguments are `FALSE` with exception of tests for subgroup differences which are `TRUE`. R function `settings.meta` can be used to change this default for the entire R session. For example, use the following command to always print results of tests for an overall effect:

```r
settings.meta(test.overall = TRUE).
```

**Flexible printing of subgroup results:**

Argument `subgroup` determines whether summary results are printed for subgroups. A logical vector of length equal to the number of subgroups can be provided to determine which subgroup summaries are printed. By default, only subgroup results based on at least two studies are printed which is identical to use argument `subgroup = k.w > 1`. The order of the logical vector corresponds to the order of subgroups in list element 'subgroup.levels' of a meta-analysis object. Argument `subgroup = k.w >= 1` can be used to show results for all subgroups (including those with a single study).

The following arguments can be used in a similar way:

- `subgroup.hetstat` (heterogeneity statistic in subgroups),
- `prediction.subgroup` (prediction interval in subgroups),
- `test.effect.subgroup` (test for effect in subgroups),
- `test.effect.subgroup.common` (test for effect in subgroups, common effect model),
- `test.effect.subgroup.random` (test for effect in subgroups, random effects model).

**Additional general settings:**

Arguments `text.common`, `text.random`, and `text.predict` can be used to change the label to identify overall results (common effect and random effects model as well as prediction interval). By default the following text is printed:

- "Common effect model" (argument `text.common`)
- "Random effects model" (text. random)
- "Prediction interval" (text.predict)

If confidence interval levels are different for individual studies, meta-analysis, and prediction interval (arguments `level`, `level.ma`, `level.predict` in meta-analysis functions, e.g., `metabin`),
additional information is printed, e.g., "(99%-CI)" for a 99% confidence interval in the meta-analysis.

Argument `pscale` can be used to rescale single proportions or risk differences, e.g., `pscale = 1000` means that proportions are expressed as events per 1000 observations. This is useful in situations with (very) low event probabilities.

Argument `irscale` can be used to rescale single rates or rate differences, e.g., `irscale = 1000` means that rates are expressed as events per 1000 time units, e.g., person-years. This is useful in situations with (very) low rates. Argument `irunit` can be used to specify the time unit used in individual studies (default: "person-years"). This information is printed in summaries and forest plots if argument `irscale` is not equal to 1.

**Forest plots in RevMan5 layout:**

If argument `layout = "RevMan5"` (and arguments `leftcols` and `rightcols` are `NULL`), the layout for forest plots used for Cochrane reviews (which are generated with Review Manager 5, [https://training.cochrane.org/online-learning/core-software/revman](https://training.cochrane.org/online-learning/core-software/revman)) is reproduced:

1. All columns are printed on the left side of the forest plot (see arguments `leftcols` and `rightcols`)
2. Tests for overall effect and subgroup differences are printed (`test.overall`, `test.effect.subgroup`, `test.subgroup`)
3. Diamonds representing meta-analysis results are printed in black (`diamond.common`, `diamond.random`)
4. Colour of squares depends on the meta-analysis object (`col.square`, `col.square.lines`)
5. Information on effect measure and meta-analysis method is printed above the forest plot (`smlab`)
6. Label "Study or Subgroup" is printed for meta-analysis with subgroups (`leftlabs`)

**Forest plots in JAMA layout:**

If argument `layout = "JAMA"` (and arguments `leftcols` and `rightcols` are `NULL`), instructions for authors of the *Journal of the American Medical Association*, see [https://jamanetwork.com/journals/jama/pages/instructions-for-authors/](https://jamanetwork.com/journals/jama/pages/instructions-for-authors/), are taken into account:

1. Graph labels on right and left side are printed in bold font at top of forest plot (see arguments `bottom.lr` and `ff.lr`)
2. Information on effect measure and level of confidence interval is printed at bottom of forest plot (`xlab`)
3. Tests for overall effect are printed (`test.overall`)
4. Diamonds representing meta-analysis results are printed in lightblue (`diamond.common`, `diamond.random`)
5. Squares representing individual study results are printed in darkblue (`col.square`, `col.square.lines`)
6. Between-study variance $\tau^2$ is not printed
7. Empty rows are omitted (`addrow`, `addrow.overall`, `addrow.subgroups`)
8. Label "Source" is printed instead of "Study" (`leftlabs`)
9. P-values are printed without leading zeros (`zero.pval`)
10. P-values are rounded to three digits (for $0.001 < p \leq 0.01$) or two digits (p > 0.01) (`JAMA.pval`)

Study labels according to JAMA guidelines can be generated using `labels.meta`.

**Forest plots showing results of subgroups:**

The following changes are conducted if argument `layout = "subgroup"` (and arguments `leftcols` and `rightcols` are `NULL`) and a subgroup analysis was conducted:
1. Individual study results are omitted (see argument study.results)
2. Total number of observations is not printed (pooled.totals)
3. Label "Subgroup" is printed instead of "Study" (leftlabs)

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References


See Also

metabin, metacont, metagen, forest.metabind, settings.meta, labels.meta

Examples

data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
               data = Olkin1995, subset = c(41, 47, 51, 59),
               sm = "RR", method = "I",
               studlab = paste(author, year))

## Not run:
# Do standard (symmetric) forest plot
#
forest(m1)

## End(Not run)

# Layout of forest plot similar to Review Manager 5
#
# Furthermore, add labels on both sides of forest plot and
# prediction interval
#
forest(m1, layout = "RevMan5", common = FALSE,
      label.right = "Favours control", col.label.right = "red",
      label.left = "Favours experimental", col.label.left = "green",
      prediction = TRUE)

## Not run:
# Create a PDF file forest-m1.pdf with the forest plot
#
pdf("forest-m1.pdf", width = 10, height = 3)
forest(m1)
dev.off()

# Conduct subgroup meta-analysis
#
m2 <- update(m1,
  subgroup = ifelse(year < 1987, "Before 1987", "1987 and later"),
  print.subgroup.name = FALSE)

# Show summary results for subgroups with at least two studies
#
forest(m2, sortvar = -TE, random = FALSE)

# Show results for all subgroups
#
forest(m2, sortvar = -TE, random = FALSE, subgroup = k.w >= 1)

# Forest plot specifying argument xlim
#
forest(m1, xlim = c(0.01, 10))

# Print results of test for overall effect
#
forest(m1, test.overall.common = TRUE, test.overall.random = TRUE)

# Forest plot with 'classic' layout used in R package meta,
# version < 1.6-0
#
forest(m1, col.square = "black", hetstat = FALSE)

# Change set of columns printed on left side of forest plot
# (resulting in overlapping text)
#
forest(m1, random = FALSE, leftcols = "studlab")

# Use argument 'calcwidth.hetstat' to consider text for heterogeneity
# measures in width of column with study labels
#
forest(m1, random = FALSE, leftcols = "studlab",
       calcwidth.hetstat = TRUE)

# Use argument 'addrows.below.overall' to manually add two empty
# rows
#
forest(m1, random = FALSE, leftcols = "studlab", addrows = 2)

# Do not print columns on right side of forest plot
#
forest(m1, rightcols = FALSE)

# Change study label to "Author"
#
forest(m1, random = FALSE, leftlabs = c("Author", NA, NA, NA, NA))
# Just give effect estimate and 95% confidence interval on right
# side of forest plot (in one column)
#
forest(m1, rightcols = c("effect.ci"))

# Just give effect estimate and 95% confidence interval on right
# side of forest plot
#
forest(m1, rightcols = c("effect", "ci"))

# 1. Change order of columns on left side
# 2. Attach labels to columns 'event.e' and 'event.c' instead of
# columns 'n.e' and 'n.c'
#
forest(m1,
leftcols = c("studlab", "n.e", "event.e", "n.c", "event.c"),
label.e.attach = "event.e", label.c.attach = "event.c")

# Specify column labels only for variables 'year' and 'author'
# (and define digits for additional variables)
#
forest(m1,
leftcols = c("studlab", "event.e", "n.e", "event.c", "n.c", "author", "year"),
leftlabs = c("Author", "Year of Publ"))

# Center text in all columns
#
forest(m1,
leftcols = c("studlab", "event.e", "n.e", "event.c", "n.c", "author", "year"),
leftlabs = c("Author", "Year of Publ"), hetstat = FALSE,
just = "center", just.addcols = "center", just.studlab = "center")

# Same result
#
forest(m1,
leftcols = c("studlab", "event.e", "n.e", "event.c", "n.c", "author", "year"),
leftlabs = c("Author", "Year of Publ"), hetstat = FALSE,
just = "c", just.addcols = "c", just.studlab = "c")

# Change some fontsizes and fontfaces
#
forest(m1,
fs.study = 10, ff.study = "italic",
fs.study.label = 11, ff.study.label = "bold",
fs.axis = 5, ff.axis = "italic",
fs.smlab = "bold.italic",
ff.common = "plain", ff.hetstat = "plain")

# Change some colours
#
forest(m1,
forest.metabind

Description

Forest plot to display the result of a meta-analysis

Draws a forest plot in the active graphics window (using grid graphics system).
Usage

```r
S3 method for class 'metabind'
forest(
 x,
 leftcols,
 leftlabs,
 rightcols = c("effect", "ci"),
 rightlabs,
 overall = FALSE,
 subgroup = FALSE,
 hetstat = FALSE,
 overall.hetstat = FALSE,
 lab.NA = "",
 digits = gs("digits.forest"),
 digits.se = gs("digits.se"),
 digits.stat = gs("digits.stat"),
 digits.pval = max(gs("digits.pval") - 2, 2),
 digits.pval.Q = max(gs("digits.pval.Q") - 2, 2),
 digits.Q = gs("digits.Q"),
 digits.tau2 = gs("digits.tau2"),
 digits.tau = gs("digits.tau"),
 digits.I2 = max(gs("digits.I2") - 1, 0),
 scientific.pval = gs("scientific.pval"),
 big.mark = gs("big.mark"),
 print.subgroup.labels = if (any(x$is.subgroup)) TRUE else FALSE,
 addrow.subgroups = print.subgroup.labels,
 smlab,
 calcwidth.pooled = overall,
 warn.deprecated = gs("warn.deprecated"),
 ...
)
```

Arguments

x An object of class `metabind`.
leftcols A character vector specifying (additional) columns to be plotted on the left side of the forest plot or a logical value (see Details).
leftlabs A character vector specifying labels for (additional) columns on left side of the forest plot (see Details).
rightcols A character vector specifying (additional) columns to be plotted on the right side of the forest plot or a logical value (see Details).
rightlabs A character vector specifying labels for (additional) columns on right side of the forest plot (see Details).
overall A logical indicating whether overall summaries should be plotted. This argument is useful in a meta-analysis with subgroups if summaries should only be plotted on group level.
forest.metabind

subgroup A logical indicating whether subgroup results should be shown in forest plot. This argument is useful in a meta-analysis with subgroups if summaries should not be plotted on group level.

hetstat Either a logical value indicating whether to print results for heterogeneity measures at all or a character string (see Details).

overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

lab.NA A character string to label missing values.

digits Minimal number of significant digits for treatment effects, see print.default.

digits.se Minimal number of significant digits for standard errors, see print.default.

digits.stat Minimal number of significant digits for z- or t-statistic for test of overall effect, see print.default.

digits.pval Minimal number of significant digits for p-value of overall treatment effect, see print.default.

digits.pval.Q Minimal number of significant digits for p-value of heterogeneity test, see print.default.

digits.Q Minimal number of significant digits for heterogeneity statistic Q, see print.default.

digits.tau2 Minimal number of significant digits for between-study variance, see print.default.

digits.tau Minimal number of significant digits for square root of between-study variance, see print.default.

digits.I2 Minimal number of significant digits for I-squared statistic, see print.default.

scientific.pval A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.

big.mark A character used as thousands separator.

print.subgroup.labels A logical indicating whether subgroup label should be printed.

addrow.subgroups A logical value indicating whether an empty row is printed between results for subgroups.

smlab A label for the summary measurex (printed at top of figure).

calcwidth.pooled A logical indicating whether text for common effect and random effects model should be considered to calculate width of the column with study labels.

warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.

... Additional graphical arguments (passed on to forest.meta).
Details

A forest plot, also called confidence interval plot, is drawn in the active graphics window. The forest functions in R package meta are based on the grid graphics system. In order to print the forest plot, resize the graphics window and either use dev.copy2eps or dev.copy2pdf. Another possibility is to create a file using pdf, png, or svg and to specify the width and height of the graphic (see forest.meta examples).

The arguments leftcols and rightcols can be used to specify columns which are plotted on the left and right side of the forest plot, respectively.

The arguments leftlabs and rightlabs can be used to specify column headings which are plotted on left and right side of the forest plot, respectively. For certain columns predefined labels exist. For other columns, the column name will be used as a label. It is possible to only provide labels for new columns (see forest.meta examples). Otherwise the length of leftlabs and rightlabs must be the same as the number of printed columns, respectively. The value NA can be used to specify columns which should use default labels.

Argument hetstat can be a character string to specify where to print heterogeneity information:

- row with results for common effect model (hetstat = "common"),
- row with results for random effects model (hetstat = "random"),
- rows with 'study' information (hetstat = "study").

Otherwise, information on heterogeneity is printed in dedicated rows.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

forest.meta, metabin, metacont, metagen, metabind, settings.meta

Examples

data(Fleiss1993cont)

# Add some (fictitious) grouping variables:
# Fleiss1993cont$age <- c(55, 65, 55, 65, 55)
# Fleiss1993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")

m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
               data = Fleiss1993cont, sm = "MD")

# Conduct two subgroup analyses

m1 <- update(m1, subgroup = age, bylab = "Age group")
m2 <- update(m1, subgroup = region, bylab = "Region")

# Combine subgroup meta-analyses and show forest plot with subgroup
# results
funnel.meta

#
mb1 <- metabind(mu1, mu2)
mb1
forest(mb1)

funnel.meta  Funnel plot

Description

Draw a funnel plot which can be used to assess small study effects in meta-analysis. A contour-enhanced funnel plot can also be produced to assess causes of funnel plot asymmetry.

Usage

## S3 method for class 'meta'
funnel(
x,
xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL,
common = x$common,
random = x$random,
axes = TRUE,
pch = if (!inherits(x, "trimfill")) 21 else ifelse(x$trimfill, 1, 21),
text = NULL,
cex = 1,
lty.common = 2,
lty.random = 9,
lwd = 1,
lwd.common = lwd,
lwd.random = lwd,
col = "black",
bg = "darkgray",
col.common = "black",
col.random = "black",
log,
yaxis,
contour.levels = NULL,
col.contour,
ref = ifelse(is.relative.effect(x$sm), 1, 0),
level = if (common | random) x$level else NULL,
studlab = FALSE,
cex.studlab = 0.8,
pos.studlab = 2,
funnel.meta

ref.triangle = FALSE,
lty.ref = 1,
lwd.ref = lwd,
col.ref = "black",
lty.ref.triangle = 5,
backtransf = x$backtransf,
warn.deprecated = gs("warn.deprecated"),
...
)

Arguments

x An object of class meta.
xlim The x limits (min,max) of the plot.
ylim The y limits (min,max) of the plot.
xlab A label for the x-axis.
ylab A label for the y-axis.
common A logical indicating whether the common effect estimate should be plotted.
random A logical indicating whether the random effects estimate should be plotted.
axes A logical indicating whether axes should be drawn on the plot.
pch The plotting symbol used for individual studies.
text A character vector specifying the text to be used instead of plotting symbol.
cex The magnification to be used for plotting symbol.
lty.common Line type (common effect estimate).
lty.random Line type (random effects estimate).
lwd The line width for confidence intervals (if level is not NULL).
lwd.common The line width for common effect estimate (if common is not NULL).
lwd.random The line width for random effects estimate (if random is not NULL).
col A vector with colour of plotting symbols.
bg A vector with background colour of plotting symbols (only used if pch in 21:25).
col.common Colour of line representing common effect estimate.
col.random Colour of line representing random effects estimate.
log A character string which contains "x" if the x-axis is to be logarithmic, "y" if the y-axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.
yaxis A character string indicating which type of weights are to be used. Either "se", "invvar", "invse", code"size", code"invsqrtsize", or code"ess".
contour.levels A numeric vector specifying contour levels to produce contour-enhanced funnel plot.
col.contour Colour of contours.
ref Reference value (null effect) used to produce contour-enhanced funnel plot.
level: The confidence level utilised in the plot. For the funnel plot, confidence limits are not drawn if yaxis="size" or yaxis="invsqrtsize".

studlab: A logical indicating whether study labels should be printed in the graph. A vector with study labels can also be provided (must be of same length as x$TE then).

cex.studlab: Size of study labels, see argument cex in text.

pos.studlab: Position of study labels, see argument pos in text.

ref.triangle: A logical indicating whether approximate confidence limits should be printed around reference value (null effect).

lty.ref: Line type (reference value).

lwd.ref: The line width for the reference value and corresponding confidence intervals (if ref.triangle is TRUE and level is not NULL).

col.ref: Colour of line representing reference value.

lty.ref.triangle: Line type (confidence intervals of reference value).

backtransf: A logical indicating whether results for relative summary measures (argument sm equal to "OR", "RR", "HR", or "IRR") should be back transformed in funnel plots. If backtransf=TRUE, results for sm="OR" are printed as odds ratios rather than log odds ratios, for example.

warn.deprecated: A logical indicating whether warnings should be printed if deprecated arguments are used.

Details

A funnel plot (Light & Pillemer, 1984) is drawn in the active graphics window. If common is TRUE, the estimate of the common effect model is plotted as a vertical line. Similarly, if random is TRUE, the estimate of the random effects model is plotted. If level is not NULL, the corresponding approximate confidence limits are drawn around the common effect estimate (if common is TRUE) or the random effects estimate (if random is TRUE and common is FALSE).

In the funnel plot, the standard error of the treatment estimates is plotted on the y-axis by default (yaxis = "se") which is likely to be the best choice (Sterne & Egger, 2001). Only exception is meta-analysis of diagnostic test accuracy studies (Deeks et al., 2005) where the inverse of the square root of the effective study size is used (yaxis = "ess"). Other possible choices for yaxis are "invvar" (inverse of the variance), "invse" (inverse of the standard error), "size" (study size), and "invsqrtsize" (1 / sqrt(study size)).

If argument yaxis is not equal to "size", "invsqrtsize" or "ess", contour-enhanced funnel plots can be produced (Peters et al., 2008) by specifying the contour levels (argument contour.levels). By default (argument col.contour missing), suitable gray levels will be used to distinguish the contours. Different colours can be chosen by argument col.contour.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>, Petra Graham <pgraham@efs.mq.edu.au>
References

Deeks JJ, Macaskill P, Irwig L (2005): The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of Clinical Epidemiology, 58:882–93


See Also

metabias, metabin, metagen, radial

Examples

data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont, 
  data = Olkin1995, subset = c(41, 47, 51, 59), 
  studlab = paste(author, year), 
  sm = "RR", method = "I")

oldpar <- par(mfrow = c(2, 2))

# Standard funnel plot
#
funnel(m1)

# Funnel plot with confidence intervals, common effect estimate and contours
#
c <- funnel(m1, common = TRUE, 
  level = 0.95, contour = c(0.9, 0.95, 0.99))$col.contour
legend(0.05, 0.05, 
  c("0.1 > p > 0.05", "0.05 > p > 0.01", "< 0.01"), fill = c)

# Contour-enhanced funnel plot with user-chosen colours
#
funnel(m1, common = TRUE, 
  level = 0.95, contour = c(0.9, 0.95, 0.99), 
  col.contour = c("darkgreen", "green", "lightgreen"), 
  lwd = 2, cex = 2, pch = 16, studlab = TRUE, cex.studlab = 1.25)
legend(0.05, 0.05, 
  c("0.1 > p > 0.05", "0.05 > p > 0.01", "< 0.01"), 
  fill = c("darkgreen", "green", "lightgreen"))

par(oldpar)
Description

Get default for a meta-analysis setting in R package meta.

Usage

gs(x)

Arguments

x A character string holding a settings name.

Details

This function can be used to get the default for a meta-analysis setting defined using settings.meta.

This function is primarily used to define default settings in meta-analysis functions, e.g., metabin or metacont. A list of all arguments with current settings is printed using the command settings.meta("print").

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

settings.meta

Examples

# Get default setting for confidence interval of random effects
# model
#
# gs("method.random.ci")

# Get default setting for summary measure in metabin()
#
# gs("smbin")
JAMAlabels

Create study labels in JAMA layout (deprecated function)

Description

Deprecated function to create study labels in JAMA layout (for forest plot). Replaced by labels.meta.

Usage

JAMAlabels(author, year, citation, data = NULL)

Arguments

author A vector providing study authors.
year A vector providing year of publication.
citation A vector providing citation numbers.
data An optional data frame containing the study information.

Details

This auxiliary function can be used to create study labels in JAMA layout which can be added to a forest plot using argument ‘studlab’.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

labels.meta, forest.meta

Examples

data(Fleiss1993bin)
refs <- 20 + 1:7
Fleiss1993bin$mylabs <- JAMAlabels(study, year, refs, data = Fleiss1993bin)
m <- metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin,
studlab = paste(study, year),
sm = "OR", random = FALSE)
forest(m, studlab = mylabs, layout = "JAMA",
fontfamily = "Times", fontsize = 10)
Description

Draw a L’Abbé plot for meta-analysis with binary outcomes.

Usage

```
S3 method for class 'metabin'
labbe(
 x,
 xlim, ylim,
 xlab = NULL, ylab = NULL,
 TE.common = x$TE.common,
 TE.random = x$TE.random,
 common = x$common,
 random = x$random,
 backtransf = x$backtransf,
 axes = TRUE,
 pch = 21,
 text = NULL,
 cex = 1,
 col = "black",
 bg = "lightgray",
 lwd = 1,
 lwd.common = lwd,
 lwd.random = lwd,
 lty.common = 2,
 lty.random = 9,
 col.common = col,
 col.random = col,
 nulleffect = TRUE,
 lwd.nulleffect = lwd,
 col.nulleffect = "lightgray",
 sm = x$sm,
 weight,
 studlab = FALSE,
 cex.studlab = 0.8,
 pos.studlab = 2,
 label.e = x$label.e,
 label.c = x$label.c,
 warn.deprecated = gs("warn.deprecated"),
 TE.fixed,
 fixed,
```
## Default S3 method:
labbe(
x,
y,
xlim,
ylim,
xlab = NULL,
ylab = NULL,
TE.common = NULL,
TE.random = NULL,
common = !is.null(TE.common),
random = !is.null(TE.random),
backtransf = TRUE,
axes = TRUE,
pch = 21,
text = NULL,
cex = 1,
col = "black",
bg = "lightgray",
lwd = 1,
lwd.common = lwd,
lwd.random = lwd,
lty.common = 2,
lty.random = 9,
col.common = col,
col.random = col,
nulleffect = TRUE,
lwd.nulleffect = lwd,
col.nulleffect = "lightgray",
sm = "",
weight,
studlab = FALSE,
cex.studlab = 0.8,
pos.studlab = 2,
label.e = NULL,
label.c = NULL,
warn.deprecated = gs("warn.deprecated"),
TE.fixed,
fixed,
lwd.fixed,
lty.fixed,
col.fixed,
Arguments

x An object of class `metabin`. Alternatively, the x coordinates of points of the L’Abbé plot.
xlim The x limits (min, max) of the plot.
ylim The y limits (min, max) of the plot.
xlab A label for the x-axis.
ylab A label for the y-axis.
TE.common A numeric or vector specifying combined common effect estimate(s).
TE.random A numeric or vector specifying combined random effects estimate(s).
common A logical indicating whether the common effect estimate should be plotted.
random A logical indicating whether the random effects estimate should be plotted.
backtransf A logical indicating which values should be printed on x- and y-axis (see Details).
axes A logical indicating whether axes should be drawn on the plot.
pch The plotting symbol used for individual studies.
text A character vector specifying the text to be used instead of plotting symbol.
cex The magnification to be used for plotting symbol.
col A vector with colour of plotting symbols.
bg A vector with background colour of plotting symbols (only used if pch in 21:25).
lwd The line width.
lwd.common The line width(s) for common effect estimate(s) (if common is not NULL or FALSE).
lwd.random The line width(s) for random effects estimate(s) (if random is not NULL or FALSE).
lty.common Line type(s) for common effect estimate(s).
lty.random Line type(s) for random effects estimate(s).
col.common Colour of line(s) for common effect estimate(s).
col.random Colour of line(s) for random effects estimate(s).
nulleffect A logical indicating whether line for null effect should be added to the plot.
lwd.nulleffect Width of line for null effect.
col.nulleffect Colour of line for null effect.
sm A character string indicating underlying summary measure, i.e., "RD", "RR", "OR", or "ASD".
weight Either a numeric vector specifying relative sizes of plotting symbols or a character string indicating which type of plotting symbols is to be used for individual treatment estimates. One of missing (see Details), "same", "common", or "random", can be abbreviated. Plot symbols have the same size for all studies or represent study weights from common effect or random effects model.
studlab A logical indicating whether study labels should be printed in the graph. A vector with study labels can also be provided (must be of same length as x$event.e then).

cex.studlab Size of study labels.
pos.studlab Position of study labels, see argument pos in text.
label.e Label for experimental group.
label.c Label for control group.
warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.

TE.fixed Deprecated argument (replaced by 'TE.common').
fixed Deprecated argument (replaced by 'common').
lwd.fixed Deprecated argument (replaced by 'lwd.common').
lty.fixed Deprecated argument (replaced by 'lty.common').
col.fixed Deprecated argument (replaced by 'col.common').
... Graphical arguments as in par may also be passed as arguments.
y The y coordinates of the L’Abbé plot, if argument x is not an object of class metabin.

Details

A L’Abbé plot is a scatter plot with the risk in the control group on the x-axis and the risk in the experimental group on the y-axis (L’Abbé et al., 1987). It can be used to evaluate heterogeneity in meta-analysis. Furthermore, this plot can aid to choose a summary measure (odds ratio, risk ratio, risk difference) that will result in more consistent results (Jiménez et al., 1997; Deeks, 2002).

If argument backtransf is TRUE (default), event probabilities will be printed on x- and y-axis. Otherwise, transformed event probabilities will be printed as defined by the summary measure, i.e., log odds of probabilities for odds ratio as summary measure (sm = "OR"), log probabilities for sm = "RR", and arcsine-transformed probabilities for sm = "ASD".

If common is TRUE, the estimate of the common effect model is plotted as a line. If random is TRUE, the estimate of the random effects model is plotted as a line.

Information from object x is utilised if argument weight is missing. Weights from the common effect model are used (weight = "common") if argument x$common is TRUE; weights from the random effects model are used (weight = "random") if argument x$random is TRUE and x$common is FALSE.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>
References


See Also

metabin

Examples

data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, studlab = paste(author, year),
sm = "RR", method = "I")

# L’Abbe plot for risk ratio
#
labbe(m1)

# L’Abbe plot for odds ratio
#
labbe(m1, sm = "OR")
# same plot
labbe(update(m1, sm = "OR"))

# L’Abbe plot for risk difference
#
labbe(m1, sm = "RD")

# L’Abbe plot on log odds scale
#
labbe(m1, sm = "OR", backtransf = FALSE)

# L’Abbe plot for odds ratio with coloured lines for various
# treatment effects (defined as log odds ratios)
#
mycols <- c("blue", "yellow", "green", "red", "green", "yellow", "blue")
labbe(m1, sm = "OR", random = FALSE,
    TE.common = log(c(1 / 10, 1 / 5, 1 / 2, 1, 2, 5, 10)),
col.common = mycols, lwd.common = 2)

# L’Abbe plot on log odds scale with coloured lines for various
# treatment effects (defined as log odds ratios)
#
labbe(m1, sm = "OR", random = FALSE, backtransf = FALSE,
    TE.common = log(c(1 / 10, 1 / 5, 1 / 2, 1, 2, 5, 10)),
col.common = mycols, lwd.common = 2)
## labels.meta

Create study labels for forest plot

### Description

Create study labels for forest plot.

### Usage

```r
S3 method for class 'meta'
labels(
 object,
 author = object$studlab,
 year = "",
 citation = NULL,
 layout = "JAMA",
 data = object$data,
 ...
)
```

### Arguments

- `object`: An object of class `meta`.
- `author`: An optional vector providing study authors.
- `year`: An optional vector providing year of publication.
- `citation`: An optional vector providing citation numbers.
- `layout`: A character string specifying layout. Either "JAMA" or "Lancet".
- `data`: An optional data frame containing the study information.
- `...`: Additional arguments (ignored at the moment).

### Details

This auxiliary function can be used to create study labels in JAMA or Lancet layout which can be added to a forest plot using argument 'studlab'.

### Author(s)

Guido Schwarzer `<sc@imbi.uni-freiburg.de>`

### See Also

- `forest.meta`
longarm

Examples

data(Fleiss1993bin)

refs <- 20 + 1:7

m <- metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin, studlab = study, sm = "OR", random = FALSE)

forest(m,
      studlab = labels(m, year = year, citation = refs, layout = "JAMA"),
      layout = "JAMA", fontfamily = "Times", fontsize = 10)

forest(m,
      studlab = labels(m, year = year, citation = refs, layout = "Lancet"))

longarm

Transform data from pairwise comparisons to long arm-based format

Description

This function transforms data from pairwise comparisons to a long arm-based format, i.e., two rows for a pairwise comparison.

Usage

longarm(
    treat1,
    treat2,
    event1,
    n1,
    event2,
    n2,
    mean1,
    sd1,
    mean2,
    sd2,
    time1,
    time2,
    data = NULL,
    studlab,
    append = TRUE,
    keep.duplicated = FALSE,
    keep.internal = FALSE
)
Arguments

treat1 Either label for first treatment or a meta-analysis or pairwise object (see Details).
treat2 Label for second treatment.
event1 Number of events (first treatment).
n1 Number of observations (first treatment).
event2 Number of events (second treatment).
n2 Number of observations (second treatment)
mean1 Estimated mean (first treatment).
sd1 Standard deviation (first treatment).
mean2 Estimated mean (second treatment).
sd2 Standard deviation (second treatment).
time1 Person time at risk (first treatment)
time2 Person time at risk (second treatment)
data An optional data frame containing the study information.
studlab A vector with study labels (optional).
append A logical indicating if data frame provided in argument ‘data’ should be returned.
keep.duplicated A logical indicating if duplicated rows should be returned (see Details).
keep.internal A logical indicating if variables generated internally should be returned (typically only relevant for data checking).

Details

This function transforms data given as one pairwise comparison per row to a long arm-based format with one row per treatment arm. The long arm-based format is, for example, the required input format for WinBUGS.

The function can be used to transform data with a binary, continuous or count outcome. The corresponding meta-analysis functions are metabin, metacont and metainc. Accordingly, a meta-analysis object created with one of these functions can be provided as argument treat1. It is also possible to use the longarm function with an R object created with pairwise from R package netmeta.

Otherwise, arguments treat1 and treat2 are mandatory to identify the individual treatments and, depending on the outcome, the following additional arguments are mandatory:

• event1, n1, event2, n2 (binary outcome);
• n1, mean1, sd1, n2, mean2, sd2 (continuous outcome);
• time1, n1, time2, n2 (count outcome).

Argument studlab must be provided if several pairwise comparisons come from a single study with more than two treatments.

The following variables will be returned:
In addition, the data set provided in argument data will be returned if argument append = TRUE (default).

Argument keep.duplicated can be used to keep duplicated rows from the data set. Duplicated rows can occur, for example, in a three-arm study comparing treatments A and B with placebo. In this situation, the placebo arm will be returned twice in the data set in long arm-based format if keep.duplicated = TRUE. By default, duplicated rows with not be kept in the data set.

Value

A data frame in long arm-based format.

Note

R function to.long from R package metafor is called internally.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

metabin, metacont, metainc, pairwise

Examples

# Artificial example with three studies
m <- metabin(1:3, 100:102, 4:6, 200:202, studlab = LETTERS[1:3])
# Transform data to long arm-based format
longarm(m)
# Keep internal variables
longarm(m, keep.internal = TRUE)
Description of R object of class "meta"

Description

 Detailed description of R objects of class "meta".

Details

 The following R functions create an object of class "meta":

 - `metabin`, `metacont`, `metacor`, `metagen`, `metainc`, `metamean`, `metaprop`, `metarate`, `metacr`, `metamerge`, `trimfill`

 The following generic functions are available for an object of class "meta":

 - `as.data.frame.meta`, `labels.meta`, `print.meta`, `print.summary.meta`, `summary.meta`, `update.meta`, `weights.meta`

An object of class "meta" is a list containing the following components.

- `studlab`: Study labels
- `sm`: Effect measure
- `null.effect`: Effect under the null hypothesis
- `TE`: Effect estimates (individual studies)
- `seTE`: Standard error of effect estimates (individual studies)
- `statistic`: Statistics for test of effect (individual studies)
- `pval`: P-values for test of effect (individual studies)
- `df`: Degrees of freedom (individual studies)
- `level`: Level of confidence intervals for individual studies
- `lower`: Lower confidence limits (individual studies)
- `upper`: Upper confidence limits (individual studies)
- `three.level`: Indicator variable for three-level meta-analysis model
- `cluster`: Cluster variable (three-level meta-analysis model)
- `k`: Number of estimates combined in meta-analysis
- `k.study`: Number of studies combined in meta-analysis
- `k.all`: Number of all studies
- `k.TE`: Number of studies with estimable effects
- `overall`: Print meta-analysis results
- `overall.hetstat`: Print overall heterogeneity statistics
- `common`: Print results for common effect meta-analysis
- `random`: Print results for random effects meta-analysis
- `prediction`: Print prediction interval
- `backtransf`: Back transform results in printouts and plots
- `method`: Meta-analysis method
- `w.common`: Weights for common effect model (individual studies)
- `TE.common`: Estimated overall effect (common effect model)
- `seTE.common`: Standard error of overall effect (common effect model)
<table>
<thead>
<tr>
<th>meta-object</th>
<th>69</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>statistic.common</th>
<th>Statistic for test of overall effect (common effect model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pval.common</td>
<td>P-value for test of overall effect (common effect model)</td>
</tr>
<tr>
<td>level.ma</td>
<td>Level of confidence interval for meta-analysis estimates</td>
</tr>
<tr>
<td>lower.common</td>
<td>Lower confidence limit (common effect model)</td>
</tr>
<tr>
<td>upper.common</td>
<td>Upper confidence limit (common effect model)</td>
</tr>
<tr>
<td>w.random</td>
<td>Weight for random effects model (individual studies)</td>
</tr>
<tr>
<td>TE.random</td>
<td>Estimated overall effect (random effects model)</td>
</tr>
<tr>
<td>seTE.random</td>
<td>Standard error of overall effect (random effects model)</td>
</tr>
<tr>
<td>statistic.random</td>
<td>Statistic for test of overall effect (random effects model)</td>
</tr>
<tr>
<td>pval.random</td>
<td>P-value for test of overall effect (random effects model)</td>
</tr>
<tr>
<td>method.random.ci</td>
<td>Confidence interval method (random effects model)</td>
</tr>
<tr>
<td>df.random</td>
<td>Degrees of freedom (random effects model)</td>
</tr>
<tr>
<td>lower.random</td>
<td>Lower confidence limit (random effects model)</td>
</tr>
<tr>
<td>upper.random</td>
<td>Upper confidence limit (random effects model)</td>
</tr>
<tr>
<td>seTE.classic</td>
<td>Standard error (classic random effects method)</td>
</tr>
<tr>
<td>adhoc.hakn.ci</td>
<td>Ad hoc correction for Hartung-Knapp method (confidence interval)</td>
</tr>
<tr>
<td>df.hakn.ci</td>
<td>Degrees of freedom for Hartung-Knapp method</td>
</tr>
<tr>
<td>(if used in meta-analysis)</td>
<td></td>
</tr>
<tr>
<td>seTE.hakn.ci</td>
<td>Standard error for Hartung-Knapp method</td>
</tr>
<tr>
<td>(not taking ad hoc variance correction into account)</td>
<td></td>
</tr>
<tr>
<td>seTE.hakn.adhoc.ci</td>
<td>Standard error for Hartung-Knapp method</td>
</tr>
<tr>
<td>(taking ad hoc variance correction into account)</td>
<td></td>
</tr>
<tr>
<td>df.kero</td>
<td>Degrees of freedom for Kenward-Roger method</td>
</tr>
<tr>
<td>(if used in meta-analysis)</td>
<td></td>
</tr>
<tr>
<td>seTE.kero</td>
<td>Standard error for Kenward-Roger method</td>
</tr>
<tr>
<td>method.predict</td>
<td>Method to calculate prediction interval</td>
</tr>
<tr>
<td>adhoc.hakn.pi</td>
<td>Ad hoc correction for Hartung-Knapp method (prediction interval)</td>
</tr>
<tr>
<td>df.hakn.pi</td>
<td>Degrees of freedom for Hartung-Knapp method</td>
</tr>
<tr>
<td>(prediction interval)</td>
<td></td>
</tr>
<tr>
<td>seTE.predict</td>
<td>Standard error used to calculate prediction interval</td>
</tr>
<tr>
<td>df.predict</td>
<td>Degrees of freedom for prediction interval</td>
</tr>
<tr>
<td>level.predict</td>
<td>Level of prediction interval</td>
</tr>
<tr>
<td>lower.predict</td>
<td>Lower limit of prediction interval</td>
</tr>
<tr>
<td>upper.predict</td>
<td>Upper limit of prediction interval</td>
</tr>
<tr>
<td>seTE.hakn.pi</td>
<td>Standard error for Hartung-Knapp method</td>
</tr>
<tr>
<td>(not taking ad hoc variance correction into account)</td>
<td></td>
</tr>
<tr>
<td>seTE.hakn.adhoc.pi</td>
<td>Standard error for Hartung-Knapp method</td>
</tr>
<tr>
<td>(taking ad hoc variance correction into account)</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Heterogeneity statistic</td>
</tr>
<tr>
<td>df.Q</td>
<td>Degrees of freedom for heterogeneity statistic Q</td>
</tr>
<tr>
<td>pval.Q</td>
<td>P-value of heterogeneity test</td>
</tr>
<tr>
<td>method.tau</td>
<td>Method to estimate between-study variance $\tau^2$</td>
</tr>
<tr>
<td>control</td>
<td>Additional arguments for iterative estimation of $\tau^2$</td>
</tr>
<tr>
<td>method.tau.ci</td>
<td>Method for confidence interval of $\tau^2$</td>
</tr>
<tr>
<td>tau2</td>
<td>Between-study variance $\tau^2$</td>
</tr>
<tr>
<td>se.tau2</td>
<td>Standard error of $\tau^2$</td>
</tr>
<tr>
<td>lower.tau2</td>
<td>Lower confidence limit ($\tau^2$)</td>
</tr>
<tr>
<td>upper.tau2</td>
<td>Upper confidence limit ($\tau^2$)</td>
</tr>
</tbody>
</table>
tau
lower.tau
upper.tau
tau.preset
TE.tau
detail.tau
H
lower.H
upper.H
I2
lower.I2
upper.I2
Rb
lower.Rb
upper.Rb
method.bias
text.common
text.random
text.predict
text.w.common
text.w.random
title
complab
outclab
label.e
label.c
label.left
label.right
keepdata
data
subset
exclude
warn
call
version

For subgroup analysis (argument subgroup), the following additional components are added to the list.

subgroup
subgroup.name
print.subgroup.name
sep.subgroup
test.subgroup
prediction.subgroup
tau.common
subgroup.levels
k.w

Subgroup information (for individual studies)
Name of subgroup variable
Print name of subgroup variable
Separator between name of subgroup variable and value
Print test for subgroup differences
Print prediction interval for subgroup(s)
Assumption of common between-study variance in subgroups
Levels of grouping variable
Number of estimates combined in subgroups
k.study.w  Number of studies combined in subgroups
k.all.w  Number of studies in subgroups
k.TE.w  Number of studies with estimable effects in subgroups
TE.common.w  Estimated effect in subgroups (common effect model)
seTE.common.w  Standard error in subgroups (common effect model)
statistic.common.w  Statistic for test of effect in subgroups (common effect model)
pval.common.w  P-value for test of effect in subgroups (common effect model)
lower.common.w  Lower confidence limit in subgroups (common effect model)
upper.common.w  Upper confidence limit in subgroups (common effect model)
w.common.w  Total weight in subgroups (common effect model)
TE.random.w  Estimated effect in subgroups (random effect model)
seTE.random.w  Standard error in subgroups (random effects model)
statistic.random.w  Statistic for test of effect in subgroups (random effects model)
pval.random.w  P-value for test of effect in subgroups (random effects model)
df.random.w  Degrees of freedom in subgroups (random effects model)
lower.random.w  Lower confidence limit in subgroups (random effects model)
upper.random.w  Upper confidence limit in subgroups (random effects model)
w.random.w  Total weight in subgroups (random effects model)
seTE.classic.w  Standard error (classic random effects method)
df.hakn.ci.w  Degrees of freedom for Hartung-Knapp method in subgroups
seTE.hakn.ci.w  Standard error for Hartung-Knapp method in subgroups
(df not taking \textit{ad hoc} variance correction into account)
seTE.hakn.adhoc.ci.w  Standard error for Hartung-Knapp method in subgroups
df.kero.w  Degrees of freedom for Kenward-Roger method in subgroups
seTE.kero.w  Standard error for Kenward-Roger method in subgroups
seTE.predict.w  Standard error for prediction interval in subgroups
df.predict.w  Degrees of freedom for prediction interval in subgroups
lower.predict.w  Lower limit of prediction interval in subgroups
upper.predict.w  Upper limit of prediction interval in subgroups
seTE.hakn.pi.w  Standard error for Hartung-Knapp method in subgroups (prediction intervals)
(df not taking \textit{ad hoc} variance correction into account)
seTE.hakn.adhoc.pi.w  Standard error for Hartung-Knapp method in subgroups (prediction intervals)
Q.w  Heterogeneity statistic Q in subgroups
pval.Q.w  P-value for test of heterogeneity in subgroups
tau2.w  Between-study variance \(\tau^2\) in subgroups
tau.w  Square-root of between-study variance \(\tau\) in subgroups
H.w  Heterogeneity statistic H in subgroups
lower.H.w  Lower confidence limit for H in subgroups
upper.H.w  Upper confidence limit for H in subgroups
I2.w  Heterogeneity statistic I^2 in subgroups
lower.I2.w  Lower confidence limit for I^2 in subgroups
upper.I2.w  Upper confidence limit for I^2 in subgroups
Rb.w  Heterogeneity statistic R_b in subgroups
lower.Rb.w  Lower confidence limit for R_b in subgroups
upper.Rb.w  Upper confidence limit for R_b in subgroups
Q.w.common  Within-group heterogeneity statistic Q (common effect model)
Q.w.random  Within-group heterogeneity statistic Q (random effects model)
(only calculated if \texttt{argment\ tau.common = TRUE})
df.Q.w Degrees of freedom for Q.w.common and Q.w.random
pval.Q.w.common P-value of test for residual heterogeneity (common effect model)
pval.Q.w.random P-value of test for residual heterogeneity (random effects model)
Q.b.common Between-groups heterogeneity statistic Q (common effect model)
df.Q.b.common Degrees of freedom for Q.b.common
pval.Q.b.common P-value of test for subgroup differences (common effect model)
Q.b.random Between-groups heterogeneity statistic Q (random effects model)
df.Q.b.random Degrees of freedom for Q.b.random
pval.Q.b.random P-value of test for subgroup differences (random effects model)

An object created with `metabin` has the additional class "metabin" and the following components.

- `event.e` Events in experimental group (individual studies)
- `n.e` Sample size in experimental group (individual studies)
- `event.e` Events in control group (individual studies)
- `n.e` Sample size in control group (individual studies)
- `incr` Increment added to zero cells
- `method.incr` Continuity correction method
- `sparse` Continuity correction applied
- `allstudies` Include studies with double zeros
- `doublezeros` Indicator for studies with double zeros
- `MH.exact` Exact Mantel-Haenszel method
- `RR.Cochrane` Cochrane method to calculate risk ratio
- `Q.Cochrane` Cochrane method to calculate $\tau^2$
- `Q.CMH` Cochran-Mantel-Haenszel statistic
- `df.Q.CMH` Degrees of freedom for Q.CMH
- `pval.Q.CMH` P-value of Cochran-Mantel-Haenszel test
- `print.CMH` Print results for Cochran-Mantel-Haenszel statistic
- `incr.e` Continuity correction in experimental group (individual studies)
- `incr.c` Continuity correction in control group (individual studies)
- `k.MH` Number of studies (Mantel-Haenszel method)

An object created with `metacont` has the additional class "metacont" and the following components.

- `n.e` Sample size in experimental group (individual studies)
- `mean.e` Estimated mean in experimental group (individual studies)
- `sd.e` Standard deviation in experimental group (individual studies)
- `n.c` Sample size in control group (individual studies)
- `mean.c` Estimated mean in control group (individual studies)
- `sd.c` Standard deviation in control group (individual studies)
- `pooledvar` Use pooled variance for mean difference
- `method.smd` Method for standardised mean difference (SMD)
- `sd.glass` Denominator in Glass' method
- `exact.smd` Use exact formulae for SMD
- `method.ci` Method to calculate confidence limits
- `method.mean` Method to approximate mean
- `method.sd` Method to approximate standard deviation
An object created with `metacor` has the additional class "metacor" and the following components.

- `cor` Correlation (individual studies)
- `n` Sample size (individual studies)

An object created with `metainc` has the additional class "metainc" and the following components.

- `event.e` Events in experimental group (individual studies)
- `time.e` Person time in experimental group (individual studies)
- `n.e` Sample size in experimental group (individual studies)
- `event.c` Events in control group (individual studies)
- `time.c` Person time in control group (individual studies)
- `n.c` Sample size in control group (individual studies)
- `incr` Increment added to zero cells
- `method.incr` Continuity correction method
- `sparse` Continuity correction applied
- `incr.event` Continuity correction (individual studies)
- `k.MH` Number of studies (Mantel-Haenszel method)

An object created with `metamean` has the additional class "metamean" and the following components.

- `n` Sample size (individual studies)
- `mean` Estimated mean (individual studies)
- `sd` Standard deviation (individual studies)
- `method.ci` Method to calculate confidence limits
- `method.mean` Method to approximate mean
- `method.sd` Method to approximate standard deviation

An object created with `metaprop` has the additional class "metaprop" and the following components.

- `event` Events (individual studies)
- `n` Sample size (individual studies)
- `incr` Increment added to zero cells
- `method.incr` Continuity correction method
- `sparse` Continuity correction applied
- `method.ci` Method to calculate confidence limits
- `incr.event` Continuity correction (individual studies)

An object created with `metarate` has the additional class "metarate" and the following components.

- `event` Events (individual studies)
- `time` Person time (individual studies)
- `n` Sample size (individual studies)
- `incr` Increment added to zero cells
An object created with `trimfill` has the additional classes "trimfill" and "metagen" and the following components.

- **k0** Number of added studies
- **left** Studies missing on left side
- **ma.common** Use common effect or random effects model to estimate number of missing studies
- **type** Method to estimate missing studies
- **n.iter.max** Maximum number of iterations
- **n.iter** Number of iterations
- **trimfill** Filled studies (individual studies)
- **class.x** Primary class of meta-analysis object

**Author(s)**
Guido Schwarzer <sc@imbi.uni-freiburg.de>

**See Also**
- `meta-package`
- `print.meta`
- `summary.meta`
- `forest.meta`

---

**metabias.meta**  
*Test for funnel plot asymmetry*

**Description**
Test for funnel plot asymmetry, based on rank correlation or linear regression method.

**Usage**

```r
S3 method for class 'meta'
metabias(
x,
method.bias = x$method.bias,
plotit = FALSE,
correct = FALSE,
k.min = 10,
...
)

S3 method for class 'metabias'
print(
```
metabias(x, ...)  

## Default S3 method:
metabias(  
x,  
seTE,  
method.bias = "Egger",  
plotit = FALSE,  
correct = FALSE,  
k.min = 10,  
...  
)

Arguments

x An object of class meta or estimated treatment effect in individual studies.

method.bias A character string indicating which test is to be used (see Details), can be abbreviated.

plotit A logical indicating whether a plot should be produced (see Details).

correct A logical indicating whether a continuity corrected statistic is used for rank correlation tests.

k.min Minimum number of studies to perform test for funnel plot asymmetry.

... Additional arguments passed on to rma.uni.

digits Minimal number of significant digits for estimates, see print.default.

digits.stat Minimal number of significant digits for z- or t-value of test for test of funnel plot asymmetry, see print.default.

digits.pval Minimal number of significant digits for p-value of test for test of funnel plot asymmetry, see print.default.

digits.se Minimal number of significant digits for standard errors, see print.default.

digits.tau2 Minimal number of significant digits for residual heterogeneity variance, see print.default.
metabias.meta

scientific.pval
A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.

big.mark
A character used as thousands separator.

zero.pval
A logical specifying whether p-values should be printed with a leading zero.

JAMA.pval
A logical specifying whether p-values for test of overall effect should be printed according to JAMA reporting standards.

text.tau2
Text printed to identify residual heterogeneity variance $\tau^2$.

seTE
Standard error of estimated treatment effect (mandatory if x not of class meta).

Details

Functions to conduct rank correlation or linear regression tests for funnel plot asymmetry.

Classic generic tests: The following tests are generic tests for funnel plot asymmetry which only require estimates of the treatment effect and corresponding standard errors. Accordingly, these are the only tests provided by R function metabias.default.

If argument method.bias is "Begg", the test statistic is based on the rank correlation between standardised treatment estimates and variance estimates of estimated treatment effects; Kendall’s tau is used as correlation measure (Begg & Mazumdar, 1994). The test statistic follows a standard normal distribution. By default (if correct is FALSE), no continuity correction is utilised (Kendall & Gibbons, 1990).

If argument method.bias is "Egger", the test statistic is based on a weighted linear regression of the treatment effect on its standard error (Egger et al., 1997). The test statistic follows a $t$ distribution with number of studies -2 degrees of freedom.

If argument method.bias is "Thompson", the test statistic is based on a weighted linear regression of the treatment effect on its standard error using an additive between-study variance component denoted as methods (3a) - (3d) in Thompson & Sharp (1999). The test statistic follows a $t$ distribution with number of studies - 2 degrees of freedom.

Tests for meta-analysis with binary outcomes: The following tests for funnel plot asymmetry are only available for meta-analyses comparing two binary outcomes, i.e. meta-analyses generated with the metabin function. The only exception is the test by Peters et al. (2006) which can also be used in a meta-analysis of single proportions generated with metaprop.

If argument method.bias is "Harbord", the test statistic is based on a weighted linear regression utilising efficient score and score variance (Harbord et al., 2006, 2009). The test statistic follows a $t$ distribution with number of studies - 2 degrees of freedom.

In order to calculate an arcsine test for funnel plot asymmetry (Rücker et al., 2008), one has to use the metabin function with argument sm = "ASD" as input to the metabias command. The three arcsine tests described in Rücker et al. (2008) can be calculated by setting method.bias to "Begg", "Egger" and "Thompson", respectively.

If argument method.bias is "Macaskill", the test statistic is based on a weighted linear regression of the treatment effect on the total sample size with weights reciprocal to the variance of the average event probability (Macaskill et al., 2001, method FPV). The test statistic follows a $t$ distribution with number of studies - 2 degrees of freedom.

If argument method.bias is "Peters", the test statistic is based on a weighted linear regression of the treatment effect on the inverse of the total sample size with weights reciprocal to the variance...
of the average event probability (Peters et al., 2006). The test statistic follows a t distribution with number of studies - 2 degrees of freedom. Note, this test is a variant of Macaskill et al. (2001), method FPV, using the inverse sample size as covariate.

If argument method.bias is "Schwarzer", the test statistic is based on the rank correlation between a standardised cell frequency and the inverse of the variance of the cell frequency; Kendall’s tau is used as correlation measure (Schwarzer et al., 2007). The test statistic follows a standard normal distribution. By default (if correct is FALSE), no continuity correction is utilised (Kendall & Gibbons, 1990).

Finally, for meta-analysis of diagnostic test accuracy studies, if argument method.bias is "Deeks", the test statistic is based on a weighted linear regression of the log diagnostic odds ratio on the inverse of the squared effective sample size using the effective sample size as weights (Deeks et al., 2005). The test statistic follows a t distribution with number of studies - 2 degrees of freedom.

**Test for the standardised mean difference:** If argument method.bias is "Pustejovsky", the test statistic is based on a weighted linear regression of the treatment effect on the square root of the sum of the inverse group sample sizes using the treatment effect variance as weights (Pustejovsky & Rodgers, 2019). The test statistic follows a t distribution with number of studies - 2 degrees of freedom.

**Recommendations and default settings:** Following recommendations by Sterne et al. (2011), by default, a test for funnel plot asymmetry is only conducted if the number of studies is ten or larger (argument k.min = 10). This behaviour can be changed by setting a smaller value for argument k.min. Note, the minimum number of studies is three.

If argument method.bias is missing, the Harbord test (method.bias = "Harbord") is used in meta-analysis of binary outcomes for the odds ratio as effect measure and the Egger test (method.bias = "Egger") in all other settings (Sterne et al., 2011).

No test for funnel plot asymmetry is conducted in meta-analyses with subgroups.

If argument plotit = TRUE, a scatter plot is shown if argument method.bias is equal to "Begg", "Egger", "Thompson", "Harbord", or "Deeks".

**Value**

A list with class metabias containing the following components if a test for funnel plot asymmetry is conducted:

- statistic: Test statistic.
- df: The degrees of freedom of the test statistic in the case that it follows a t distribution.
- pval: The p-value for the test.
- estimate: Estimates used to calculate test statistic.
- method: A character string indicating what type of test was used.
- title: Title of Cochrane review.
- complab: Comparison label.
- outclab: Outcome label.
- var.model: A character string indicating whether none, multiplicative, or additive residual heterogeneity variance was assumed.
method.bias  As defined above.
x          Meta-analysis object.
version   Version of R package meta used to create object.

Or a list with the following elements if test is not conducted due to the number of studies:

k          Number of studies in meta-analysis.
k.min     Minimum number of studies to perform test for funnel plot asymmetry.
version   Version of R package meta used to create object.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Deeks JJ, Macaskill P, Irwig L (2005): The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of Clinical Epidemiology, 58, 882–93
Harbord RM, Harris RJ, Sterne JAC (2009): Updated tests for small-study effects in meta-analyses. The Stata Journal, 9, 197–210
Schwarzer G, Antes G & Schumacher M (2007): A test for publication bias in meta-analysis with sparse binary data. Statistics in Medicine, 26, 721–33
Sterne, JAC et al. (2011): Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ (Clinical research ed.), 343, 1

See Also

funnel, funnel.meta, metabin, metacont, metagen
Examples

```r
data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
 data = Olkin1995, subset = 1:10, sm = "RR", method = "I")

metabias(m1)
metabias(m1, plotit = TRUE)

metabias(m1, method.bias = "Begg")
metabias(m1, method.bias = "Begg", correct = TRUE)

metabias(m1, method.bias = "Schwarzer")
metabias(m1, method.bias = "Egger")$pval

Arcsine test (based on linear regression)
#
m1.as <- update(m1, sm = "ASD")
metabias(m1.as)
Same result (using function metabias.default)
metabias(m1.as$TE, m1.as$seTE)

No test for funnel plot asymmetry calculated
#
m2 <- update(m1, subset = 1:5)
metabias(m2)

m3 <- update(m1, subset = 1:2)
metabias(m3)

Test for funnel plot asymmetry calculated (use of argument k.min)
#
metabias(m2, k.min = 5)
```

---

**Description**

Conduct a test for funnel plot asymmetry for all outcomes in a Cochrane review

**Usage**

```r
S3 method for class 'rm5'
metabias(
 x,
 comp.no,
 outcome.no,
 method.bias = "linreg",
```
method.bias.binary = method.bias,
method.bias.or = "score",
k.min = 10,
...
)

Arguments

x An object of class rm5.
comp.no Comparison number.
outcome.no Outcome number.
method.bias A character string indicating which test for small-study effects is to be used for all outcomes. Either "rank", "linreg", or "mm", can be abbreviated. See function metabias
method.bias.binary A character string indicating which test is to be used for binary outcomes. Either "rank", "linreg", "mm", "count", "score", or "peters", can be abbreviated. See function metabias
method.bias.or A character string indicating which test is to be used for binary outcomes with odds ratio as summary measure. Either "rank", "linreg", "mm", "count", "score", or "peters", can be abbreviated. See function metabias
k.min Minimum number of studies to perform test for small-study effects.
... Additional arguments (ignored at the moment)

Details

This function can be used to conduct a test for funnel plot asymmetry for all or selected meta-analyses in a Cochrane Review.

Review Manager 5 (RevMan 5) was the software used for preparing and maintaining Cochrane Reviews (https://training.cochrane.org/online-learning/core-software/revman). In RevMan 5, subgroup analyses can be defined and data from a Cochrane review can be imported to R using the function read.rm5.

The R function metacr is called internally.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References


See Also

metabias, metacr, read.rm5, summary.rm5
Examples

# Locate export data file "Fleiss1993_CR.csv" in sub-directory of
# package "meta"
#
filename <- system.file("extdata", "Fleiss1993_CR.csv", package = "meta")
Fleiss1993_CR <- read.rm5(filename)

# Print results for all tests of small-study effects
#
metabias(Fleiss1993_CR, k.min = 5)

# Print result of test of small-study effects for second outcome in
# first comparison
#
metabias(Fleiss1993_CR, comp.no = 1, outcome.no = 2, k.min = 5)

---

**metabin**  
*Meta-analysis of binary outcome data*

**Description**

Calculation of common effect and random effects estimates (risk ratio, odds ratio, risk difference, arcsine difference, or diagnostic odds ratio) for meta-analyses with binary outcome data. Mantel-Haenszel, inverse variance, Peto method, generalised linear mixed model (GLMM), and sample size method are available for pooling. For GLMMs, the `rma.glmm` function from R package *metafor* (Viechtbauer, 2010) is called internally.

**Usage**

```r
metabin(
 event.e,
 n.e,
 event.c,
 n.c,
 studlab,
 data = NULL,
 subset = NULL,
 exclude = NULL,
 cluster = NULL,
 method = ifelse(tau.common, "Inverse", gs("method")),
 sm = ifelse(!is.na(charmatch(tolower(method), c("peto", "glmm", "ssw"), nomatch = NA)),
 "OR", gs("smbin")),
 incr = gs("incr"),
 method.incr = gs("method.incr"),
 allstudies = gs("allstudies"),
 level = gs("level"),
 MH.exact = gs("MH.exact"),
)```
RR.Cochrane = gs("RR.Cochrane"),
Q.Cochrane = gs("Q.Cochrane") & method == "MH" & method.tau == "DL",
model.glmm = gs("model.glmm"),
common = gs("common"),
random = gs("random") | !is.null(tau.preset),
overall = common | random,
overall.hetstat = common | random,
prediction = gs("prediction"),
method.tau = ifelse(!is.na(charmatch(tolower(method), "glmm", nomatch = NA)), "ML",
gs("method.tau")),
method.tau.ci = gs("method.tau.ci"),
tau.preset = NULL,
TE.tau = NULL,
tau.common = gs("tau.common"),
level.ma = gs("level.ma"),
method.random.ci = gs("method.random.ci"),
adhoc.hakn.ci = gs("adhoc.hakn.ci"),
level.predict = gs("level.predict"),
method.predict = gs("method.predict"),
adhoc.hakn.pi = gs("adhoc.hakn.pi"),
method.bias = ifelse(sm == "OR", "Harbord", ifelse(sm == "DOR", "Deeks",
gs("method.bias"))),
backtransf = gs("backtransf"),
pscale = 1,
text.common = gs("text.common"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.common = gs("text.w.common"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
label.e = gs("label.e"),
label.c = gs("label.c"),
label.left = gs("label.left"),
label.right = gs("label.right"),
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
hakn,
adhoc.hakn,
print.CMH = gs("print.CMH"),
keepdata = gs("keepdata"),
warn = gs("warn"),
```r
warn.deprecated = gs("warn.deprecated"),
control = NULL,
...
)

Arguments

- `event.e` Number of events in experimental group or true positives in diagnostic study.
- `n.e` Number of observations in experimental group or number of ill participants in diagnostic study.
- `event.c` Number of events in control group or false positives in diagnostic study.
- `n.c` Number of observations in control group or number of healthy participants in diagnostic study.
- `studlab` An optional vector with study labels.
- `data` An optional data frame containing the study information, i.e., `event.e`, `n.e`, `event.c`, and `n.c`.
- `subset` An optional vector specifying a subset of studies to be used.
- `exclude` An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
- `cluster` An optional vector specifying which estimates come from the same cluster resulting in the use of a three-level meta-analysis model.
- `method` A character string indicating which method is to be used for pooling of studies. One of "Inverse", "MH", "Peto", "GLMM", or "SSW", can be abbreviated.
- `sm` A character string indicating which summary measure ("RR", "OR", "RD", "ASD", or "DOR") is to be used for pooling of studies, see Details.
- `incr` Could be either a numerical value which is added to cell frequencies for studies with a zero cell count or the character string "TACC" which stands for treatment arm continuity correction, see Details.
- `method.incr` A character string indicating which continuity correction method should be used ("only0", "if0all", or "all"), see Details.
- `allstudies` A logical indicating if studies with zero or all events in both groups are to be included in the meta-analysis (applies only if `sm` is equal to "RR", "OR", or "DOR").
- `level` The level used to calculate confidence intervals for individual studies.
- `MH.exact` A logical indicating if `incr` is not to be added to cell frequencies for studies with a zero cell count to calculate the pooled estimate based on the Mantel-Haenszel method.
- `RR.Cochrane` A logical indicating if `2*incr` instead of `1*incr` is to be added to `n.e` and `n.c` in the calculation of the risk ratio (i.e., `sm="RR"`) for studies with a zero cell. This is used in RevMan 5, the program for preparing and maintaining Cochrane reviews.
- `Q.Cochrane` A logical indicating if the Mantel-Haenszel estimate is used in the calculation of the heterogeneity statistic `Q` which is implemented in RevMan 5, the program for preparing and maintaining Cochrane reviews.
model.glmm A character string indicating which GLMM should be used. One of "UM.FS", "UM.RS", "CM.EL", and "CM.AL", see Details.

common A logical indicating whether a common effect meta-analysis should be conducted.

random A logical indicating whether a random effects meta-analysis should be conducted.

overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

prediction A logical indicating whether a prediction interval should be printed.

method.tau A character string indicating which method is used to estimate the between-study variance \( \tau^2 \) and its square root \( \tau \) (see meta-package).

method.tau.ci A character string indicating which method is used to estimate the confidence interval of \( \tau^2 \) and \( \tau \) (see meta-package).

tau.preset Prespecified value for the square root of the between-study variance \( \tau^2 \).

TE.tau Overall treatment effect used to estimate the between-study variance tau-squared.

tau.common A logical indicating whether tau-squared should be the same across subgroups.

level.ma The level used to calculate confidence intervals for meta-analysis estimates.

method.random.ci A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).

adhoc.hakn.ci A character string indicating whether an \textit{ad hoc} variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see meta-package).

level.predict The level used to calculate prediction interval for a new study.

method.predict A character string indicating which method is used to calculate a prediction interval (see meta-package).

adhoc.hakn.pi A character string indicating whether an \textit{ad hoc} variance correction should be applied for prediction interval (see meta-package).

method.bias A character string indicating which test for funnel plot asymmetry is to be used. Either "Begg", "Egger", "Thompson", "Schwarzer", "Harbord", "Peters", or "Deeks", can be abbreviated. See function metabias.

backtransf A logical indicating whether results for odds ratio (sm="OR"), risk ratio (sm="RR"), or diagnostic odds ratio (sm="DOR") should be back transformed in printouts and plots. If TRUE (default), results will be presented as odds ratios and risk ratios; otherwise log odds ratios and log risk ratios will be shown.

pscale A numeric defining a scaling factor for printing of risk differences.

text.common A character string used in printouts and forest plot to label the pooled common effect estimate.
text.random A character string used in printouts and forest plot to label the pooled random effects estimate.

text.predict A character string used in printouts and forest plot to label the prediction interval.

text.w.common A character string used to label weights of common effect model.

text.w.random A character string used to label weights of random effects model.

title Title of meta-analysis / systematic review.

complab Comparison label.

outclab Outcome label.

label.e Label for experimental group.

label.c Label for control group.

label.left Graph label on left side of forest plot.

label.right Graph label on right side of forest plot.

subgroup An optional vector to conduct a meta-analysis with subgroups.

subgroup.name A character string with a name for the subgroup variable.

print.subgroup.name A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.

sep.subgroup A character string defining the separator between name of subgroup variable and subgroup label.

test.subgroup A logical value indicating whether to print results of test for subgroup differences.

prediction.subgroup A logical indicating whether prediction intervals should be printed for subgroups.

byvar Deprecated argument (replaced by 'subgroup').

hakn Deprecated argument (replaced by 'method.random.ci').

adhoc.hakn Deprecated argument (replaced by 'adhoc.hakn.ci').

print.CMH A logical indicating whether result of the Cochran-Mantel-Haenszel test for overall effect should be printed.

keepdata A logical indicating whether original data (set) should be kept in meta object.

warn A logical indicating whether warnings should be printed (e.g., if incr is added to studies with zero cell frequencies).

warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.

control An optional list to control the iterative process to estimate the between-study variance $\tau^2$. This argument is passed on to rma.uni or rma.glmm, respectively.

... Additional arguments passed on to rma.glmm function and to catch deprecated arguments.
Details

Calculation of common and random effects estimates for meta-analyses with binary outcome data. The following measures of treatment effect are available (Rücker et al., 2009):

- Risk ratio (\(sm = "RR"\))
- Odds ratio (\(sm = "OR"\))
- Risk difference (\(sm = "RD"\))
- Arcsine difference (\(sm = "ASD"\))
- Diagnostic Odds ratio (\(sm = "DOR"\))

Note, mathematically, odds ratios and diagnostic odds ratios are identical, however, the labels in printouts and figures differ.

A three-level random effects meta-analysis model (Van den Noortgate et al., 2013) is utilized if argument cluster is used and at least one cluster provides more than one estimate. Internally, rma.mv is called to conduct the analysis and weights.rma.mv with argument type = "rowsum" is used to calculate random effects weights.

Default settings are utilised for several arguments (assignments using gs function). These defaults can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings.

Meta-analysis method:

By default, both common effect (also called common effect) and random effects models are considered (see arguments common and random). If method is "MH" (default), the Mantel-Haenszel method (Greenland & Robins, 1985; Robins et al., 1986) is used to calculate the common effect estimate; if method is "Inverse", inverse variance weighting is used for pooling (Fleiss, 1993); if method is "Peto", the Peto method is used for pooling (Yusuf et al., 1985); if method is "SSW", the sample size method is used for pooling (Bakbergenuly et al., 2020).

While the Mantel-Haenszel and Peto method are defined under the common effect model, random effects variants based on these methods are also implemented in metabin. Following RevMan 5, the Mantel-Haenszel estimator is used in the calculation of the between-study heterogeneity statistic \(Q\) which is used in the DerSimonian-Laird estimator (DerSimonian and Laird, 1986). Accordingly, the results for the random effects meta-analysis using the Mantel-Haenszel or inverse variance method are typically very similar. For the Peto method, Peto’s log odds ratio, i.e. \((O-E) / V\) with \(O-E\) and \(V\) denoting "Observed minus Expected" and its variance, are utilised in the random effects model. Accordingly, results of a random effects model using \(sm = "Peto"\) can be different to results from a random effects model using \(sm = "MH"\) or \(sm = "Inverse"\).

A distinctive and frequently overlooked advantage of binary endpoints is that individual patient data (IPD) can be extracted from a two-by-two table. Accordingly, statistical methods for IPD, i.e., logistic regression and generalised linear mixed models, can be utilised in a meta-analysis of binary outcomes (Stijnen et al., 2010; Simmonds et al., 2016). These methods are available (argument method = "GLMM") for the odds ratio as summary measure by calling the rma.glmm function from R package metafor internally.

Four different GLMMs are available for meta-analysis with binary outcomes using argument model.glmm (which corresponds to argument model in the rma.glmm function):
1. Logistic regression model with common study effects (default) 
(model.glmm = "UM.FS", i.e., Unconditional Model - Fixed Study effects)
2. Mixed-effects logistic regression model with random study effects 
(model.glmm = "UM.RS", i.e., Unconditional Model - Random Study effects)
3. Generalised linear mixed model (conditional Hypergeometric-Normal) 
(model.glmm = "CM.EL", i.e., Conditional Model - Exact Likelihood)
4. Generalised linear mixed model (conditional Binomial-Normal) 
(model.glmm = "CM.AL", i.e., Conditional Model - Approximate Likelihood)

Details on these four GLMMs as well as additional arguments which can be provided using argument ‘...’ in metabin are described in rma.glmm where you can also find information on the iterative algorithms used for estimation. Note, regardless of which value is used for argument model.glmm, results for two different GLMMs are calculated: common effect model (with fixed treatment effect) and random effects model (with random treatment effects).

**Continuity correction:**

Three approaches are available to apply a continuity correction:

- Only studies with a zero cell count (method.incr = "only0")
- All studies if at least one study has a zero cell count (method.incr = "if0all")
- All studies irrespective of zero cell counts (method.incr = "all")

By default, a continuity correction is only applied to studies with a zero cell count (method.incr = "only0"). This method showed the best performance for the odds ratio in a simulation study under the random effects model (Weber et al., 2020).

The continuity correction method is used both to calculate individual study results with confidence limits and to conduct meta-analysis based on the inverse variance method. For the risk difference, the method is only considered to calculate standard errors and confidence limits. For Peto method and GLMMs no continuity correction is used in the meta-analysis. Furthermore, the continuity correction is ignored for individual studies for the Peto method.

For studies with a zero cell count, by default, 0.5 (argument incr) is added to all cell frequencies for the odds ratio or only the number of events for the risk ratio (argument RR.Cochrane = FALSE, default). The increment is added to all cell frequencies for the risk ratio if argument RR.Cochrane = TRUE. For the risk difference, incr is only added to all cell frequencies to calculate the standard error. Finally, a treatment arm continuity correction is used if incr = "TACC" (Sweeting et al., 2004; Diamond et al., 2007).

For odds ratio and risk ratio, treatment estimates and standard errors are only calculated for studies with zero or all events in both groups if allstudies = TRUE.

For the Mantel-Haenszel method, by default (if MH.exact is FALSE), incr is added to cell frequencies of a study with a zero cell count in the calculation of the pooled risk ratio or odds ratio as well as the estimation of the variance of the pooled risk difference, risk ratio or odds ratio. This approach is also used in other software, e.g. RevMan 5 and the Stata procedure metan. According to Fleiss (in Cooper & Hedges, 1994), there is no need to add 0.5 to a cell frequency of zero to calculate the Mantel-Haenszel estimate and he advocates the exact method (MH.exact = TRUE).

Note, estimates based on exact Mantel-Haenszel method or GLMM are not defined if the number of events is zero in all studies either in the experimental or control group.

**Subgroup analysis:**
Argument subgroup can be used to conduct subgroup analysis for a categorical covariate. The \texttt{metareg} function can be used instead for more than one categorical covariate or continuous covariates.

**Exclusion of studies from meta-analysis:**
Arguments \texttt{subset} and \texttt{exclude} can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument \texttt{subset}, while excluded studies are shown in printouts and forest plots using argument \texttt{exclude} (see Examples in \texttt{metagen}). Meta-analysis results are the same for both arguments.

**Presentation of meta-analysis results:**
Internally, both common effect and random effects models are calculated regardless of values chosen for arguments \texttt{common} and \texttt{random}. Accordingly, the estimate for the random effects model can be extracted from component \texttt{TE.random} of an object of class "meta" even if argument \texttt{random = FALSE}. However, all functions in R package \texttt{meta} will adequately consider the values for common and random. E.g. function \texttt{print.meta} will not print results for the random effects model if \texttt{random = FALSE}.

A prediction interval will only be shown if \texttt{prediction = TRUE}.

**Value**
An object of class \texttt{c("metabin", "meta")} with corresponding generic functions (see \texttt{meta-object}).

**Author(s)**
Guido Schwarzer <sc@imbi.uni-freiburg.de>

**References**

StataCorp. 2011. *Stata Statistical Software: Release 12*. College Station, TX: StataCorp LP.


See Also

`meta-package`, `update.meta`, `forest`, `funnel`, ` metabias`, `metacont`, `metagen`, `metareg`, `print.meta`

Examples

```r
Calculate odds ratio and confidence interval for a single study
metabin(10, 20, 15, 20, sm = "OR")

Different results (due to handling of studies with double zeros)
metabin(0, 10, 0, 10, sm = "OR")
metabin(0, 10, 0, 10, sm = "OR", allstudies = TRUE)

Use subset of Olkin (1995) to conduct meta-analysis based on
inverse variance method (with risk ratio as summary measure)
#
data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, subset = c(41, 47, 51, 59),
studlab = paste(author, year),
method = "Inverse")
m1

Show results for individual studies
summary(m1)

Use different subset of Olkin (1995)
m2 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, subset = year < 1970,
studlab = paste(author, year),
```
method = "Inverse")
m2
forest(m2)

# Meta-analysis with odds ratio as summary measure
#
m3 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, subset = year < 1970,
studlab = paste(author, year),
sm = "OR", method = "Inverse")
# Same meta-analysis result using 'update.meta' function
m3 <- update(m2, sm = "OR")
m3

# Meta-analysis based on Mantel-Haenszel method (with odds ratio as summary measure)
#
m4 <- update(m3, method = "MH")
m4

# Meta-analysis based on Peto method (only available for odds ratio as summary measure)
#
m5 <- update(m3, method = "Peto")
m5

## Not run:
# Meta-analysis using generalised linear mixed models
# (only if R package 'lme4' is available)
#
# Logistic regression model with (k = 4) fixed study effects
# (default: model.glmm = "UM.FS")
#
m6 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
studlab = paste(author, year),
data = Olkin1995, subset = year < 1970, method = "GLMM")
# Same results:
m6 <- update(m2, method = "GLMM")
m6

# Mixed-effects logistic regression model with random study effects
# (warning message printed due to argument 'nAGQ')
#
m7 <- update(m6, model.glmm = "UM.RS")
# # Use additional argument 'nAGQ' for internal call of 'rma.glmm'
# function
# m7 <- update(m6, model.glmm = "UM.RS", nAGQ = 1)
m7

# Generalised linear mixed model (conditional Hypergeometric-Normal)
# (R package 'BiasedUrn' must be available)
#
m8 <- update(m6, model.glmm = "CM.EL")
m8

# Generalised linear mixed model (conditional Binomial-Normal)
#
m9 <- update(m6, model.glmm = "CM.AL")
m9

# Logistic regression model with (k = 70) fixed study effects
# (about 18 seconds with Intel Core i7-3667U, 2.0GHz)
#
m10 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
  studlab = paste(author, year),
  data = Olkin1995, method = "GLMM")
m10

# Mixed-effects logistic regression model with random study effects
# - about 50 seconds with Intel Core i7-3667U, 2.0GHz
# - several warning messages, e.g. “failure to converge, ...”
#
update(m10, model.glmm = "UM.RS")

# Conditional Hypergeometric-Normal GLMM
# - long computation time (about 12 minutes with Intel Core
#   i7-3667U, 2.0GHz)
# - estimation problems for this very large dataset:
#   * warning that Choleski factorization of Hessian failed
#   * confidence interval for treatment effect smaller in random
#   effects model compared to common effect model
#
system.time(m11 <- update(m10, model.glmm = "CM.EL"))
m11

# Generalised linear mixed model (conditional Binomial-Normal)
# (less than 1 second with Intel Core i7-3667U, 2.0GHz)
#
update(m10, model.glmm = "CM.AL")

## End(Not run)

---

**metabind**

**Combine and summarize meta-analysis objects**

**Description**

This function can be used to combine meta-analysis objects and is, for example, useful to summarize results of various meta-analysis methods or to generate a forest plot with results of several subgroup analyses.
Usage
metabind(..., name = NULL, pooled = NULL, backtransf = NULL, outclab = NULL)

Arguments

... Any number of meta-analysis objects or a single list with meta-analyses.
name An optional character vector providing descriptive names for the meta-analysis objects.
pooled A character string or vector indicating whether results of a common effect or random effects model should be considered. Either "common" or "random", can be abbreviated.
backtransf A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE (default), results for sm="OR" are printed as odds ratios rather than log odds ratios, for example.
outclab Outcome label for all meta-analysis objects.

Details
This function can be used to combine any number of meta-analysis objects which is useful, for example, to summarize results of various meta-analysis methods or to generate a forest plot with results of several subgroup analyses (see Examples).
Individual study results are not retained with metabind as the function allows to combine meta-analyses from different data sets (e.g., with randomized or observational studies). This is possible using R function metamerge which can be used to combine results of two meta-analyses of the same dataset.

Value
An object of class c("metabind", "meta") with corresponding generic functions (see meta-object).

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also
metagen, forest.metabind, metamerge

Examples

data(Fleiss9993cont)

# Add some (fictitious) grouping variables:
# Fleiss9993cont$age <- c(55, 65, 55, 65, 55)
Fleiss9993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")

ml <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, sm = "MD")

# Conduct two subgroup analyses
#
mu1 <- update(m1, subgroup = age, subgroup.name = "Age group")
mu2 <- update(m1, subgroup = region, subgroup.name = "Region")

# Combine subgroup meta-analyses and show forest plot with subgroup results
#
mb1 <- metabind(mu1, mu2)
forest(mb1)

# Use various estimation methods for between-study heterogeneity variance
#
m1.pm <- update(m1, method.tau = "PM")
m1.dl <- update(m1, method.tau = "DL")
m1.ml <- update(m1, method.tau = "ML")
m1.hs <- update(m1, method.tau = "HS")
m1.sj <- update(m1, method.tau = "SJ")
m1.he <- update(m1, method.tau = "HE")
m1.eb <- update(m1, method.tau = "EB")

# Combine meta-analyses and show results
#
taus <- c("Restricted maximum-likelihood estimator", 
            "Paule-Mandel estimator", 
            "DerSimonian-Laird estimator", 
            "Maximum-likelihood estimator", 
            "Hunter-Schmidt estimator", 
            "Sidik-Jonkman estimator", 
            "Hedges estimator", 
            "Empirical Bayes estimator")
#
m1.taus <- metabind(m1, m1.pm, m1.dl, m1.ml, m1.hs, m1.sj, m1.he, m1.eb,
                    name = taus, pooled = "random")
m1.taus
forest(m1.taus, print.I2 = FALSE, print.pval.Q = FALSE)

---

**metacont**

Meta-analysis of continuous outcome data

**Description**

Calculation of common and random effects estimates for meta-analyses with continuous outcome data; inverse variance weighting is used for pooling.
Usage

metacont(
  n.e,
  mean.e,
  sd.e,
  n.c,
  mean.c,
  sd.c,
  studlab,
  data = NULL,
  subset = NULL,
  exclude = NULL,
  cluster = NULL,
  median.e,
  q1.e,
  q3.e,
  min.e,
  max.e,
  median.c,
  q1.c,
  q3.c,
  min.c,
  max.c,
  method.mean = "Luo",
  method.sd = "Shi",
  approx.mean.e,
  approx.mean.c = approx.mean.e,
  approx.sd.e,
  approx.sd.c = approx.sd.e,
  sm = gs("smcont"),
  method.ci = gs("method.ci.cont"),
  level = gs("level"),
  pooledvar = gs("pooledvar"),
  method.smd = gs("method.smd"),
  sd.glass = gs("sd.glass"),
  exact.smd = gs("exact.smd"),
  common = gs("common"),
  random = gs("random") | !is.null(tau.preset),
  overall = common | random,
  overall.hetstat = common | random,
  prediction = gs("prediction") | !missing(method.predict),
  method.tau = gs("method.tau"),
  method.tau.ci = gs("method.tau.ci"),
  tau.preset = NULL,
  TE.tau = NULL,
  tau.common = gs("tau.common"),
  level.ma = gs("level.ma"),
  method.random.ci = gs("method.random.ci"),
Arguments

n.e Number of observations in experimental group.
mean.e Estimated mean in experimental group.
sd.e Standard deviation in experimental group.
n.c Number of observations in control group.
mean.c Estimated mean in control group.
sd.c Standard deviation in control group.
studlab An optional vector with study labels.
data An optional data frame containing the study information.
subset An optional vector specifying a subset of studies to be used.
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
cluster An optional vector specifying which estimates come from the same cluster resulting in the use of a three-level meta-analysis model.

median.e Median in experimental group (used to estimate the mean and standard deviation).

q1.e First quartile in experimental group (used to estimate the mean and standard deviation).

q3.e Third quartile in experimental group (used to estimate the mean and standard deviation).

min.e Minimum in experimental group (used to estimate the mean and standard deviation).

max.e Maximum in experimental group (used to estimate the mean and standard deviation).

median.c Median in control group (used to estimate the mean and standard deviation).

q1.c First quartile in control group (used to estimate the mean and standard deviation).

q3.c Third quartile in control group (used to estimate the mean and standard deviation).

min.c Minimum in control group (used to estimate the mean and standard deviation).

max.c Maximum in control group (used to estimate the mean and standard deviation).

method.mean A character string indicating which method to use to approximate the mean from the median and other statistics (see Details).

method.sd A character string indicating which method to use to approximate the standard deviation from sample size, median, interquartile range and range (see Details).

approx.mean.e Approximation method to estimate means in experimental group (see Details).

approx.mean.c Approximation method to estimate means in control group (see Details).

approx.sd.e Approximation method to estimate standard deviations in experimental group (see Details).

approx.sd.c Approximation method to estimate standard deviations in control group (see Details).

sm A character string indicating which summary measure ("MD", "SMD", or "ROM") is to be used for pooling of studies.

method.ci A character string indicating which method is used to calculate confidence intervals for individual studies (see Details).

level The level used to calculate confidence intervals for individual studies.

pooledvar A logical indicating if a pooled variance should be used for the mean difference (sm="MD").

method.smd A character string indicating which method is used to estimate the standardised mean difference (sm="SMD"). Either "Hedges" for Hedges’ g (default), "Cohen" for Cohen’s d, or "Glass" for Glass’ delta, can be abbreviated.

sd.glass A character string indicating which standard deviation is used in the denominator for Glass’ method to estimate the standardised mean difference. Either "control" using the standard deviation in the control group (sd.c) or "experimental" using the standard deviation in the experimental group (sd.e), can be abbreviated.
exact.smd  A logical indicating whether exact formulae should be used in estimation of the standardised mean difference and its standard error (see Details).

common  A logical indicating whether a common effect meta-analysis should be conducted.

random  A logical indicating whether a random effects meta-analysis should be conducted.

overall  A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

overall.hetstat  A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

prediction  A logical indicating whether a prediction interval should be printed.

method.tau  A character string indicating which method is used to estimate the between-study variance $\tau^2$ and its square root $\tau$ (see meta-package).

method.tau.ci  A character string indicating which method is used to estimate the confidence interval of $\tau^2$ and $\tau$ (see meta-package).

tau.preset  Prespecified value for the square root of the between-study variance $\tau^2$.

TE.tau  Overall treatment effect used to estimate the between-study variance tau-squared.

tau.common  A logical indicating whether tau-squared should be the same across subgroups.

level.ma  The level used to calculate confidence intervals for meta-analysis estimates.

method.random.ci  A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).

adhoc.hakn.ci  A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see meta-package).

level.predict  The level used to calculate prediction interval for a new study.

method.predict  A character string indicating which method is used to calculate a prediction interval (see meta-package).

adhoc.hakn.pi  A character string indicating whether an ad hoc variance correction should be applied for prediction interval (see meta-package).

method.bias  A character string indicating which test is to be used. Either "Begg", "Egger", "Thompson", or "Pustejovsky" (see metabias), can be abbreviated.

backtransf  A logical indicating whether results for ratio of means (sm="ROM") should be back transformed in printouts and plots. If TRUE (default), results will be presented as ratio of means; otherwise log ratio of means will be shown.

text.common  A character string used in printouts and forest plot to label the pooled common effect estimate.

text.random  A character string used in printouts and forest plot to label the pooled random effects estimate.
text.predict A character string used in printouts and forest plot to label the prediction interval.
text.w.common A character string used to label weights of common effect model.
text.w.random A character string used to label weights of random effects model.
title Title of meta-analysis / systematic review.
complab Comparison label.
outclab Outcome label.
label.e Label for experimental group.
label.c Label for control group.
label.left Graph label on left side of forest plot.
label.right Graph label on right side of forest plot.
subgroup An optional vector to conduct a meta-analysis with subgroups.
subgroup.name A character string with a name for the subgroup variable.
print.subgroup.name A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.
sep.subgroup A character string defining the separator between name of subgroup variable and subgroup label.
test.subgroup A logical value indicating whether to print results of test for subgroup differences.
prediction.subgroup A logical indicating whether prediction intervals should be printed for subgroups.
byvar Deprecated argument (replaced by ‘subgroup’).
id Deprecated argument (replaced by ‘cluster’).
adhoc.hakn Deprecated argument (replaced by ‘adhoc.hakn.ci’).
keepdata A logical indicating whether original data (set) should be kept in meta object.
warn A logical indicating whether warnings should be printed (e.g., if studies are excluded from meta-analysis due to zero standard deviations).
warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.
control An optional list to control the iterative process to estimate the between-study variance $\tau^2$. This argument is passed on to `rma.uni`.
...
Additional arguments (to catch deprecated arguments).

Details

Calculation of common and random effects estimates for meta-analyses with continuous outcome data; inverse variance weighting is used for pooling.

A three-level random effects meta-analysis model (Van den Noortgate et al., 2013) is utilized if argument `cluster` is used and at least one cluster provides more than one estimate. Internally,
rma.mv is called to conduct the analysis and weights.rma.mv with argument type = "rowsum" is used to calculate random effects weights.

Default settings are utilised for several arguments (assignments using gs function). These defaults can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings. Three different types of summary measures are available for continuous outcomes:

- mean difference (argument sm = "MD")
- standardised mean difference (sm = "SMD")
- ratio of means (sm = "ROM")

**Standardised mean difference:**
For the standardised mean difference three methods are implemented:

- Hedges’ $g$ (default, method.smd = "Hedges") - see Hedges (1981)
- Cohen’s $d$ (method.smd = "Cohen") - see Cohen (1988)
- Glass’ delta (method.smd = "Glass") - see Glass (1976)

Hedges (1981) calculated the exact bias in Cohen’s $d$ which is a ratio of gamma distributions with the degrees of freedom, i.e. total sample size minus two, as argument. By default (argument exact.smd = FALSE), an accurate approximation of this bias provided in Hedges (1981) is utilised for Hedges’ $g$ as well as its standard error; these approximations are also used in RevMan 5. Following Borenstein et al. (2009) these approximations are not used in the estimation of Cohen’s $d$. White and Thomas (2005) argued that approximations are unnecessary with modern software and accordingly promote to use the exact formulae; this is possible using argument exact.smd = TRUE. For Hedges’ $g$ the exact formulae are used to calculate the standardised mean difference as well as the standard error; for Cohen’s $d$ the exact formula is only used to calculate the standard error. In typical applications (with sample sizes above 10), the differences between using the exact formulae and the approximation will be minimal.

For Glass’ delta, by default (argument sd.glass = "control"), the standard deviation in the control group (sd.c) is used in the denominator of the standard mean difference. The standard deviation in the experimental group (sd.e) can be used by specifying sd.glass = "experimental".

**Ratio of means:**
Meta-analysis of ratio of means – also called response ratios – is described in Hedges et al. (1999) and Friedrich et al. (2008). Calculations are conducted on the log scale and list elements TE, TE.common, and TE.random contain the logarithm of the ratio of means. In printouts and plots these values are back transformed if argument backtransf = TRUE.

**Approximate means from sample sizes, medians and other statistics:**
Missing means in the experimental group (analogously for the control group) can be derived from

1. sample size, median, interquartile range and range (arguments n.e, median.e, q1.e, q3.e, min.e, and max.e),
2. sample size, median and interquartile range (arguments n.e, median.e, q1.e, and q3.e), or
3. sample size, median and range (arguments n.e, median.e, min.e, and max.e).

By default, methods described in Luo et al. (2018) are utilized (argument method.mean = "Luo"):

- equation (15) if sample size, median, interquartile range and range are available,
• equation (11) if sample size, median and interquartile range are available,
• equation (7) if sample size, median and range are available.

Instead the methods described in Wan et al. (2014) are used if argument method.mean = "Wan":
• equation (10) if sample size, median, interquartile range and range are available,
• equation (14) if sample size, median and interquartile range are available,
• equation (2) if sample size, median and range are available.

By default, missing means are replaced successively using interquartile ranges and ranges (if available), interquartile ranges (if available) and finally ranges. Arguments approx.mean.e and approx.mean.c can be used to overwrite this behaviour for each individual study and treatment arm:
• use means directly (entry "" in argument approx.mean.e or approx.mean.c);
• median, interquartile range and range ("iqr.range");
• median and interquartile range ("iqr");
• median and range ("range").

Approximate standard deviations from sample sizes, medians and other statistics:
Missing standard deviations in the experimental group (analogously for the control group) can be derived from
1. sample size, median, interquartile range and range (arguments n.e, median.e, q1.e, q3.e, min.e, and max.e),
2. sample size, median and interquartile range (arguments n.e, median.e, q1.e and q3.e), or
3. sample size, median and range (arguments n.e, median.e, min.e and max.e).

Wan et al. (2014) describe methods to estimate the standard deviation from the sample size, median and additional statistics. Shi et al. (2020) provide an improved estimate of the standard deviation if the interquartile range and range are available in addition to the sample size and median. Accordingly, equation (11) in Shi et al. (2020) is the default (argument method.sd = "Shi"), if the median, interquartile range and range are provided. The method by Wan et al. (2014) is used if argument method.sd = "Wan" and, depending on the sample size, either equation (12) or (13) is used. If only the interquartile range or range is available, equations (15) / (16) and (7) / (9) in Wan et al. (2014) are used, respectively.

By default, missing standard deviations are replaced successively using these method, i.e., interquartile ranges and ranges are used before interquartile ranges before ranges. Arguments approx.sd.e and approx.sd.c can be used to overwrite this default for each individual study and treatment arms:
• sample size, median, interquartile range and range ("iqr.range");
• sample size, median and interquartile range ("iqr");
• sample size, median and range ("range").

Confidence intervals for individual studies:
For the mean difference (argument sm = "MD"), the confidence interval for individual studies can be based on the
• standard normal distribution (method.ci = "z", default), or
• t-distribution (method.ci = "t").

Note, this choice does not affect the results of the common effect and random effects meta-analysis.
Subgroup analysis:
Argument subgroup can be used to conduct subgroup analysis for a categorical covariate. The metareg function can be used instead for more than one categorical covariate or continuous covariates.

Exclusion of studies from meta-analysis:
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples in metagen). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both common effect and random effects models are calculated regardless of values chosen for arguments common and random. Accordingly, the estimate for the random effects model can be extracted from component TE.random of an object of class "meta" even if argument random = FALSE. However, all functions in R package meta will adequately consider the values for common and random. E.g. function print.meta will not print results for the random effects model if random = FALSE.
A prediction interval will only be shown if prediction = TRUE.

Value
An object of class c("metacont", "meta") with corresponding generic functions (see meta-object).

Note
The function metagen is called internally to calculate individual and overall treatment estimates and standard errors.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References
Friedrich JO, Adhikari NK, Beyene J (2008): The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: A simulation study. BMC Medical Research Methodology, 8, 32

*Review Manager (RevMan)* [Computer program]. Version 5.4. The Cochrane Collaboration, 2020


White IR, Thomas J (2005): Standardized mean differences in individually-randomized and cluster-randomized trials, with applications to meta-analysis. *Clinical Trials, 2*, 141–51

See Also

`meta-package, update.meta, metabin, metagen`

Examples

```r
data(fleiss1993cont)

Meta-analysis with Hedges' g as effect measure
#
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = fleiss1993cont, sm = "SMD")
m1
forest(m1)

Use Cohen's d instead of Hedges' g as effect measure
#
update(m1, method.smd = "Cohen")

Use Glass' delta instead of Hedges' g as effect measure
#
update(m1, method.smd = "Glass")

Use Glass' delta based on the standard deviation in the experimental group
#
update(m1, method.smd = "Glass", sd.glass = "experimental")

Calculate Hedges' g based on exact formulae
#
update(m1, exact.smd = TRUE)

data(amlodipine)
m2 <- metacont(n.amlo, mean.amlo, sqrt(var.amlo), n.plac, mean.plac, sqrt(var.plac),
data = amlodipine, studlab = study)
m2
```
# Use pooled variance
#
update(m2, pooledvar = TRUE)

# Meta-analysis of response ratios (Hedges et al., 1999)
#
data(woodyplants)
m3 <- metacont(n.elev, mean.elev, sd.elev, n.amb, mean.amb, sd.amb,
   data = woodyplants, sm = "ROM")
m3
print(m3, backtransf = FALSE)

---

**Description**

Calculation of common effect and random effects estimates for meta-analyses with correlations; inverse variance weighting is used for pooling.

**Usage**

```r
metacor(
cor,
n,
studlab,
data = NULL,
subset = NULL,
exclude = NULL,
cluster = NULL,
sm = gs("smcor"),
level = gs("level"),
common = gs("common"),
random = gs("random") | !is.null(tau.preset),
overall = common | random,
overall.hetstat = common | random,
prediction = gs("prediction") | !missing(method.predict),
method.tau = gs("method.tau"),
method.tau.ci = gs("method.tau.ci"),
tau.preset = NULL,
TE.tau = NULL,
tau.common = gs("tau.common"),
level.ma = gs("level.ma"),
method.random.ci = gs("method.random.ci"),
adhoc.hakn.ci = gs("adhoc.hakn.ci"),
level.predict = gs("level.predict"),
method.predict = gs("method.predict"),
)```
ad hoc.hakn.pi = gs("adhoc.hakn.pi"),
null.effect = 0,
method.bias = gs("method.bias"),
backtransf = gs("backtransf"),
text.common = gs("text.common"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.common = gs("text.w.common"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
adhoc.hakn,
keepdata = gs("keepdata"),
warn.deprecated = gs("warn.deprecated"),
control = NULL,
...

Arguments

cor Correlation.
n Number of observations.
studlab An optional vector with study labels.
data An optional data frame containing the study information, i.e., cor and n.
subset An optional vector specifying a subset of studies to be used.
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
cluster An optional vector specifying which estimates come from the same cluster resulting in the use of a three-level meta-analysis model.
sm A character string indicating which summary measure ("ZCOR" or "COR") is to be used for pooling of studies.
level The level used to calculate confidence intervals for individual studies.
common A logical indicating whether a common effect meta-analysis should be conducted.
random A logical indicating whether a random effects meta-analysis should be conducted.
overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

prediction A logical indicating whether a prediction interval should be printed.

method.tau A character string indicating which method is used to estimate the between-study variance τ^2 and its square root τ (see meta-package).

method.tau.ci A character string indicating which method is used to estimate the confidence interval of τ^2 and τ (see meta-package).

tau.preset Prespecified value for the square root of the between-study variance τ^2.

TE.tau Overall treatment effect used to estimate the between-study variance tau-squared.

tau.common A logical indicating whether tau-squared should be the same across subgroups.

level.ma The level used to calculate confidence intervals for meta-analysis estimates.

method.random.ci A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).

adhoc.hakn.ci A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see meta-package).

level.predict The level used to calculate prediction interval for a new study.

method.predict A character string indicating which method is used to calculate a prediction interval (see meta-package).

adhoc.hakn.pi A character string indicating whether an ad hoc variance correction should be applied for prediction interval (see meta-package).

null.effect A numeric value specifying the effect under the null hypothesis.

method.bias A character string indicating which test is to be used. Either "Begg", "Egger", or "Thompson", can be abbreviated. See function metabias.

backtransf A logical indicating whether results for Fisher’s z transformed correlations (sm = “ZCOR”) should be back transformed in printouts and plots. If TRUE (default), results will be presented as correlations; otherwise Fisher’s z transformed correlations will be shown.

text.common A character string used in printouts and forest plot to label the pooled common effect estimate.

text.random A character string used in printouts and forest plot to label the pooled random effects estimate.

text.predict A character string used in printouts and forest plot to label the prediction interval.

text.w.common A character string used to label weights of common effect model.

text.w.random A character string used to label weights of random effects model.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>title</td>
<td>Title of meta-analysis / systematic review.</td>
</tr>
<tr>
<td>complab</td>
<td>Comparison label.</td>
</tr>
<tr>
<td>outclab</td>
<td>Outcome label.</td>
</tr>
<tr>
<td>subgroup</td>
<td>An optional vector to conduct a meta-analysis with subgroups.</td>
</tr>
<tr>
<td>subgroup.name</td>
<td>A character string with a name for the subgroup variable.</td>
</tr>
<tr>
<td>print.subgroup.name</td>
<td>A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.</td>
</tr>
<tr>
<td>sep.subgroup</td>
<td>A character string defining the separator between name of subgroup variable and subgroup label.</td>
</tr>
<tr>
<td>test.subgroup</td>
<td>A logical value indicating whether to print results of test for subgroup differences.</td>
</tr>
<tr>
<td>prediction.subgroup</td>
<td>A logical indicating whether prediction intervals should be printed for subgroups.</td>
</tr>
<tr>
<td>byvar</td>
<td>Deprecated argument (replaced by 'subgroup').</td>
</tr>
<tr>
<td>adhoc.hakn</td>
<td>Deprecated argument (replaced by 'adhoc.hakn.ci').</td>
</tr>
<tr>
<td>keepdata</td>
<td>A logical indicating whether original data (set) should be kept in meta object.</td>
</tr>
<tr>
<td>warn.deprecated</td>
<td>A logical indicating whether warnings should be printed if deprecated arguments are used.</td>
</tr>
<tr>
<td>control</td>
<td>An optional list to control the iterative process to estimate the between-study variance τ^2. This argument is passed on to \texttt{rma.uni}.</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments (to catch deprecated arguments).</td>
</tr>
</tbody>
</table>

Details

Common effect and random effects meta-analysis of correlations based either on Fisher’s z transformation of correlations (\texttt{sm = "ZCOR"}) or direct combination of (untransformed) correlations (\texttt{sm = "COR"}) (see Cooper et al., p264-5 and p273-4). Only few statisticians would advocate the use of untransformed correlations unless sample sizes are very large (see Cooper et al., p265). The artificial example given below shows that the smallest study gets the largest weight if correlations are combined directly because the correlation is closest to 1.

A three-level random effects meta-analysis model (Van den Noortgate et al., 2013) is utilized if argument \texttt{cluster} is used and at least one cluster provides more than one estimate. Internally, \texttt{rma.mv} is called to conduct the analysis and \texttt{weights.rma.mv} with argument \texttt{type = "rowsum"} is used to calculate random effects weights.

Default settings are utilised for several arguments (assignments using \texttt{gs} function). These defaults can be changed for the current R session using the \texttt{settings.meta} function.

Furthermore, R function \texttt{update.meta} can be used to rerun a meta-analysis with different settings.

Subgroup analysis:

Argument \texttt{subgroup} can be used to conduct subgroup analysis for a categorical covariate. The \texttt{metareg} function can be used instead for more than one categorical covariate or continuous covariates.
Exclusion of studies from meta-analysis:
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples in metagen). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both common effect and random effects models are calculated regardless of values choosen for arguments common and random. Accordingly, the estimate for the random effects model can be extracted from component TE.random of an object of class "meta" even if argument random = FALSE. However, all functions in R package meta will adequately consider the values for common and random. E.g. functions print.meta and forest.meta will not print results for the random effects model if random = FALSE.
A prediction interval will only be shown if prediction = TRUE.

Value
An object of class c("metacor", "meta") with corresponding generic functions (see meta-object).

Note
The function metagen is called internally to calculate individual and overall treatment estimates and standard errors.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also
meta-package, update.meta, metacont, metagen, print.meta

Examples
m1 <- metacor(c(0.85, 0.7, 0.95), c(20, 40, 10))

Print correlations (back transformed from Fisher's z
transformation)
#
m1

Print Fisher's z transformed correlations
#
print(m1, backtransf = FALSE)

Forest plot with back transformed correlations
forest(m1)

Forest plot with Fisher's z transformed correlations
forest(m1, backtransf = FALSE)

m2 <- update(m1, sm = "cor")
m2

Not run:
Identical forest plots (as back transformation is the identity
transformation)
forest(m2)
forest(m2, backtransf = FALSE)

End(Not run)

metacr

Meta-analysis of outcome data from Cochrane review

Description

Wrapper function to perform meta-analysis for a single outcome of a Cochrane Intervention review.

Usage

metacr(
 x,
 comp.no = 1,
 outcome.no = 1,
 method,
 sm,
 level = gs("level"),
 common,
 random,
 prediction = gs("prediction") | !missing(method.predict),
 method.tau = "DL",
 method.tau.ci = gs("method.tau.ci"),
 tau.common = FALSE,
 level.ma = gs("level.ma"),
 method.random.ci = "classic",
 adhoc.hakn.ci = gs("adhoc.hakn.ci"),
 level.predict = gs("level.predict"),
 method.predict = gs("method.predict"),
Arguments

x An object of class rm5 created by R function read.rm5.
comp.no Comparison number.
outcome.no Outcome number.
method A character string indicating which method is to be used for pooling of studies. One of "Inverse", "MH", or "Peto", can be abbreviated.
sm A character string indicating which summary measure ("RR", "OR", "RD", "ASD", "HR", "MD", or "SMD", or "ROM") is to be used for pooling of studies.
level The level used to calculate confidence intervals for individual studies.
common A logical indicating whether a common effect meta-analysis should be conducted.
random A logical indicating whether a random effects meta-analysis should be conducted.
prediction A logical indicating whether a prediction interval should be printed.
method.tau A character string indicating which method is used to estimate the between-study variance τ^2 and its square root τ (see meta-package).
method.tau.ci A character string indicating which method is used to estimate the confidence interval of τ^2 and τ (see meta-package).
tau.common A logical indicating whether tau-squared should be the same across subgroups.
level.ma The level used to calculate confidence intervals for meta-analysis estimates.
method.random.ci A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).
adhoc.hakn.ci A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see meta-package).

level.predict The level used to calculate prediction interval for a new study.

method.predict A character string indicating which method is used to calculate a prediction interval (see meta-package).

adhoc.hakn.pi A character string indicating whether an ad hoc variance correction should be applied for prediction interval (see meta-package).

swap.events A logical indicating whether events and non-events should be interchanged.

logscale A logical indicating whether effect estimates are entered on log-scale.

backtransf A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE (default), results for sm="OR" are printed as odds ratios rather than log odds ratios and results for sm="ZCOR" are printed as correlations rather than Fisher’s z transformed correlations, for example.

test.subgroup A logical value indicating whether to print results of test for subgroup differences.

prediction.subgroup A logical indicating whether prediction intervals should be printed for subgroups.

text.common A character string used in printouts and forest plot to label the pooled common effect estimate.

text.random A character string used in printouts and forest plot to label the pooled random effects estimate.

text.predict A character string used in printouts and forest plot to label the prediction interval.

text.w.common A character string used to label weights of common effect model.

text.w.random A character string used to label weights of random effects model.

title Title of meta-analysis / systematic review.

complab Comparison label.

coutlab Outcome label.

keepdata A logical indicating whether original data (set) should be kept in meta object.

warn A logical indicating whether warnings should be printed (e.g., if incr is added to studies with zero cell frequencies).

warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.

... Additional arguments (to catch deprecated arguments).

Details

Cochrane Intervention reviews are based on the comparison of two interventions. Each Cochrane Intervention review can have a variable number of comparisons. For each comparison, a variable number of outcomes can be define. For each outcome, a separate meta-analysis is conducted.
Review Manager 5 (RevMan 5) was the software used for preparing and maintaining Cochrane Reviews (https://training.cochrane.org/online-learning/core-software/revman).

This wrapper function can be used to perform meta-analysis for a single outcome of a Cochrane Intervention review. Internally, R functions `metabin`, `metacont`, and `metagen` are called - depending on the definition of the outcome in RevMan 5.

Note, it is recommended to choose the RevMan 5 settings before executing `metacr`, i.e., `settings.meta("revman5")`.

Value

An object of class "meta" and - depending on outcome type utilised in Cochrane Intervention review for selected outcome - "metabin", "metacont", or "metagen" with corresponding generic functions (see `meta-object`).

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration, 2020

See Also

`meta-package, metabin, metacont, metagen, read.rm5, settings.meta`

Examples

```r
# Locate export data file "Fleiss1993_CR.csv"
# in sub-directory of package "meta"
#
filename <- system.file("extdata", "Fleiss1993_CR.csv", package = "meta")
#
Fleiss1993_CR <- read.rm5(filename)

# Choose RevMan 5 settings and store old settings
#
oldset <- settings.meta("revman5", quietly = FALSE)

# Same result as R command example(Fleiss1993bin)
#
metacr(Fleiss1993_CR)

# Same result as R command example(Fleiss1993cont)
#
metacr(Fleiss1993_CR, 1, 2)
forest(metacr(Fleiss1993_CR, 1, 2))

# Change summary measure to RR
#
m1 <- metacr(Fleiss1993_CR)
update(m1, sm="RR")
```
Use old settings
settings.meta(oldset)

metacum
Cumulative meta-analysis

Description

Performs a cumulative meta-analysis.

Usage

`metacum(x, pooled, sortvar, no = 1)`

Arguments

- `x`
 An object of class `meta`.

- `pooled`
 A character string indicating whether a common effect or random effects model is used for pooling. Either missing (see Details), "common", or "random", can be abbreviated.

- `sortvar`
 An optional vector used to sort the individual studies (must be of same length as `x$TE`).

- `no`
 A numeric specifying which meta-analysis results to consider.

Details

A cumulative meta-analysis is performed. Studies are included sequentially as defined by `sortvar`. Information from object `x` is utilised if argument `pooled` is missing. A common effect model is assumed (`pooled = "common"`) if argument `x$common` is TRUE; a random effects model is assumed (`pooled = "random"`) if argument `x$random` is TRUE and `x$common` is FALSE.

Value

An object of class "meta" and "metacum" with corresponding generic functions (see `meta-object`). The following list elements have a different meaning:

- `TE`, `seTE`
 Estimated treatment effect and standard error of pooled estimate in cumulative meta-analyses.

- `lower`, `upper`
 Lower and upper confidence interval limits.

- `statistic`
 Statistic for test of overall effect.

- `pval`
 P-value for test of overall effect.

- `studlab`
 Study label describing addition of studies.
metacum

Sum of weights from common effect or random effects model.

TE.common, seTE.common
Value is NA.

TE.random, seTE.random
Value is NA.

Q
Value is NA.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`metabin`, `metacont`, `print.meta`

Examples

```r
data(Fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac, 
  data = Fleiss1993bin, studlab = study, sm = "RR", method = "I")
m1
metacum(m1)
m1, pooled = "random")
forest(metacum(m1))
forest(metacum(m1, pooled = "random"))
metacum(m1, sortvar = study)
metacum(m1, sortvar = 7:1)

m2 <- update(m1, title = "Fleiss1993bin meta-analysis", backtransf = FALSE)
metacum(m2)
data(Fleiss1993cont)
m3 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont, 
  data = Fleiss1993cont, sm = "SMD")
metacum(m3)
```
Generic inverse variance meta-analysis

Description

Common effect and random effects meta-analysis based on estimates (e.g. log hazard ratios) and their standard errors. The inverse variance method is used for pooling.

Three-level random effects meta-analysis (Van den Noortgate et al., 2013) is available by internally calling \texttt{rma.mv} function from R package \texttt{metafor} (Viechtbauer, 2010).

Usage

\begin{verbatim}
metagen(
 TE,
 seTE,
 studlab,
 data = NULL,
 subset = NULL,
 exclude = NULL,
 cluster = NULL,
 sm = "",
 method.ci = if (missing(df)) "z" else "t",
 level = gs("level"),
 common = gs("common"),
 random = gs("random") | !is.null(tau.preset),
 overall = common | random,
 overall.hetstat = common | random,
 prediction = gs("prediction") | !missing(method.predict),
 method.tau = gs("method.tau"),
 method.tau.ci = gs("method.tau.ci"),
 tau.preset = NULL,
 TE.tau = NULL,
 tau.common = gs("tau.common"),
 detail.tau = "",
 level.ma = gs("level.ma"),
 method.random.ci = gs("method.random.ci"),
 adhoc.hakn.ci = gs("adhoc.hakn.ci"),
 level.predict = gs("level.predict"),
 method.predict = gs("method.predict"),
 adhoc.hakn.pi = gs("adhoc.hakn.pi"),
 null.effect = 0,
 method.bias = gs("method.bias"),
 n.e = NULL,
 n.c = NULL,
 pval,
 df,
\end{verbatim}
lower,
upper,
level.ci = 0.95,
median,
q1,
q3,
min,
max,
method.mean = "Luo",
method.sd = "Shi",
approx.TE,
approx.seTE,
backtransf = gs("backtransf"),
pscale = 1,
irscale = 1,
irunit = "person-years",
text.common = gs("text.common"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.common = gs("text.w.common"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
label.e = gs("label.e"),
label.c = gs("label.c"),
label.left = gs("label.left"),
label.right = gs("label.right"),
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
id,
adhoc.hakn,
keepdata = gs("keepdata"),
warn = gs("warn"),
warn.deprecated = gs("warn.deprecated"),
control = NULL,

Arguments

TE Estimate of treatment effect, e.g., log hazard ratio or risk difference.
seTE Standard error of treatment estimate.
studlab An optional vector with study labels.
data An optional data frame containing the study information.
subset An optional vector specifying a subset of studies to be used (see Details).
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots (see Details).
cluster An optional vector specifying which estimates come from the same cluster resulting in the use of a three-level meta-analysis model.
sm A character string indicating underlying summary measure, e.g., "RD", "RR", "OR", "ASD", "HR", "MD", "SMD", or "ROM".
method.ci A character string indicating which method is used to calculate confidence intervals for individual studies, see Details.
level The level used to calculate confidence intervals for individual studies.
common A logical indicating whether a common effect meta-analysis should be conducted.
random A logical indicating whether a random effects meta-analysis should be conducted.
overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.
overall.hetstat A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.
prediction A logical indicating whether a prediction interval should be printed.
method.tau A character string indicating which method is used to estimate the between-study variance τ^2 and its square root τ (see meta-package).
method.tau.ci A character string indicating which method is used to estimate the confidence interval of τ^2 and τ (see meta-package).
tau.preset Prespecified value for the square root of the between-study variance τ^2.
TE.tau Overall treatment effect used to estimate the between-study variance tau-squared.
tau.common A logical indicating whether tau-squared should be the same across subgroups.
detail.tau Detail on between-study variance estimate.
level.ma The level used to calculate confidence intervals for meta-analysis estimates.
method.random.ci A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).
adhoc.hakn.ci A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see meta-package).
level.predict The level used to calculate prediction interval for a new study.
method.predict A character string indicating which method is used to calculate a prediction interval (see meta-package).
adhoc.hakn.pi: A character string indicating whether an *ad hoc* variance correction should be applied for prediction interval (see meta-package).

null.effect: A numeric value specifying the effect under the null hypothesis.

method.bias: A character string indicating which test is to be used. Either "Begg", "Egger", or "Thompson", can be abbreviated. See function metabias.

n.e: Number of observations in experimental group (or total sample size in study).

n.c: Number of observations in control group.

pval: P-value (used to estimate the standard error).

df: Degrees of freedom (used in test or to construct confidence interval).

lower: Lower limit of confidence interval (used to estimate the standard error).

upper: Upper limit of confidence interval (used to estimate the standard error).

level.ci: Level of confidence interval.

median: Median (used to estimate the treatment effect and standard error).

q1: First quartile (used to estimate the treatment effect and standard error).

q3: Third quartile (used to estimate the treatment effect and standard error).

min: Minimum (used to estimate the treatment effect and standard error).

max: Maximum (used to estimate the treatment effect and standard error).

method.mean: A character string indicating which method to use to approximate the mean from the median and other statistics (see Details).

method.sd: A character string indicating which method to use to approximate the standard deviation from sample size, median, interquartile range and range (see Details).

approx.TE: Approximation method to estimate treatment estimate (see Details).

approx.seTE: Approximation method to estimate standard error (see Details).

backtransf: A logical indicating whether results should be back transformed in printouts and plots. If backtransf = TRUE (default), results for sm = "OR" are printed as odds ratios rather than log odds ratios and results for sm = "ZCOR" are printed as correlations rather than Fisher’s z transformed correlations, for example.

pscale: A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument sm is equal to "PLOGIT", "PLN", "PRAW", "PAS", "PFT", or "RD".

irscale: A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument sm is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".

irunit: A character specifying the time unit used to calculate rates, e.g. person-years.

text.common: A character string used in printouts and forest plot to label the pooled common effect estimate.

text.random: A character string used in printouts and forest plot to label the pooled random effects estimate.

text.predict: A character string used in printouts and forest plot to label the prediction interval.
<table>
<thead>
<tr>
<th>text.w.common</th>
<th>A character string used to label weights of common effect model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>text.w.random</td>
<td>A character string used to label weights of random effects model.</td>
</tr>
<tr>
<td>title</td>
<td>Title of meta-analysis / systematic review.</td>
</tr>
<tr>
<td>complab</td>
<td>Comparison label.</td>
</tr>
<tr>
<td>outclab</td>
<td>Outcome label.</td>
</tr>
<tr>
<td>label.e</td>
<td>Label for experimental group.</td>
</tr>
<tr>
<td>label.c</td>
<td>Label for control group.</td>
</tr>
<tr>
<td>label.left</td>
<td>Graph label on left side of forest plot.</td>
</tr>
<tr>
<td>label.right</td>
<td>Graph label on right side of forest plot.</td>
</tr>
<tr>
<td>subgroup</td>
<td>An optional vector to conduct a meta-analysis with subgroups.</td>
</tr>
<tr>
<td>subgroup.name</td>
<td>A character string with a name for the subgroup variable.</td>
</tr>
<tr>
<td>print.subgroup.name</td>
<td>A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.</td>
</tr>
<tr>
<td>sep.subgroup</td>
<td>A character string defining the separator between name of subgroup variable and subgroup label.</td>
</tr>
<tr>
<td>test.subgroup</td>
<td>A logical value indicating whether to print results of test for subgroup differences.</td>
</tr>
<tr>
<td>prediction.subgroup</td>
<td>A logical indicating whether prediction intervals should be printed for subgroups.</td>
</tr>
<tr>
<td>byvar</td>
<td>Deprecated argument (replaced by 'subgroup').</td>
</tr>
<tr>
<td>id</td>
<td>Deprecated argument (replaced by 'cluster').</td>
</tr>
<tr>
<td>adhoc.hakn</td>
<td>Deprecated argument (replaced by 'adhoc.hakn.ci').</td>
</tr>
<tr>
<td>keepdata</td>
<td>A logical indicating whether original data (set) should be kept in meta object.</td>
</tr>
<tr>
<td>warn</td>
<td>A logical indicating whether warnings should be printed (e.g., if studies are excluded from meta-analysis due to zero standard errors).</td>
</tr>
<tr>
<td>warn.deprecated</td>
<td>A logical indicating whether warnings should be printed if deprecated arguments are used.</td>
</tr>
<tr>
<td>control</td>
<td>An optional list to control the iterative process to estimate the between-study variance (\tau^2). This argument is passed on to \code{rma.uni} or \code{rma.mv}.</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments (to catch deprecated arguments).</td>
</tr>
</tbody>
</table>

Details

This function provides the *generic inverse variance method* for meta-analysis which requires treatment estimates and their standard errors (Borenstein et al., 2010). The method is useful, e.g., for pooling of survival data (using log hazard ratio and standard errors as input). Arguments \text{TÉ} and \text{seTÉ} can be used to provide treatment estimates and standard errors directly. However, it is possible to derive these quantities from other information.

A three-level random effects meta-analysis model (Van den Noortgate et al., 2013) is utilized if argument \text{cluster} is used and at least one cluster provides more than one estimate. Internally,
rma.mv is called to conduct the analysis and weights.rma.mv with argument type = "rowsum" is used to calculate random effects weights.

Default settings are utilised for several arguments (assignments using gs function). These defaults can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings.

Approximate treatment estimates:
Missing treatment estimates can be derived from

1. confidence limits provided by arguments lower and upper;
2. median, interquartile range and range (arguments median, q1, q3, min, and max);
3. median and interquartile range (arguments median, q1 and q3);
4. median and range (arguments median, min and max).

For confidence limits, the treatment estimate is defined as the center of the confidence interval (on the log scale for relative effect measures like the odds ratio or hazard ratio).

If the treatment effect is a mean it can be approximated from sample size, median, interquartile range and range. By default, methods described in Luo et al. (2018) are utilized (argument method.mean = "Luo"):
- equation (7) if sample size, median and range are available,
- equation (11) if sample size, median and interquartile range are available,
- equation (15) if sample size, median, range and interquartile range are available.

Instead the methods described in Wan et al. (2014) are used if argument method.mean = "Wan":
- equation (2) if sample size, median and range are available,
- equation (14) if sample size, median and interquartile range are available,
- equation (10) if sample size, median, range and interquartile range are available.

By default, missing treatment estimates are replaced successively using these method, i.e., confidence limits are utilised before interquartile ranges. Argument approx.TE can be used to overwrite this default for each individual study:
- Use treatment estimate directly (entry "" in argument approx.TE);
- confidence limits ("ci" in argument approx.TE);
- median, interquartile range and range ("iqr.range");
- median and interquartile range ("iqr");
- median and range ("range").

Approximate standard errors:
Missing standard errors can be derived from

1. p-value provided by arguments pval and (optional) df;
2. confidence limits (arguments lower, upper, and (optional) df);
3. sample size, median, interquartile range and range (arguments n.e and / or n.c, median, q1, q3, min, and max);
4. sample size, median and interquartile range (arguments n.e and / or n.c, median, q1 and q3);
5. sample size, median and range (arguments n.e and / or n.c, median, min and max).
For p-values and confidence limits, calculations are either based on the standard normal or t-distribution if argument df is provided. Furthermore, argument level.ci can be used to provide the level of the confidence interval.

Wan et al. (2014) describe methods to estimate the standard deviation (and thus the standard error by dividing the standard deviation with the square root of the sample size) from the sample size, median and additional statistics. Shi et al. (2020) provide an improved estimate of the standard deviation if the interquartile range and range are available in addition to the sample size and median. Accordingly, equation (11) in Shi et al. (2020) is the default (argument method.sd = "Shi"), if the median, interquartile range and range are provided (arguments median, q1, q3, min and max). The method by Wan et al. (2014) is used if argument method.sd = "Wan" and, depending on the sample size, either equation (12) or (13) is used. If only the interquartile range or range is available, equations (15) / (16) and (7) / (9) in Wan et al. (2014) are used, respectively. The sample size of individual studies must be provided with arguments n.e and / or n.c. The total sample size is calculated as n.e + n.c if both arguments are provided.

By default, missing standard errors are replaced successively using these method, e.g., p-value before confidence limits before interquartile range and range. Argument approx.seTE can be used to overwrite this default for each individual study:

- Use standard error directly (entry "" in argument approx.seTE);
- p-value ("pval" in argument approx.seTE);
- confidence limits ("ci");
- median, interquartile range and range ("iqr.range");
- median and interquartile range ("iqr");
- median and range ("range").

Confidence intervals for individual studies:

For the mean difference (argument sm = "MD"), the confidence interval for individual studies can be based on the

- standard normal distribution (method.ci = "z"), or
- t-distribution (method.ci = "t").

By default, the first method is used if argument df is missing and the second method otherwise. Note, this choice does not affect the results of the common effect and random effects meta-analysis.

Subgroup analysis:

Argument subgroup can be used to conduct subgroup analysis for a categorical covariate. The metareg function can be used instead for more than one categorical covariate or continuous covariates.

Specify the null hypothesis of test for an overall effect:

Argument null.effect can be used to specify the (treatment) effect under the null hypothesis in a test for an overall effect.

By default (null.effect = 0), the null hypothesis corresponds to "no difference" (which is obvious for absolute effect measures like the mean difference (sm = "MD") or standardised mean difference (sm = "SMD")). For relative effect measures, e.g., risk ratio (sm = "RR") or odds ratio (sm = "OR"), the null effect is defined on the log scale, i.e., ln(RR) = 0 or ln(OR) = 0 which is equivalent to testing RR = 1 or OR = 1.
Use of argument null.effect is especially useful for summary measures without a "natural" null effect, i.e., in situations without a second (treatment) group. For example, an overall proportion of 50% could be tested in the meta-analysis of single proportions with argument null.effect = 0.5.

Note, all tests for an overall effect are two-sided with the alternative hypothesis that the effect is unequal to null.effect.

Exclusion of studies from meta-analysis:
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both common effect and random effects models are calculated regardless of values choosen for arguments common and random. Accordingly, the estimate for the random effects model can be extracted from component TE.random of an object of class "meta" even if argument random = FALSE. However, all functions in R package meta will adequately consider the values for common and random. For example, functions print.meta and forest.meta will not show results for the random effects model if random = FALSE.

A prediction interval will only be shown if prediction = TRUE.
Argument pscale can be used to rescale single proportions or risk differences, e.g. pscale = 1000 means that proportions are expressed as events per 1000 observations. This is useful in situations with (very) low event probabilities.

Argument irscale can be used to rescale single rates or rate differences, e.g. irscale = 1000 means that rates are expressed as events per 1000 time units, e.g. person-years. This is useful in situations with (very) low rates. Argument irunit can be used to specify the time unit used in individual studies (default: "person-years"). This information is printed in summaries and forest plots if argument irscale is not equal to 1.

Default settings for common, random, pscale, irscale, irunit and several other arguments can be set for the whole R session using settings.meta.

Value

An object of class c("metagen", "meta") with corresponding generic functions (see meta-object).

Note

R function rma.uni from R package metafor (Viechtbauer 2010) is called internally to estimate the between-study variance \(\tau^2 \).

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>
References

Luo D, Wan X, Liu J, Tong T (2018): Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Statistical Methods in Medical Research, 27, 1785–805

Wan X, Wang W, Liu J, Tong T (2014): Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology, 14, 135

See Also

meta-package, update.meta, metabin, metacont, print.meta, settings.meta

Examples

data(Fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac, study, data = Fleiss1993bin, sm = "RR", method = "I")
m1

Identical results using the generic inverse variance method with log risk ratio and its standard error:
Note, argument 'n.e' in metagen() is used to provide the total sample size which is calculated from the group sample sizes n.e and n.c in meta-analysis m1.
m1.gen <- metagen(TE, seTE, studlab, n.e = n.e + n.c, data = m1, sm = "RR")
m1.gen

Meta-analysis with prespecified between-study variance
meta(m1$TE, m1$seTE, sm = "RR", tau.preset = sqrt(0.1))

Meta-analysis of survival data:
logHR <- log(c(0.95, 1.5))
selogHR <- c(0.25, 0.35)
metagen(logHR, selogHR, sm = "HR")

Paule-Mandel method to estimate between-study variance for data from Paule & Mandel (1982)
metagen

variance <- c(0.003, 0.076, 0.464, 0.003, 0.014)
#
metagen(average, sqrt(variance), sm = "MD", method.tau = "PM")

Conduct meta-analysis using hazard ratios and 95% confidence intervals
#
Data from Steurer et al. (2006), Analysis 1.1 Overall survival
#
HR <- c(0.55, 0.92, 0.79, 1.18)
lower.HR <- c(0.28, 0.79, 0.59, 0.64)
upper.HR <- c(1.09, 1.08, 1.05, 2.17)
#
Input must be log hazard ratios, not hazard ratios
#
metagen(log(HR), lower = log(lower.HR), upper = log(upper.HR),
 studlab = study, sm = "HR")

Exclude MRC-1 and MRC-2 studies from meta-analysis, however,
show them in printouts and forest plots
#
metabin(d.asp, n.asp, d.plac, n.plac, study,
 data = Fleiss1993bin, sm = "RR", method = "I",
 exclude = !(study %in% c("MRC-1", "MRC-2")))

Exclude MRC-1 and MRC-2 studies completely from meta-analysis
#
metabin(d.asp, n.asp, d.plac, n.plac, study,
 data = Fleiss1993bin, sm = "RR", method = "I",
 subset = !(study %in% c("MRC-1", "MRC-2")))

Exclude studies with total sample size above 1500
#
metabin(d.asp, n.asp, d.plac, n.plac, study,
 data = Fleiss1993bin, sm = "RR", method = "I",
 exclude = (n.asp + n.plac) > 1500)

Exclude studies containing "MRC" in study name
#
metabin(d.asp, n.asp, d.plac, n.plac, study,
 data = Fleiss1993bin, sm = "RR", method = "I",
 exclude = grep("MRC", study))

Use both arguments 'subset' and 'exclude'
#
metabin(d.asp, n.asp, d.plac, n.plac, study,
 data = Fleiss1993bin, sm = "RR", method = "I",
 subset = (n.asp + n.plac) > 1500,
 exclude = grep("MRC", study))

Not run:
Three-level model: effects of modified school calendars on student achievement
data(dat.konstantopoulos2011, package = "metadat")
metagen(yi, sqrt(vi), studlab = study, data = dat.konstantopoulos2011,
sm = "SMD",
cluster = district, detail.tau = c("district", "district/school"))
End(Not run)

metainc

Meta-analysis of incidence rates

Description

Calculation of common effect and random effects estimates (incidence rate ratio or incidence rate difference) for meta-analyses with event counts. Mantel-Haenszel, Cochran, inverse variance method, and generalised linear mixed model (GLMM) are available for pooling. For GLMMs, the `rma.glmm` function from R package metafor (Viechtbauer 2010) is called internally.

Usage

```r
metainc(
  event.e,
  time.e,
  event.c,
  time.c,
  studlab,
  data = NULL,
  subset = NULL,
  exclude = NULL,
  cluster = NULL,
  method = if (sm == "IRSD") "Inverse" else "MH",
  sm = gs("sminc"),
  incr = gs("incr"),
  method.incr = gs("method.incr"),
  model.glmm = "UM.FS",
  level = gs("level"),
  common = gs("common"),
  random = gs("random") | !is.null(tau.preset),
  overall = common | random,
  overall.hetstat = common | random,
  prediction = gs("prediction"),
  method.tau = ifelse(!is.na(charmatch(tolower(method), "glmm", nomatch = NA)), "ML",
    gs("method.tau")),
  method.tau.ci = gs("method.tau.ci"),
  tau.preset = NULL,
  TE.tau = NULL,
)```
Arguments

- **event.e**: Number of events in experimental group.
- **time.e**: Person time at risk in experimental group.
- **event.c**: Number of events in control group.
- **time.c**: Person time at risk in control group.
- **studlab**: An optional vector with study labels.
data  An optional data frame containing the study information, i.e., event.e, time.e, event.c, and time.c.
subset  An optional vector specifying a subset of studies to be used.
exclude  An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
cluster  An optional vector specifying which estimates come from the same cluster resulting in the use of a three-level meta-analysis model.
method  A character string indicating which method is to be used for pooling of studies. One of "MH", "Inverse", "Cochran", or "GLMM" can be abbreviated.
sm  A character string indicating which summary measure ("IRR", "IRD" or "IRSD") is to be used for pooling of studies, see Details.
incr  A numerical value which is added to cell frequencies for studies with a zero cell count, see Details.
method.incr  A character string indicating which continuity correction method should be used ("only0", "if0all", or "all"), see Details.
model.glmm  A character string indicating which GLMM should be used. One of "UM.FS", "UM.RS", and "CM.EL", see Details.
level  The level used to calculate confidence intervals for individual studies.
common  A logical indicating whether a common effect meta-analysis should be conducted.
random  A logical indicating whether a random effects meta-analysis should be conducted.
overall  A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.
overall.hetstat  A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.
prediction  A logical indicating whether a prediction interval should be printed.
method.tau  A character string indicating which method is used to estimate the between-study variance $\tau^2$ and its square root $\tau$ (see meta-package).
method.tau.ci  A character string indicating which method is used to estimate the confidence interval of $\tau^2$ and $\tau$ (see meta-package).
tau.preset  Prespecified value for the square root of the between-study variance $\tau^2$.
TE.tau  Overall treatment effect used to estimate the between-study variance tau-squared.
tau.common  A logical indicating whether tau-squared should be the same across subgroups.
level.ma  The level used to calculate confidence intervals for meta-analysis estimates.
method.random.ci  A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).
metaine

adhoc.hakn.ci  A character string indicating whether an *ad hoc* variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see `meta-package`).

level.predict The level used to calculate prediction interval for a new study.

method.predict  A character string indicating which method is used to calculate a prediction interval (see `meta-package`).

adhoc.hakn.pi  A character string indicating whether an *ad hoc* variance correction should be applied for prediction interval (see `meta-package`).

method.bias  A character string indicating which test is to be used. Either "Begg", "Egger", or "Thompson", can be abbreviated. See function `metabias`.

n.e  Number of observations in experimental group (optional).

n.c  Number of observations in control group (optional).

backtransf  A logical indicating whether results for incidence rate ratio (sm = "IRR") should be back transformed in printouts and plots. If TRUE (default), results will be presented as incidence rate ratios; otherwise log incidence rate ratios will be shown.

irscale  A numeric defining a scaling factor for printing of incidence rate differences.

irunit  A character string specifying the time unit used to calculate rates, e.g. person-years.

text.common  A character string used in printouts and forest plot to label the pooled common effect estimate.

text.random  A character string used in printouts and forest plot to label the pooled random effects estimate.

text.predict  A character string used in printouts and forest plot to label the prediction interval.

text.w.common  A character string used to label weights of common effect model.

text.w.random  A character string used to label weights of random effects model.
	
title  Title of meta-analysis / systematic review.

tcomplab  Comparison label.

outclab  Outcome label.

label.e  Label for experimental group.

label.c  Label for control group.

label.left  Graph label on left side of forest plot.

label.right  Graph label on right side of forest plot.

subgroup  An optional vector to conduct a meta-analysis with subgroups.

subgroup.name  A character string with a name for the subgroup variable.

print.subgroup.name  A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.

sep.subgroup  A character string defining the separator between name of subgroup variable and subgroup label.
test.subgroup A logical value indicating whether to print results of test for subgroup differences.

prediction.subgroup A logical indicating whether prediction intervals should be printed for subgroups.

byvar Deprecated argument (replaced by 'subgroup').

hakn Deprecated argument (replaced by 'method.random.ci').

adhoc.hakn Deprecated argument (replaced by 'adhoc.hakn.ci').

keepdata A logical indicating whether original data (set) should be kept in meta object.

warn A logical indicating whether warnings should be printed (e.g., if incr is added to studies with zero cell frequencies).

warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.

control An optional list to control the iterative process to estimate the between-study variance $\tau^2$. This argument is passed on to rma.uni or rma.glmm, respectively.

... Additional arguments passed on to rma.glmm function and to catch deprecated arguments.

**Details**

Calculation of common and random effects estimates for meta-analyses comparing two incidence rates.

The following measures of treatment effect are available:

- Incidence Rate Ratio (sm = "IRR")
- Incidence Rate Difference (sm = "IRD")
- Square root transformed Incidence Rate Difference (sm = "IRSD")

A three-level random effects meta-analysis model (Van den Noortgate et al., 2013) is utilized if argument cluster is used and at least one cluster provides more than one estimate. Internally, rma.mv is called to conduct the analysis and weights.rma.mv with argument type = "rowsum" is used to calculate random effects weights.

Default settings are utilised for several arguments (assignments using gs function). These defaults can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings.

**Meta-analysis method:**

By default, both common effect and random effects models are considered (see arguments common and random). If method is "MH" (default), the Mantel-Haenszel method is used to calculate the common effect estimate (Greenland & Robbins, 1985); if method is "Inverse", inverse variance weighting is used for pooling; if method is "Cochran", the Cochran method is used for pooling (Bayne-Jones, 1964, Chapter 8).

A distinctive and frequently overlooked advantage of incidence rates is that individual patient data (IPD) can be extracted from count data. Accordingly, statistical methods for IPD, i.e., generalised linear mixed models, can be utilised in a meta-analysis of incidence rate ratios (Stijnen
et al., 2010). These methods are available (argument method = "GLMM") by calling the `rma.glmm` function from R package `metafor` internally.

Three different GLMMs are available for meta-analysis of incidence rate ratios using argument `model.glmm` (which corresponds to argument `model` in the `rma.glmm` function):

1. Poisson regression model with fixed study effects (default)
   `(model.glmm = "UM.FS", i.e., Unconditional Model - Fixed Study effects)`
2. Mixed-effects Poisson regression model with random study effects
   `(model.glmm = "UM.RS", i.e., Unconditional Model - Random Study effects)`
3. Generalised linear mixed model (conditional Poisson-Normal)
   `(model.glmm = "CM.EL", i.e., Conditional Model - Exact Likelihood)`

Details on these three GLMMs as well as additional arguments which can be provided using argument ‘...’ in `metainc` are described in `rma.glmm` where you can also find information on the iterative algorithms used for estimation. Note, regardless of which value is used for argument `model.glmm`, results for two different GLMMs are calculated: common effect model (with fixed treatment effect) and random effects model (with random treatment effects).

**Continuity correction:**

Three approaches are available to apply a continuity correction:

- Only studies with a zero cell count (`method.incr = "only0"`, default)
- All studies if at least one study has a zero cell count (`method.incr = "if0all"`)  
- All studies irrespective of zero cell counts (`method.incr = "all"`)  

For studies with a zero cell count, by default, 0.5 is added to all cell frequencies of these studies (argument `incr`). This continuity correction is used both to calculate individual study results with confidence limits and to conduct meta-analysis based on the inverse variance method. For Mantel-Haenszel method, Cochran method, and GLMMs, nothing is added to zero cell counts. Accordingly, estimates for these methods are not defined if the number of events is zero in all studies either in the experimental or control group.

**Subgroup analysis:**

Argument `subgroup` can be used to conduct subgroup analysis for a categorical covariate. The `metareg` function can be used instead for more than one categorical covariate or continuous covariates.

**Exclusion of studies from meta-analysis:**

Arguments `subset` and `exclude` can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument `subset`, while excluded studies are shown in printouts and forest plots using argument `exclude` (see Examples in `metagen`). Meta-analysis results are the same for both arguments.

**Presentation of meta-analysis results:**

Internally, both common effect and random effects models are calculated regardless of values chosen for arguments `common` and `random`. Accordingly, the estimate for the random effects model can be extracted from component `TE.random` of an object of class "meta" even if argument `random = FALSE`. However, all functions in R package `meta` will adequately consider the values for common and random. E.g. function `print.meta` will not print results for the random effects model if `random = FALSE`.  

A prediction interval will only be shown if `prediction = TRUE`. 

---

**Note:**

- The `metainc` function is part of the `metafor` package, which is available on CRAN.
- For more detailed information, consult the `metafor` package documentation or the CRAN documentation for the package. 
- The examples provided are intended to illustrate the use of the `metainc` function and its arguments. 
- Always consult the original source for the most accurate and up-to-date information. 
- If you encounter any errors or issues with the function, consider reporting them to the package maintainer or checking if there are updated versions available. 
- It is recommended to use the latest version of the `metafor` package for the most recent features and improvements. 
- For specific examples or questions, feel free to ask.
Value

An object of class c("metainc", "meta") with corresponding generic functions (see meta-object).

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References


See Also

meta-package, metabin, update.meta, print.meta

Examples

data(smoking)
m1 <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
   data = smoking, studlab = study)
print(m1, digits = 2)

m2 <- update(m1, method = "Cochran")
print(m2, digits = 2)

data(lungcancer)
m3 <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
   data = lungcancer, studlab = study)
print(m3, digits = 2)

# Redo Cochran meta-analysis with inflated standard errors
#
# All cause mortality
#
TEa <- log((smoking$d.smokers/smoking$py.smokers) / (smoking$d.nonsmokers/smoking$py.nonsmokers))
setEa <- sqrt(1 / smoking$d.smokers + 1 / smoking$d.nonsmokers +
   2.5 / smoking$d.nonsmokers)
metagen(TEa, seTEa, sm = "IRR", studlab = smoking$study)

# Lung cancer mortality
#
TEl <- log((lungcancer$d.smokers/lungcancer$py.smokers) /
  (lungcancer$d.nonsmokers/lungcancer$py.nonsmokers))
seTEl <- sqrt(1 / lungcancer$d.smokers + 1 / lungcancer$d.nonsmokers +
  2.25 / lungcancer$d.nonsmokers)
metagen(TEl, seTEl, sm = "IRR", studlab = lungcancer$study)

## Not run:
# Meta-analysis using generalised linear mixed models
# (only if R packages 'metafor' and 'lme4' are available)

# Poisson regression model (fixed study effects)
#
m4 <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
  data = smoking, studlab = study, method = "GLMM")
m4

# Mixed-effects Poisson regression model (random study effects)
#
update(m4, model.glmm = "UM.RS", nAGQ = 1)
#
# Generalised linear mixed model (conditional Poisson-Normal)
#
update(m4, model.glmm = "CM.EL")

## End(Not run)

---

metainf

**Influence analysis in meta-analysis using leave-one-out method**

---

### Description

Performs an influence analysis. Pooled estimates are calculated omitting one study at a time.

### Usage

```r
metainf(x, pooled, sortvar, no = 1)
```

### Arguments

- **x**: An object of class `meta`.
- **pooled**: A character string indicating whether a common effect or random effects model is used for pooling. Either missing (see Details), “common” or “random”, can be abbreviated.
sortvar  An optional vector used to sort the individual studies (must be of same length as x$TE).

no  A numeric specifying which meta-analysis results to consider.

Details
Performs a influence analysis; pooled estimates are calculated omitting one study at a time. Studies are sorted according to sortvar.

Information from object x is utilised if argument pooled is missing. A common effect model is assumed (pooled="common") if argument x$common is TRUE; a random effects model is assumed (pooled="random") if argument x$random is TRUE and x$common is FALSE.

Value
An object of class "meta" and "metainf" with corresponding generic functions (see meta-object). The following list elements have a different meaning:

- TE, seTE  Estimated treatment effect and standard error of pooled estimate in influence analysis.
- lower, upper  Lower and upper confidence interval limits.
- statistic  Statistic for test of overall effect.
- pval  P-value for test of overall effect.
- studlab  Study label describing omission of studies.
- w  Sum of weights from common effect or random effects model.
- TE.common, seTE.common  Value is NA.
- TE.random, seTE.random  Value is NA.
- Q  Value is NA.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also
metabin, metacont, print.meta
Examples

data(Fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac,
   data = Fleiss1993bin, studlab = study, sm = "RR", method = "I")
m1
metainf(m1)
metainf(m1, pooled = "random")

forest(metainf(m1))
forest(metainf(m1), layout = "revman5")
forest(metainf(m1, pooled = "random"))

metainf(m1, sortvar = study)
metainf(m1, sortvar = 7:1)

m2 <- update(m1, title = "Fleiss1993bin meta-analysis", backtransf = FALSE)
metainf(m2)

data(Fleiss1993cont)
m3 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
   data = Fleiss1993cont, sm = "SMD")
metainf(m3)

metamean

Meta-analysis of single means

Description

Calculation of an overall mean from studies reporting a single mean using the inverse variance method for pooling; inverse variance weighting is used for pooling.

Usage

metamean(
   n,
   mean,
   sd,
   studlab,
   data = NULL,
   subset = NULL,
   exclude = NULL,
   cluster = NULL,
   median,
   q1,
   q3,
   min,
   max,
method.mean = "Luo",
method.sd = "Shi",
approx.mean,
approx.sd,
sm = gs("smmean"),
method.ci = gs("method.ci.cont"),
level = gs("level"),
common = gs("common"),
random = gs("random") | !is.null(tau.preset),
overall = common | random,
overall.hetstat = common | random,
prediction = gs("prediction") | !missing(method.predict),
method.tau = gs("method.tau"),
method.tau.ci = gs("method.tau.ci"),
tau.preset = NULL,
TE.tau = NULL,
tau.common = gs("tau.common"),
level.ma = gs("level.ma"),
method.random.ci = gs("method.random.ci"),
adhoc.hakn.ci = gs("adhoc.hakn.ci"),
level.predict = gs("level.predict"),
method.predict = gs("method.predict"),
adhoc.hakn.pi = gs("adhoc.hakn.pi"),
null.effect = NA,
method.bias = gs("method.bias"),
backtransf = gs("backtransf"),
text.common = gs("text.common"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.common = gs("text.w.common"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
adhoc.hakn,
keepdata = gs("keepdata"),
warn = gs("warn"),
warn.deprecated = gs("warn.deprecated"),
control = NULL,
...
Arguments

- **n**: Number of observations.
- **mean**: Estimated mean.
- **sd**: Standard deviation.
- **studlab**: An optional vector with study labels.
- **data**: An optional data frame containing the study information.
- **subset**: An optional vector specifying a subset of studies to be used.
- **exclude**: An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
- **cluster**: An optional vector specifying which estimates come from the same cluster resulting in the use of a three-level meta-analysis model.
- **median**: Median (used to estimate the mean and standard deviation).
- **q1**: First quartile (used to estimate the mean and standard deviation).
- **q3**: Third quartile (used to estimate the mean and standard deviation).
- **min**: Minimum (used to estimate the mean and standard deviation).
- **max**: Maximum (used to estimate the mean and standard deviation).
- **method.mean**: A character string indicating which method to use to approximate the mean from the median and other statistics (see Details).
- **method.sd**: A character string indicating which method to use to approximate the standard deviation from sample size, median, interquartile range and range (see Details).
- **approx.mean**: Approximation method to estimate means (see Details).
- **approx.sd**: Approximation method to estimate standard deviations (see Details).
- **sm**: A character string indicating which summary measure ("MRAW" or "MLN") is to be used for pooling of studies.
- **method.ci**: A character string indicating which method is used to calculate confidence intervals for individual studies, see Details.
- **level**: The level used to calculate confidence intervals for individual studies.
- **common**: A logical indicating whether a common effect meta-analysis should be conducted.
- **random**: A logical indicating whether a random effects meta-analysis should be conducted.
- **overall**: A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.
- **overall.hetstat**: A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.
- **prediction**: A logical indicating whether a prediction interval should be printed.
- **method.tau**: A character string indicating which method is used to estimate the between-study variance $\tau^2$ and its square root $\tau$ (see meta-package).
method.tau.ci  A character string indicating which method is used to estimate the confidence interval of $\tau^2$ and $\tau$ (see meta-package).
tau.preset  Prespecified value for the square root of the between-study variance $\tau^2$.
TE.tau  Overall treatment effect used to estimate the between-study variance tau-squared.
tau.common  A logical indicating whether tau-squared should be the same across subgroups.
level.ma  The level used to calculate confidence intervals for meta-analysis estimates.
method.random.ci  A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).
adhoc.hakn.ci  A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see meta-package).
level.predict  The level used to calculate prediction interval for a new study.
method.predict  A character string indicating which method is used to calculate a prediction interval (see meta-package).
adhoc.hakn.pi  A character string indicating whether an ad hoc variance correction should be applied for prediction interval (see meta-package).
null.effect  A numeric value specifying the effect under the null hypothesis.
method.bias  A character string indicating which test is to be used. Either "Begg", "Egger", or "Thompson", can be abbreviated. See function metabias.
backtransf  A logical indicating whether results should be back transformed in printouts and plots for sm = "MLN". If TRUE (default), results will be presented as means; otherwise logarithm of means will be shown.
text.common  A character string used in printouts and forest plot to label the pooled common effect estimate.
text.random  A character string used in printouts and forest plot to label the pooled random effects estimate.
text.predict  A character string used in printouts and forest plot to label the prediction interval.
text.w.common  A character string used to label weights of common effect model.
text.w.random  A character string used to label weights of random effects model.
title  Title of meta-analysis / systematic review.
complab  Comparison label.
outclab  Outcome label.
subgroup  An optional vector to conduct a meta-analysis with subgroups.
subgroup.name  A character string with a name for the subgroup variable.
print.subgroup.name  A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.
sep.subgroup  A character string defining the separator between name of subgroup variable and subgroup label.
test.subgroup A logical value indicating whether to print results of test for subgroup differences.
prediction.subgroup A logical indicating whether prediction intervals should be printed for sub-
groups.
byvar Deprecated argument (replaced by 'subgroup').
adhoc.hakn Deprecated argument (replaced by 'adhoc.hakn.ci').
keepdata A logical indicating whether original data (set) should be kept in meta object.
warn A logical indicating whether warnings should be printed (e.g., if studies are excluded from meta-analysis due to zero standard deviations).
warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.
control An optional list to control the iterative process to estimate the between-study variance \( \tau^2 \). This argument is passed on to rma.uni.

Details

Common effect and random effects meta-analysis of single means to calculate an overall mean; inverse variance weighting is used for pooling. Note, you should use R function metacont to compare means of pairwise comparisons instead of using metamean for each treatment arm separately which will break randomisation in randomised controlled trials.

A three-level random effects meta-analysis model (Van den Noortgate et al., 2013) is utilized if argument cluster is used and at least one cluster provides more than one estimate. Internally, rma.mv is called to conduct the analysis and weights.rma.mv with argument type = "rowsum" is used to calculate random effects weights.

Default settings are utilised for several arguments (assignments using gs function). These defaults can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings.

The following transformations of means are implemented to calculate an overall mean:

- Raw, i.e. untransformed, means (sm = "MRAW", default)
- Log transformed means (sm = "MLN")

Calculations are conducted on the log scale if sm = "ROM". Accordingly, list elements TE, TE.common, and TE.random contain the logarithm of means. In printouts and plots these values are back transformed if argument backtransf = TRUE.

Approximate means from sample sizes, medians and other statistics:

Missing means can be derived from

1. sample size, median, interquartile range and range (arguments n, median, q1, q3, min, and max),
2. sample size, median and interquartile range (arguments n, median, q1, and q3), or
3. sample size, median and range (arguments n, median, min, and max).
By default, methods described in Luo et al. (2018) are utilized (argument `method.mean` = "Luo"):  
- equation (15) if sample size, median, interquartile range and range are available,  
- equation (11) if sample size, median and interquartile range are available,  
- equation (7) if sample size, median and range are available.

Instead the methods described in Wan et al. (2014) are used if argument `method.mean` = "Wan":  
- equation (10) if sample size, median, interquartile range and range are available,  
- equation (14) if sample size, median and interquartile range are available,  
- equation (2) if sample size, median and range are available.

By default, missing means are replaced successively using interquartile ranges and ranges (if available), interquartile ranges (if available) and finally ranges. Argument `approx.mean` can be used to overwrite this behaviour for each individual study and treatment arm:  
- use means directly (entry "" in argument `approx.mean`);  
- median, interquartile range and range ("iqr.range");  
- median and interquartile range ("iqr");  
- median and range ("range").

**Approximate standard deviations from sample sizes, medians and other statistics:**

Missing standard deviations can be derived from  
1. sample size, median, interquartile range and range (arguments `n`, `median`, `q1`, `q3`, `min`, and `max`),  
2. sample size, median and interquartile range (arguments `n`, `median`, `q1` and `q3`), or  
3. sample size, median and range (arguments `n`, `median`, `min` and `max`).

Wan et al. (2014) describe methods to estimate the standard deviation from the sample size, median and additional statistics. Shi et al. (2020) provide an improved estimate of the standard deviation if the interquartile range and range are available in addition to the sample size and median. Accordingly, equation (11) in Shi et al. (2020) is the default (argument `method.sd` = "Shi"), if the median, interquartile range and range are provided. The method by Wan et al. (2014) is used if argument `method.sd` = "Wan" and, depending on the sample size, either equation (12) or (13) is used. If only the interquartile range or range is available, equations (15) / (16) and (7) / (9) in Wan et al. (2014) are used, respectively.

By default, missing standard deviations are replaced successively using these method, i.e., interquartile ranges and ranges are used before interquartile ranges before ranges. Argument `approx.sd` can be used to overwrite this default for each individual study and treatment arms:  
- sample size, median, interquartile range and range ("iqr.range");  
- sample size, median and interquartile range ("iqr");  
- sample size, median and range ("range").

**Confidence intervals for individual studies:**

For untransformed means (argument `sm` = "MRAW"), the confidence interval for individual studies can be based on the  
- standard normal distribution (`method.ci` = "z", default), or  
- t-distribution (`method.ci` = "t").
Subgroup analysis:
Argument subgroup can be used to conduct subgroup analysis for a categorical covariate. The metareg function can be used instead for more than one categorical covariate or continuous covariates.

Exclusion of studies from meta-analysis:
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples in metagen). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both common effect and random effects models are calculated regardless of values choosen for arguments common and random. Accordingly, the estimate for the random effects model can be extracted from component TE.random of an object of class "meta" even if argument random = FALSE. However, all functions in R package meta will adequately consider the values for common and random. E.g. functions print.meta and forest.meta will not print results for the random effects model if random = FALSE.
A prediction interval will only be shown if prediction = TRUE.

Value
An object of class c("metamean", "meta") with corresponding generic functions (see meta-object).

Note
The function metagen is called internally to calculate individual and overall treatment estimates and standard errors.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also
meta-package,update.meta,metamean,metagen

Examples
m1 <- metamean(rep(100, 3), 1:3, rep(1, 3))
m1

m2 <- update(m1, sm = "MLN")
m2
# With test for overall mean equal to 2
#
update(m1, null.effect = 2)
update(m2, null.effect = 2)

# Print results without back-transformation
#
update(m1, backtransf = FALSE)
update(m2, backtransf = FALSE)
update(m1, null.effect = 2, backtransf = FALSE)
update(m2, null.effect = 2, backtransf = FALSE)

metamerge  Merge pooled results of two meta-analyses

Description
This function can be used to merge pooled results of two meta-analyses into a single meta-analysis object. This is, for example, useful to produce a forest plot of a random-effects meta-analysis with different estimates of the between-study variance $\tau^2$.

Usage
metamerge(
  meta1,
  meta2,
  pooled1,
  pooled2,
  text.pooled1,
  text.pooled2,
  text.w.pooled1,
  text.w.pooled2,
  label1,
  label2,
  backtransf
)

Arguments

- **meta1**: First meta-analysis object (see Details).
- **meta2**: Second meta-analysis object (see Details).
- **pooled1**: A character string indicating whether results of common effect or random effects model should be considered for first meta-analysis. Either "both", "common" or "random", can be abbreviated.
- **pooled2**: A character string indicating whether results of common effect or random effects model should be considered for second meta-analysis. Either "both", "common" or "random", can be abbreviated.
metamerge

\text{text.pooled1} A character string used in printouts and forest plot to label the results from the first meta-analysis.

\text{text.pooled2} A character string used in printouts and forest plot to label the results from the second meta-analysis.

\text{text.w.pooled1} A character string used to label weights of the first meta-analysis.

\text{text.w.pooled2} A character string used to label weights of the second meta-analysis.

\text{label1} A character string used to label estimate of between-study variance and heterogeneity statistics of the first meta-analysis.

\text{label2} A character string used to label estimate of between-study variance and heterogeneity statistics of the second meta-analysis.

\text{backtransf} A logical indicating whether results should be back transformed in printouts and plots. If \text{backtransf}=\text{TRUE} (default), results for sm="OR" are printed as odds ratios rather than log odds ratios, for example.

**Details**

In R package \text{meta}, objects of class "meta" contain results of both a common effect and random effects meta-analysis. This function enables the user to keep the results of one of these models and to add results from a second meta-analysis or a sensitivity analysis.

Applications of this function include printing and plotting results of the common effect or random effects meta-analysis and the

- trim-and-fill method (\text{trimfill}).
- limit meta-analysis (\text{limitmeta} from R package \text{metasens}).
- Copas selection model (\text{copas} from R package \text{metasens}),
- robust variance meta-analysis model (\text{robu} from R package \text{robumeta}).

The first argument must be an object created by a meta-analysis function, e.g., \text{metagen} or \text{metabin}. It is also possible to provide an object created with \text{limitmeta} or \text{copas}. In this case, arguments \text{meta2} and \text{pooled2} will be ignored.

The second meta-analysis could be an object created by a meta-analysis function or with \text{trimfill, limitmeta, copas, or robu}.

The created meta-analysis object only contains the study results from the first meta-analysis which are shown in printouts and forest plots. This only makes a difference for meta-analysis methods where individual study results differ, e.g., Mantel-Haenszel and Peto method for binary outcomes (see \text{metabin}).

R function \text{metabind} can be used to print and plot the results of more than two meta-analyses, however, without showing individual study results.

**Value**

An object of class "meta" and "metamerge" with corresponding generic functions (see \text{meta-object}). The following list elements have a different meaning:

\text{TE, seTE, studLab}

Treatment estimate, standard error, and study labels (first meta-analysis).
lower, upper  Lower and upper confidence interval limits for individual studies (first meta-
analysis).
statistic, pval  Statistic and p-value for test of treatment effect for individual studies (first meta-
analysis.
w.common  Weights of first common effect meta-analysis.
w.random  Weights of first random effects meta-analysis.
k  Number of studies combined in first meta-analysis.

Furthermore, meta-analysis results of common effect or random effects model are taken from
first meta-analysis if only random effects or common effects models are selected from both meta-
alyses (arguments pooled1 and pooled2).

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also
metagen, metabind

Examples

data(Fleiss1993cont)
  #
  m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
  data = Fleiss1993cont, sm = "MD",
  text.random = "Random effects model (REML)", text.w.random = "DL")
  #
  # Use DerSimonian-Laird estimator of tau^2
  #
  m2 <- update(m1, method.tau = "DL", common = FALSE,
  text.random = "Random effects model (DL)", text.w.random = "DL")
  #
  # Merge results of the two meta-analyses
  #
  m12 <- metamerge(m1, m2)
  m12
  forest(m12, rightcols = c("effect", "ci", "w.common"))

  # Show in addition the results for the Paule-Mandel estimate of
  # between-study variance
  #
  m3 <- update(m1, method.tau = "PM",
  text.random = "Random effects moded (PM)", text.w.random = "PM")
  #
  m123 <- metamerge(m12, m3, pooled2 = "random")
  m123

data(Fleiss1993bin)
  #
## metaprop

### Description

Calculation of an overall proportion from studies reporting a single proportion. Inverse variance method and generalised linear mixed model (GLMM) are available for pooling. For GLMMs, the `rma.glmm` function from R package `metafor` (Viechtbauer 2010) is called internally.

### Usage

```r
metaprop(
 event,
 n,
 studlab,
 data = NULL,
 subset = NULL,
 exclude = NULL,
 cluster = NULL,
 method,
 sm = gs("smprop"),
 incr = gs("incr"),
 method.incr = gs("method.incr"),
 method.ci = gs("method.ci.prop"),
 level = gs("level"),
)```

common = gs("common"),
random = gs("random") | !is.null(tau.preset),
overall = common | random,
overall.hetstat = common | random,
prediction = gs("prediction"),
method.tau = ifelse(!is.na(charmatch(tolower(method), "glmm", nomatch = NA)), "ML",
 gs("method.tau")),
method.tau.ci = gs("method.tau.ci"),
tau.preset = NULL,
TE.tau = NULL,
tau.common = gs("tau.common"),
level.ma = gs("level.ma"),
method.random.ci = gs("method.random.ci"),
adhoc.hakn.ci = gs("adhoc.hakn.ci"),
level.predict = gs("level.predict"),
method.predict = gs("method.predict"),
adhoc.hakn.pi = gs("adhoc.hakn.pi"),
null.effect = NA,
method.bias = gs("method.bias"),
backtransf = gs("backtransf"),
pscale = 1,
text.common = gs("text.common"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.common = gs("text.w.common"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
hakn,
adhoc.hakn,
keepdata = gs("keepdata"),
warn = gs("warn"),
warn.deprecated = gs("warn.deprecated"),
control = NULL,
...)

Arguments

- **event**
 Number of events.
Number of observations.

An optional vector with study labels.

An optional data frame containing the study information, i.e., event and n.

An optional vector specifying a subset of studies to be used.

An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.

An optional vector specifying which estimates come from the same cluster resulting in the use of a three-level meta-analysis model.

A character string indicating which method is to be used for pooling of studies. One of "Inverse" and "GLMM", can be abbreviated.

A character string indicating which summary measure ("PLOGIT", "PAS", "PFT", "PLN", or "PRAW") is to be used for pooling of studies, see Details.

A numeric which is added to event number and sample size of studies with zero or all events, i.e., studies with an event probability of either 0 or 1.

A character string indicating which continuity correction method should be used ("only0", "if0all", or "all"), see Details.

A character string indicating which method is used to calculate confidence intervals for individual studies, see Details.

The level used to calculate confidence intervals for individual studies.

A logical indicating whether a common effect meta-analysis should be conducted.

A logical indicating whether a random effects meta-analysis should be conducted.

A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

A logical indicating whether a prediction interval should be printed.

A character string indicating which method is used to estimate the between-study variance τ^2 and its square root τ (see meta-package).

A character string indicating which method is used to estimate the confidence interval of τ^2 and τ (see meta-package).

Prespecified value for the square root of the between-study variance τ^2.

Overall treatment effect used to estimate the between-study variance tau-squared.

A logical indicating whether tau-squared should be the same across subgroups.

The level used to calculate confidence intervals for meta-analysis estimates.

A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).
adhoc.hakn.ci A character string indicating whether an *ad hoc* variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see meta-package).

level.predict The level used to calculate prediction interval for a new study.

method.predict A character string indicating which method is used to calculate a prediction interval (see meta-package).

adhoc.hakn.pi A character string indicating whether an *ad hoc* variance correction should be applied for prediction interval (see meta-package).

null.effect A numeric value specifying the effect under the null hypothesis.

method.bias A character string indicating which test is to be used. Either "Begg", "Egger", or "Thompson", can be abbreviated. See function metabias.

backtransf A logical indicating whether results for transformed proportions (argument sm != "PRAW") should be back transformed in printouts and plots. If TRUE (default), results will be presented as proportions; otherwise transformed proportions will be shown. See Details for presentation of confidence intervals.

pscale A numeric defining a scaling factor for printing of single event probabilities.

text.common A character string used in printouts and forest plot to label the pooled common effect estimate.

text.random A character string used in printouts and forest plot to label the pooled random effects estimate.

text.predict A character string used in printouts and forest plot to label the prediction interval.

text.w.common A character string used to label weights of common effect model.

text.w.random A character string used to label weights of random effects model.

title Title of meta-analysis / systematic review.

complab Comparison label.

outclab Outcome label.

subgroup An optional vector to conduct a meta-analysis with subgroups.

subgroup.name A character string with a name for the subgroup variable.

print.subgroup.name A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.

sep.subgroup A character string defining the separator between name of subgroup variable and subgroup label.

test.subgroup A logical value indicating whether to print results of test for subgroup differences.

prediction.subgroup A logical indicating whether prediction intervals should be printed for subgroups.

byvar Deprecated argument (replaced by 'subgroup').

hakn Deprecated argument (replaced by 'method.random.ci').
metaprop

adhoc.hakn Deprecated argument (replaced by ’adhoc.hakn.ci’).
keepdata A logical indicating whether original data (set) should be kept in meta object.
warn A logical indicating whether the addition of incr to studies with zero or all events should result in a warning.
warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.
control An optional list to control the iterative process to estimate the between-study variance τ^2. This argument is passed on to rma.uni or rma.glmm, respectively.
... Additional arguments passed on to rma.glmm function and to catch deprecated arguments.

Details

This function provides methods for common effect and random effects meta-analysis of single proportions to calculate an overall proportion. Note, you should use R function metabin to compare proportions of pairwise comparisons instead of using metaprop for each treatment arm separately which will break randomisation in randomised controlled trials.

The following transformations of proportions are implemented to calculate an overall proportion:

- Logit transformation (sm = "PLOGIT", default)
- Arcsine transformation (sm = "PAS")
- Freeman-Tukey Double arcsine transformation (sm = "PFT")
- Log transformation (sm = "PLN")
- Raw, i.e. untransformed, proportions (sm = "PRAW")

A generalised linear mixed model (GLMM) - more specific, a random intercept logistic regression model - can be utilised for the meta-analysis of proportions (Stijnen et al., 2010). This is the default method for the logit transformation (argument sm = "PLOGIT"). Internally, the rma.glmm function from R package metafor is called to fit a GLMM.

Classic meta-analysis (Borenstein et al., 2010) utilising the (un)transformed proportions and corresponding standard errors in the inverse variance method is conducted by calling the metagen function internally. This is the only available method for all transformations but the logit transformation. The classic meta-analysis model with logit transformed proportions is used by setting argument method = "Inverse".

A three-level random effects meta-analysis model (Van den Noortgate et al., 2013) is utilized if argument cluster is used and at least one cluster provides more than one estimate. Internally, rma.mv is called to conduct the analysis and weights.rma.mv with argument type = "rowsum" is used to calculate random effects weights.

Default settings are utilised for several arguments (assignments using gs function). These defaults can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings.
Choice of transformation / meta-analysis method:
Contradictory recommendations on the use of transformations of proportions have been published in the literature. For example, Barendregt et al. (2013) recommend the use of the Freeman-Tukey double arcsine transformation instead of the logit transformation whereas Warton & Hui (2011) strongly advise to use generalised linear mixed models with the logit transformation instead of the arcsine transformation.

Schwarzer et al. (2019) describe seriously misleading results in a meta-analysis with very different sample sizes due to problems with the back-transformation of the Freeman-Tukey transformation which requires a single sample size (Miller, 1978). Accordingly, Schwarzer et al. (2019) also recommend to use GLMMs for the meta-analysis of single proportions, however, admit that individual study weights are not available with this method. Meta-analysts which require individual study weights should consider the inverse variance method with the arcsine or logit transformation.

In order to prevent misleading conclusions for the Freeman-Tukey double arcsine transformation, sensitivity analyses using other transformations or using a range of sample sizes should be conducted (Schwarzer et al., 2019).

Continuity correction:
Three approaches are available to apply a continuity correction:
- Only studies with a zero cell count (method.incr = "only0")
- All studies if at least one study has a zero cell count (method.incr = "if0all")
- All studies irrespective of zero cell counts (method.incr = "all")

If the summary measure is equal to "PLOGIT", "PLN", or "PRAW", the continuity correction is applied if a study has either zero or all events, i.e., an event probability of either 0 or 1.

By default, 0.5 is used as continuity correction (argument incr). This continuity correction is used both to calculate individual study results with confidence limits and to conduct meta-analysis based on the inverse variance method. For GLMMs no continuity correction is used.

Confidence intervals for individual studies:
Various methods are available to calculate confidence intervals for individual study results (see Agresti & Coull 1998 and Newcombe 1988):
- Clopper-Pearson interval also called 'exact' binomial interval (method.ci = "CP", default)
- Wilson Score interval (method.ci = "WS")
- Wilson Score interval with continuity correction (method.ci = "WSCC")
- Agresti-Coull interval (method.ci = "AC")
- Simple approximation interval (method.ci = "SA")
- Simple approximation interval with continuity correction (method.ci = "SACC")
- Normal approximation interval based on summary measure, i.e. defined by argument sm (method.ci = "NAsm")

Note, with exception of the normal approximation based on the summary measure, i.e. method.ci = "NAsm", the same confidence interval is calculated for individual studies for any summary measure (argument sm) as only number of events and observations are used in the calculation disregarding the chosen transformation.

Results will be presented for transformed proportions if argument backtransf = FALSE. In this case, argument method.ci = "NAsm" is used, i.e. confidence intervals based on the normal approximation based on the summary measure.
Subgroup analysis:
Argument subgroup can be used to conduct subgroup analysis for a categorical covariate. The `metareg` function can be used instead for more than one categorical covariate or continuous covariates.

Specify the null hypothesis of test for an overall proportion:
Argument null.effect can be used to specify the proportion used under the null hypothesis in a test for an overall effect.
By default (null.effect = NA), no hypothesis test is conducted as it is unclear which value is a sensible choice for the data at hand. An overall proportion of 50%, for example, could be tested by setting argument null.effect = 0.5.
Note, all tests for an overall effect are two-sided with the alternative hypothesis that the effect is unequal to null.effect.

Exclusion of studies from meta-analysis:
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples in `metagen`). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both common effect and random effects models are calculated regardless of values chosen for arguments common and random. Accordingly, the estimate for the random effects model can be extracted from component TE.random of an object of class "meta" even if argument random = FALSE. However, all functions in R package meta will adequately consider the values for common and random. E.g. function `print.meta` will not print results for the random effects model if random = FALSE.
Argument pscale can be used to rescale proportions, e.g. pscale = 1000 means that proportions are expressed as events per 1000 observations. This is useful in situations with (very) low event probabilities.
A prediction interval will only be shown if prediction = TRUE.

Value
An object of class c("metaprop", "meta") with corresponding generic functions (see meta-object).

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`meta-package, update.meta, metacont, metagen, print.meta, forest.meta`

Examples

```r
# Meta-analysis using generalised linear mixed model
#
metaprop(4:1, 10 * 1:4)

# Apply various classic meta-analysis methods to estimate proportions
#
ml <- metaprop(4:1, 10 * 1:4, method = "Inverse")
m2 <- update(ml, sm = "PAS")
m3 <- update(ml, sm = "PRAW")
m4 <- update(ml, sm = "PLN")
m5 <- update(ml, sm = "PFT")
#
ml
m2
m3
m4
m5
#
forest(ml)
## Not run:
```

metaprop

Do not back transform results, e.g. print logit transformed
proportions if sm = "PLOGIT" and store old settings
#
oldset <- settings.meta(backtransf = FALSE)
#
m6 <- metaprop(4:1, c(10, 20, 30, 40), method = "Inverse")
m7 <- update(m6, sm = "PAS")
m8 <- update(m6, sm = "PRAW")
m9 <- update(m6, sm = "PLN")
m10 <- update(m6, sm = "PFT")
#
forest(m6)
Not run:
forest(m7)
forest(m8)
forest(m8, pscale = 100)
forest(m9)
forest(m10)

End(Not run)

Use old settings
#
settings.meta(oldset)

Examples with zero events
#
m1 <- metaprop(c(0, 0, 10, 10), rep(100, 4), method = "Inverse")
m2 <- metaprop(c(0, 0, 10, 10), rep(100, 4), incr = 0.1, method = "Inverse")
#
m1
m2
#
Not run:
forest(m1)
forest(m2)

End(Not run)

Example from Miller (1978):
#
dead <- c(3, 6, 10, 1)
animals <- c(11, 17, 21, 6)
#
m3 <- metaprop(death, animals, sm = "PFT")
```r
forest(m3)

# Data examples from Newcombe (1998)
# - apply various methods to estimate confidence intervals for
#   individual studies
#
event <- c(81, 15, 0, 1)
n <- c(263, 148, 20, 29)
#
m1 <- metaprop(event, n, method.ci = "SA", method = "Inverse")
m2 <- update(m1, method.ci = "SACC")
m3 <- update(m1, method.ci = "WS")
m4 <- update(m1, method.ci = "WSCC")
m5 <- update(m1, method.ci = "CP")
#
lower <- round(rbind(NA, m1$lower, m2$lower, NA, m3$lower, m4$lower, NA, m5$lower), 4)
upper <- round(rbind(NA, m1$upper, m2$upper, NA, m3$upper, m4$upper, NA, m5$upper), 4)
#
tab1 <- data.frame(
  scen1 = meta:::formatCI(lower[, 1], upper[, 1]),
  scen2 = meta:::formatCI(lower[, 2], upper[, 2]),
  scen3 = meta:::formatCI(lower[, 3], upper[, 3]),
  scen4 = meta:::formatCI(lower[, 4], upper[, 4])
)
names(tab1) <- c("r=81, n=263", "r=15, n=148",
  "r=0, n=20", "r=1, n=29")
row.names(tab1) <- c("Simple", "- SA", "- SACC",
  "Score", "- WS", "- WSCC", "Binomial", "- CP")
tab1[is.na(tab1)] <- ""
# Newcombe (1998), Table I, methods 1-5:
tab1

# Same confidence interval, i.e. unaffected by choice of summary
# measure
#
print(metaprop(event, n, method.ci = "WS", method = "Inverse"), ma = FALSE)
print(metaprop(event, n, sm = "PLN", method.ci = "WS"), ma = FALSE)
print(metaprop(event, n, sm = "PFT", method.ci = "WS"), ma = FALSE)
print(metaprop(event, n, sm = "PAS", method.ci = "WS"), ma = FALSE)
print(metaprop(event, n, sm = "PRAW", method.ci = "WS"), ma = FALSE)

# Different confidence intervals as argument sm = "NAsm"
#
print(metaprop(event, n, method.ci = "NAsm", method = "Inverse"), ma = FALSE)
print(metaprop(event, n, sm = "PLN", method.ci = "NAsm"), ma = FALSE)
print(metaprop(event, n, sm = "PFT", method.ci = "NAsm"), ma = FALSE)
print(metaprop(event, n, sm = "PAS", method.ci = "NAsm"), ma = FALSE)
print(metaprop(event, n, sm = "PRAW", method.ci = "NAsm"), ma = FALSE)

# Different confidence intervals as argument backtransf = FALSE.
# Accordingly, method.ci = "NAsm" used internally.
```
metarate

Meta-analysis of single incidence rates

Description
Calculation of an overall incidence rate from studies reporting a single incidence rate. Inverse variance method and generalised linear mixed model (GLMM) are available for pooling. For GLMMs, the rma.glmm function from R package metafor (Viechtbauer 2010) is called internally.

Usage
```r
metarate(
  event,
  time,
  studlab,
  data = NULL,
  subset = NULL,
  exclude = NULL,
  cluster = NULL,
  n = NULL,
  method = "Inverse",
  sm = gs("smrate"),
  incr = gs("incr"),
  method.incr = gs("method.incr"),
  ma = FALSE, backtransf = FALSE)
```
method.ci = gs("method.ci.rate"),
level = gs("level"),
common = gs("common"),
random = gs("random") | !is.null(tau.preset),
overall = common | random,
overall.hetstat = common | random,
prediction = gs("prediction") | !missing(method.predict),
method.tau,
method.tau.ci = gs("method.tau.ci"),
tau.preset = NULL,
TE.tau = NULL,
tau.common = gs("tau.common"),
level.ma = gs("level.ma"),
method.random.ci = gs("method.random.ci"),
adhoc.hakn.ci = gs("adhoc.hakn.ci"),
level.predict = gs("level.predict"),
method.predict = gs("method.predict"),
adhoc.hakn.pi = gs("adhoc.hakn.pi"),
null.effect = NA,
method.bias = gs("method.bias"),
backtransf = gs("backtransf"),
irscale = 1,
irunit = "person-years",
text.common = gs("text.common"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.common = gs("text.w.common"),
text.w.random = gs("text.w.random"),
title = gs("title"),
complab = gs("complab"),
outclab = "",
subgroup,
subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
byvar,
hakn,
adhoc.hakn,
keepdata = gs("keepdata"),
warn = gs("warn"),
warn.deprecated = gs("warn.deprecated"),
control = NULL,
...
Arguments

event
Number of events.

time
Person time at risk.

studlab
An optional vector with study labels.

data
An optional data frame containing the study information, i.e., event and time.

subset
An optional vector specifying a subset of studies to be used.

exclude
An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.

cluster
An optional vector specifying which estimates come from the same cluster resulting in the use of a three-level meta-analysis model.

n
Number of observations.

method
A character string indicating which method is to be used for pooling of studies. One of "Inverse" and "GLMM", can be abbreviated.

sm
A character string indicating which summary measure ("IR", "IRLN", "IRS", or "IRFT") is to be used for pooling of studies, see Details.

incr
A numeric which is added to the event number of studies with zero events, i.e., studies with an incidence rate of 0.

method.incr
A character string indicating which continuity correction method should be used ("only0", "if0all", or "all"), see Details.

method.ci
A character string indicating whether to use approximate normal ("NAsm") or exact Poisson ("Poisson") confidence limits.

level
The level used to calculate confidence intervals for individual studies.

common
A logical indicating whether a common effect meta-analysis should be conducted.

random
A logical indicating whether a random effects meta-analysis should be conducted.

overall
A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

overall.hetstat
A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

prediction
A logical indicating whether a prediction interval should be printed.

method.tau
A character string indicating which method is used to estimate the between-study variance τ^2 and its square root τ (see meta-package).

method.tau.ci
A character string indicating which method is used to estimate the confidence interval of τ^2 and τ (see meta-package).

tau.preset
Prespecified value for the square root of the between-study variance τ^2.

TE.tau
Overall treatment effect used to estimate the between-study variance tau-squared.

tau.common
A logical indicating whether tau-squared should be the same across subgroups.
level.ma The level used to calculate confidence intervals for meta-analysis estimates.
method.random.ci A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).
adhoc.hakn.ci A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see meta-package).
level.predict The level used to calculate prediction interval for a new study.
method.predict A character string indicating which method is used to calculate a prediction interval (see meta-package).
adhoc.hakn.pi A character string indicating whether an ad hoc variance correction should be applied for prediction interval (see meta-package).
null.effect A numeric value specifying the effect under the null hypothesis.
method.bias A character string indicating which test is to be used. Either "Begg", "Egger", or "Thompson", can be abbreviated. See function metabias.
backtransf A logical indicating whether results for transformed rates (argument sm != "IR") should be back transformed in printouts and plots. If TRUE (default), results will be presented as incidence rates; otherwise transformed rates will be shown.
irscale A numeric defining a scaling factor for printing of rates.
irunit A character string specifying the time unit used to calculate rates, e.g. person-years.
text.common A character string used in printouts and forest plot to label the pooled common effect estimate.
text.random A character string used in printouts and forest plot to label the pooled random effects estimate.
text.predict A character string used in printouts and forest plot to label the prediction interval.
text.w.common A character string used to label weights of common effect model.
text.w.random A character string used to label weights of random effects model.
title Title of meta-analysis / systematic review.
complab Comparison label.
outclab Outcome label.
subgroup An optional vector to conduct a meta-analysis with subgroups.
subgroup.name A character string with a name for the subgroup variable.
print.subgroup.name A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.
sep.subgroup A character string defining the separator between name of subgroup variable and subgroup label.
test.subgroup A logical value indicating whether to print results of test for subgroup differences.
prediction.subgroup
A logical indicating whether prediction intervals should be printed for subgroups.

byvar
Deprecated argument (replaced by 'subgroup').

hakn
Deprecated argument (replaced by 'method.random.ci').

adhoc.hakn
Deprecated argument (replaced by 'adhoc.hakn.ci').

keepdata
A logical indicating whether original data (set) should be kept in meta object.

warn
A logical indicating whether the addition of incr to studies with zero events should result in a warning.

warn.deprecated
A logical indicating whether warnings should be printed if deprecated arguments are used.

control
An optional list to control the iterative process to estimate the between-study variance \(\tau^2 \). This argument is passed on to rma.uni or rma.glmm, respectively.

... Additional arguments passed on to rma.glmm function and to catch deprecated arguments.

Details

This function provides methods for common effect and random effects meta-analysis of single incidence rates to calculate an overall rate. Note, you should use R function metainc to compare incidence rates of pairwise comparisons instead of using metarate for each treatment arm separately which will break randomisation in randomised controlled trials.

The following transformations of incidence rates are implemented to calculate an overall rate:

- Log transformation (sm = "IRLN", default)
- Square root transformation (sm = "IRS")
- Freeman-Tukey Double arcsine transformation (sm = "IRFT")
- No transformation (sm = "IR")

By default (argument method = "Inverse"), the inverse variance method (Borenstein et al., 2010) is used for pooling by calling metagen internally. A random intercept Poisson regression model (Stijnen et al., 2010) can be utilised instead with argument method = "GLMM" which calls the rma.glmm function from R package metafor.

A three-level random effects meta-analysis model (Van den Noortgate et al., 2013) is utilized if argument cluster is used and at least one cluster provides more than one estimate. Internally, rma.mv is called to conduct the analysis and weights.rma.mv with argument type = "rowsum" is used to calculate random effects weights.

Default settings are utilised for several arguments (assignments using gs function). These defaults can be changed for the current R session using the settings.meta function.

Furthermore, R function update.meta can be used to rerun a meta-analysis with different settings.

Continuity correction:
Three approaches are available to apply a continuity correction:
• Only studies with a zero cell count (method.incr = "only0")
• All studies if at least one study has a zero cell count (method.incr = "if0all")
• All studies irrespective of zero cell counts (method.incr = "all")

If the summary measure (argument sm) is equal to "IR" or "IRLN", the continuity correction is applied if a study has zero events, i.e., an incidence rate of 0.

By default, 0.5 is used as continuity correction (argument incr). This continuity correction is used both to calculate individual study results with confidence limits and to conduct meta-analysis based on the inverse variance method.

For the Freeman-Tukey (Freeman & Tukey, 1950) and square root transformation as well as GLMMs no continuity correction is used.

Subgroup analysis:
Argument subgroup can be used to conduct subgroup analysis for a categorical covariate. The metareg function can be used instead for more than one categorical covariate or continuous covariates.

Specify the null hypothesis of test for an overall effect:
Argument null.effect can be used to specify the rate used under the null hypothesis in a test for an overall effect.

By default (null.effect = NA), no hypothesis test is conducted as it is unclear which value is a sensible choice for the data at hand. An overall rate of 2, for example, could be tested by setting argument null.effect = 2.

Note, all tests for an overall effect are two-sided with the alternative hypothesis that the effect is unequal to null.effect.

Exclusion of studies from meta-analysis:
Arguments subset and exclude can be used to exclude studies from the meta-analysis. Studies are removed completely from the meta-analysis using argument subset, while excluded studies are shown in printouts and forest plots using argument exclude (see Examples in metagen). Meta-analysis results are the same for both arguments.

Presentation of meta-analysis results:
Internally, both common effect and random effects models are calculated regardless of values chosen for arguments common and random. Accordingly, the estimate for the random effects model can be extracted from component TE.random of an object of class "meta" even if argument random = FALSE. However, all functions in R package meta will adequately consider the values for common and random. E.g. function print.meta will not print results for the random effects model if random = FALSE.

Argument irscale can be used to rescale rates, e.g. irscale = 1000 means that rates are expressed as events per 1000 time units, e.g. person-years. This is useful in situations with (very) low rates. Argument irunit can be used to specify the time unit used in individual studies (default: "person-years"). This information is printed in summaries and forest plots if argument irscale is not equal to 1.

A prediction interval will only be shown if prediction = TRUE.

Value
An object of class c("metarate", "meta") with corresponding generic functions (see meta-object).
Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

meta-package, update.meta, metacont, metagen, print.meta

Examples

Apply various meta-analysis methods to estimate incidence rates
#
m1 <- metarate(4:1, c(10, 20, 30, 40))
m2 <- update(m1, sm = "IR")
m3 <- update(m1, sm = "IRS")
m4 <- update(m1, sm = "IRFT")
#
m1
m2
m3
m4
#
forest(m1)
forest(m1, irscale = 100)
forest(m1, irscale = 100, irunit = "person-days")
forest(m1, backtransf = FALSE)
Not run:
forest(m2)
forest(m3)
forest(m4)
End(Not run)

m5 <- metarate(40:37, c(100, 200, 300, 400), sm = "IRFT")
m5
Meta-regression for objects of class `meta`. This is a wrapper function for the R function `rma.uni` in the R package `metafor` (Viechtbauer 2010).

Usage

```r
metareg(
  x,
  formula,
  method.tau = x$method.tau,
  hakn = x$method.random.ci == "HK",
  level.ma = x$level.ma,
  intercept = TRUE,
  ...
)
```

Arguments

- **x**: An object of class `meta`.
- **formula**: Either a character string or a formula object.
- **method.tau**: A character string indicating which method is used to estimate the between-study variance tau-squared. Either "FE", "DL", "REML", "ML", "HS", "SJ", "HE", or "EB", can be abbreviated.
- **hakn**: A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals.
- **level.ma**: The level used to calculate confidence intervals for parameter estimates in the meta-regression model.
- **intercept**: A logical indicating whether an intercept should be included in the meta-regression model.
- **...**: Additional arguments passed to R function `rma.uni`.

Details

This R function is a wrapper function for R function `rma.uni` in the R package `metafor` (Viechtbauer 2010).

Note, results are not back-transformed in printouts of meta-analyses using summary measures with transformations, e.g., log risk ratios are printed instead of the risk ratio if argument `sm = "RR"` and logit transformed proportions are printed if argument `sm = "PLOGIT"`

Argument ‘...’ can be used to pass additional arguments to R function `rma.uni`. For example, argument `control` to provide a list of control values for the iterative estimation algorithm. See help page of R function `rma.uni` for more details.
Value

An object of class c("metareg", "rma.uni", "rma"). Please look at the help page of R function \texttt{rma.uni} for more details on the output from this function.

In addition, a list .meta is added to the output containing the following components:

- \texttt{x}, \texttt{formula}, \texttt{method.tau}, \texttt{hakn}, \texttt{level.ma}, \texttt{intercept}
 - As defined above.
- \texttt{dots}
 - Information provided in argument "...".
- \texttt{call}
 - Function call.
- \texttt{version}
 - Version of R package \texttt{meta} used to create object.
- \texttt{version.metafor}
 - Version of R package \texttt{metafor} used to create object.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

\texttt{bubble, summary.meta, metagen}

Examples

data(Fleiss1993cont)
Add some (fictitious) grouping variables:
Fleiss1993cont$age <- c(55, 65, 55, 65, 55)
Fleiss1993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")

m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 data = Fleiss1993cont, sm = "MD")
Not run:
Warnings due to wrong ordering of arguments (order has changed
with version 3.0-0 of R package meta)
#
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
 data = Fleiss1993cont, sm = "MD")
End(Not run)

Do meta-regression for covariate region
#
mu2 <- update(m1, subgroup = region, tau.common = TRUE, common = FALSE)
metareg(mu2)

Same result for
- tau-squared
- test of heterogeneity
- test for subgroup differences
(as argument 'tau.common' was used to create mu2)
#
mu2
metareg(mu2, intercept = FALSE)
metareg(m1, region)

Different result for
- tau-squared
- test of heterogeneity
- test for subgroup differences
(as argument 'tau.common' is - by default - FALSE)
#
mu1 <- update(m1, subgroup = region)
mu1

Generate bubble plot
#
bubble(metareg(mu2))

Do meta-regression with two covariates
#
metareg(mu1, region + age)

Do same meta-regressions using formula notation
#
metareg(m1, ~ region)
metareg(mu1, ~ region + age)

Do meta-regression using REML method and print intermediate
results for iterative estimation algorithm; furthermore print
results with three digits.
#
metareg(mu1, region, method.tau = "REML",
 control = list(verbose = TRUE), digits = 3)

Use Hartung-Knapp method
#
mu3 <- update(mu2, method.random.ci = "HK")
mu3
metareg(mu3, intercept = FALSE)

nnt

Calculate the number needed to treat (NNT)
Description

Calculate the number needed to treat (NNT) from estimated risk difference, risk ratio, or odds ratio, and a baseline risk.

Usage

```r
nnt(x, ...)  
## S3 method for class 'meta'
nnt(x, p.c, common = x$common, random = x$random, ...)

## Default S3 method:
nnt(x, p.c, sm, lower, upper, ...)

## S3 method for class 'nnt.meta'
print(
x,  
common = x$common,  
random = x$random,  
digits = gs("digits"),  
digits.prop = gs("digits.prop"),  
big.mark = gs("big.mark"),  
...
)
```

Arguments

- `x`: An object of class `meta`, or estimated treatment effect, i.e., risk difference(s), risk ratio(s), or odds ratio(s).
- `...`: Additional arguments (to catch deprecated arguments).
- `p.c`: Baseline risk (control group event probability).
- `common`: A logical indicating whether NNTs should be calculated based on common effect estimate.
- `random`: A logical indicating whether NNTs should be calculated based on random effects estimate.
- `sm`: Summary measure.
- `lower`: Lower confidence interval limit.
- `upper`: Upper confidence interval limit.
- `digits`: Minimal number of significant digits, see `print.default`.
- `digits.prop`: Minimal number of significant digits for proportions, see `print.default`.
- `big.mark`: A character used as thousands separator.
Details

The number needed to treat (NNT) can be easily computed from an estimated risk difference (RD), risk ratio (RR), or odds ratio (OR) and a given baseline risk (Higgins & Green, 2011, section 12.5).

Accordingly, this function can be used to calculate NNTs for meta-analyses generated with `metabin` or `metagen` if argument `sm` was equal to "RD", "RR", or "OR". It is also possible to directly provide estimated treatment effects without conducting a meta-analysis (see Examples).

The baseline risk can be specified using argument `p.c`. If this argument is missing, the minimum, mean, and maximum of the control event probabilities in the meta-analysis are used for `metabin`; otherwise the control event probabilities 0.1, 0.2, ..., 0.9 are used.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`metabin`, `metagen`

Examples

```r
# Calculate NNT for RD = -0.21
# (Cochrane Handbook, version 5.1, subsection 12.5.4.1)
nnt(-0.21, sm = "RD")

# Calculate NNT for RR = 0.92 and baseline risk p.c = 0.3
# (Cochrane Handbook, version 5.1, subsection 12.5.4.2)
nnt(0.92, p.c = 0.3, sm = "RR")

# Calculate NNT for OR = 0.73 and baseline risk p.c = 0.3
# (Cochrane Handbook, version 5.1, subsection 12.5.4.3)
nnt(0.73, p.c = 0.3, sm = "OR")

# Use Mantel-Haenszel odds ratio to calculate NNTs
data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont, data = Olkin1995,
               random = FALSE)
nnt(m1, random = TRUE)
```
Description

Meta-analysis on Thrombolytic Therapy after Acute Myocardial Infarction

Format

A data frame with the following columns:

- `author` first author
- `year` year of publication
- `ev.exp` number of events in experimental group
- `n.exp` number of observations in experimental group
- `ev.cont` number of events in control group
- `n.cont` number of observations in control group

Source

Examples

```r
data(Olkin1995)
metabin(ev.exp, n.exp, ev.cont, n.cont, data = Olkin1995)
```

Description

Conversion from log odds ratio to standardised mean difference using method by Hasselblad & Hedges (1995) or Cox (1970).

Usage

```r
or2smd(
    lnOR,
    selnOR,
    studlab,
    data = NULL,
    subset = NULL,
    exclude = NULL,
```
method = "HH",
...

Arguments

lnOR Log odds ratio(s) or meta-analysis object.
selnOR Standard error(s) of log odds ratio(s) (ignored if argument lnOR is a meta-
 analysis object).
studlab An optional vector with study labels (ignored if argument lnOR is a meta-
 analysis object).
data An optional data frame containing the study information (ignored if argument
 lnOR is a meta-analysis object).
subset An optional vector specifying a subset of studies to be used (ignored if argument
 lnOR is a meta-analysis object).
exclude An optional vector specifying studies to exclude from meta-analysis, however, to
 include in printouts and forest plots (ignored if argument lnOR is a meta-analysis
 object).
method A character string indicating which method is used to convert log odds ratios to
 standardised mean differences. Either "HH" or "CS", can be abbreviated.
 ...
... Additional arguments passed on to metagen (ignored if argument lnOR is a
 meta-analysis object).

Details

This function implements the following methods for the conversion from log odds ratios to standardised mean difference:

- Hasselblad & Hedges (1995) assuming logistic distributions (method == "HH")
- Cox (1970) and Cox & Snell (1989) assuming normal distributions (method == "CS")

Internally, metagen is used to conduct a meta-analysis with the standardised mean difference as summary measure.

Argument lnOR can be either a vector of log odds ratios or a meta-analysis object created with metabin or metagen and the odds ratio as summary measure.

Argument selnOR is mandatory if argument lnOR is a vector and ignored otherwise. Additional arguments in ... are only passed on to metagen if argument lnOR is a vector.

Value

An object of class c("metagen", "meta") with corresponding generic functions (see meta-object).

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>
References

See Also

smd2or, metabin, metagen, metacont

Examples

Example from Borenstein et al. (2009), Chapter 7
#
mb <- or2smd(0.9069, sqrt(0.0676))
TE = standardised mean difference (SMD); seTE = standard error of SMD
data.frame(SMD = round(mb$TE, 4), varSMD = round(mb$seTE^2, 4))

Use dataset from Fleiss (1993)
#
data(Fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac,
 data = Fleiss1993bin, studlab = paste(study, year),
 sm = "OR", random = FALSE)
or2smd(m1)

Pagliaro1992

Meta-analysis on Prevention of First Bleeding in Cirrhosis

Description

Meta-analysis on Prevention of First Bleeding in Cirrhosis comparing beta-blocker or sclerotherapy with placebo.

Format

A data frame with the following columns:

- **id**: study id
- **treat.exp**: treatment in experimental group
- **logOR**: log odds ratio
- **selogOR**: standard error of log odds ratio
- **bleed.exp**: number of bleedings in experimental group
print.meta

<table>
<thead>
<tr>
<th>n.cont</th>
<th>number of observations in experimental group</th>
</tr>
</thead>
<tbody>
<tr>
<td>bleed.plac</td>
<td>number of bleedings in placebo group</td>
</tr>
<tr>
<td>n.plac</td>
<td>number of observations in placebo group</td>
</tr>
</tbody>
</table>

Source

Pagliaro L, D’Amico G et al. (1992): Prevention of first bleeding in cirrhosis. *Annals in Internal Medicine, 117*, 59–70

Examples

data(Pagliaro1992)
sclero <- subset(Pagliaro1992, treat.exp == "Sclerotherapy")

m <- metagen(logOR, selogOR, data = sclero, sm = "OR")
m

Thompson & Sharp (1999), Table IV, method (2)
metabias(m, method = "Egger")

Thompson & Sharp (1999), Table IV, method (3a)
metabias(m, method = "Thompson")

Thompson & Sharp (1999), Table IV, method (3b)
update(m, method.tau = "ML")
metabias(update(m, method.tau = "ML"), method = "Thompson")

print.meta

Print meta-analysis results

Description

Print method for objects of class *meta*.

R function *cilayout* can be utilised to change the layout to print confidence intervals (both in printout from *print.meta* and *print.summary.meta* function as well as in forest plots). The default layout is "[lower; upper]". Another popular layout is "(lower - upper)" which is used throughout an R session by using R command *cilayout("","-")*.

Argument *pscale* can be used to rescale single proportions or risk differences, e.g. *pscale = 1000* means that proportions are expressed as events per 1000 observations. This is useful in situations with (very) low event probabilities.

Argument *irscale* can be used to rescale single rates or rate differences, e.g. *irscale = 1000* means that rates are expressed as events per 1000 time units, e.g. person-years. This is useful in situations with (very) low rates. Argument *irunit* can be used to specify the time unit used in individual studies (default: "person-years"). This information is printed in summaries and forest plots if argument *irscale* is not equal to 1.
S3 method for class 'meta'
print(x,
 common = x$common,
 random = x$random,
 prediction = x$prediction,
 overall = x$overall,
 overall.hetstat = x$overall.hetstat,
 test.subgroup = x@test.subgroup,
 test.subgroup.common = test.subgroup & common,
 test.subgroup.random = test.subgroup & random,
 prediction.subgroup = x$prediction.subgroup,
 backtransf = x$backtransf,
 pscale = x$pscale,
 irscale = x$irscale,
 irunit = x$irunit,
 subgroup.name = x$subgroup.name,
 print.subgroup.name = x$print.subgroup.name,
 sep.subgroup = x$sep.subgroup,
 nchar.subgroup = 35,
 header = TRUE,
 print.CMH = x$print.CMH,
 digits = gs("digits"),
 digits.stat = gs("digits.stat"),
 digits.pval = max(gs("digits.pval"), 2),
 digits.pval.Q = max(gs("digits.pval.Q"), 2),
 digits.Q = gs("digits.Q"),
 digits.tau2 = gs("digits.tau2"),
 digits.tau = gs("digits.tau"),
 digits.H = gs("digits.H"),
 digits.I2 = gs("digits.I2"),
 scientific.pval = gs("scientific.pval"),
 big.mark = gs("big.mark"),
 zero.pval = gs("zero.pval"),
 JAMA.pval = gs("JAMA.pval"),
 digits.df = gs("digits.df"),
 print.tau2 = TRUE,
 print.tau = TRUE,
 print.I2 = gs("print.I2"),
 print.H = gs("print.H"),
 print.Rb = gs("print.Rb"),
 text.tau2 = gs("text.tau2"),
 text.tau = gs("text.tau"),
 text.I2 = gs("text.I2"),
 text.Rb = gs("text.Rb"),
 details.methods = TRUE,
 warn.backtransf = FALSE,
warn.deprecated = gs("warn.deprecated"),
...
)
cilayout(
 bracket = gs("CIBracket"),
 separator = gs("CISeparator"),
 lower.blank = gs("CILower.blank"),
 upper.blank = gs("CIUpper.blank")
)

Arguments

- **x**: An object of class `meta`.
- **common**: A logical indicating whether results for common effect meta-analysis should be printed.
- **random**: A logical indicating whether results for random effects meta-analysis should be printed.
- **prediction**: A logical indicating whether a prediction interval should be printed.
- **overall**: A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.
- **overall.hetstat**: A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.
- **test.subgroup**: A logical value indicating whether to print results of test for subgroup differences.
- **test.subgroup.common**: A logical value indicating whether to print results of test for subgroup differences (based on common effect model).
- **test.subgroup.random**: A logical value indicating whether to print results of test for subgroup differences (based on random effects model).
- **prediction.subgroup**: A logical indicating whether prediction intervals should be printed for subgroups.
- **backtransf**: A logical indicating whether printed results should be back transformed. If `backtransf=TRUE`, results for `sm="OR"` are printed as odds ratios rather than log odds ratios and results for `sm="ZCOR"` are printed as correlations rather than Fisher’s z transformed correlations, for example.
- **pscale**: A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument `sm` is equal to "PLOGIT", "PLN", "PRAW", "PAS", "PFT", or "RD".
- **irscale**: A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument `sm` is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".
print.meta

- **irunit**: A character specifying the time unit used to calculate rates, e.g. person-years.
- **subgroup.name**: A character string with a name for the grouping variable.
- **print.subgroup.name**: A logical indicating whether the name of the grouping variable should be printed in front of the group labels.
- **sep.subgroup**: A character string defining the separator between label and levels of grouping variable.
- **nchar.subgroup**: A numeric specifying the number of characters to print from subgroup labels.
- **header**: A logical indicating whether information on title of meta-analysis, comparison and outcome should be printed at the beginning of the printout.
- **print.CMH**: A logical indicating whether result of the Cochran-Mantel-Haenszel test for overall effect should be printed.
- **digits**: Minimal number of significant digits, see `print.default`.
- **digits.stat**: Minimal number of significant digits for z- or t-value of test for overall effect, see `print.default`.
- **digits.pval**: Minimal number of significant digits for p-value of overall treatment effect, see `print.default`.
- **digits.pval.Q**: Minimal number of significant digits for p-value of heterogeneity test, see `print.default`.
- **digits.Q**: Minimal number of significant digits for heterogeneity statistic Q, see `print.default`.
- **digits.tau2**: Minimal number of significant digits for between-study variance τ^2, see `print.default`.
- **digits.tau**: Minimal number of significant digits for τ, the square root of the between-study variance τ^2.
- **digits.H**: Minimal number of significant digits for H statistic, see `print.default`.
- **digits.I2**: Minimal number of significant digits for I-squared and Rb statistic, see `print.default`.
- **scientific.pval**: A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.
- **big.mark**: A character used as thousands separator.
- **zero.pval**: A logical specifying whether p-values should be printed with a leading zero.
- **JAMA.pval**: A logical specifying whether p-values for test of overall effect should be printed according to JAMA reporting standards.
- **digits.df**: Minimal number of significant digits for degrees of freedom.
- **print.tau2**: A logical specifying whether between-study variance τ^2 should be printed.
- **print.tau**: A logical specifying whether τ, the square root of the between-study variance τ^2, should be printed.
- **print.I2**: A logical specifying whether heterogeneity statistic I^2 should be printed.
- **print.H**: A logical specifying whether heterogeneity statistic H should be printed.
- **print.Rb**: A logical specifying whether heterogeneity statistic Rb should be printed.
- **text.tau2**: Text printed to identify between-study variance τ^2.
- **text.tau**: Text printed to identify τ, the square root of the between-study variance τ^2.
print.rm5

Cochrane review: summary of meta-analyses

Description

Calculate and print a summary of all meta-analyses in a Cochrane review.

Usage

```r
## S3 method for class 'rm5'
print(x, comp.no, outcome.no, ...)
```

Arguments

- `x` An object of class `rm5`.
- `comp.no` Comparison number.
- `outcome.no` Outcome number.
- `...` Additional arguments (passed on to `metacr`).

Details

This function can be used to redo all or selected meta-analyses of a Cochrane Review.

Review Manager 5 (RevMan 5) was the software used for preparing and maintaining Cochrane Reviews (https://training.cochrane.org/online-learning/core-software/revman). In RevMan 5, subgroup analyses can be defined and data from a Cochrane review can be imported to R using the function `read.rm5`.

The R function `metacr` is called internally.
print.summary.meta

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also
summary.meta, metacr, read.rm5, metabias.rm5

Examples

```r
# Locate export data file "Fleiss1993_CR.csv"
# in sub-directory of package "meta"
#
# filename <- system.file("extdata", "Fleiss1993_CR.csv", package = "meta")
Fleiss1993_CR <- read.rm5(filename)

# Print results for all meta-analysis
#
# Fleiss1993_CR

# Print results only for second outcome of first comparison
#
print(Fleiss1993_CR, comp.no = 1, outcome.no = 2)
```

print.summary.meta
Print detailed meta-analysis results

Description
Print method for objects of class `summary.meta`.

Usage
```
## S3 method for class 'summary.meta'
print(
  x,
  sortvar,
  common = x$x$common,
  random = x$x$random,
  details = FALSE,
  ma = TRUE,
  overall = x$overall,
  backtransf = x$backtransf,
```
pscale = x$pscale,
irscale = x$irscale,
irunit = x$irunit,
digits = gs("digits"),
digits.se = gs("digits.se"),
digits.pval = max(gs("digits.pval"), 2),
digits.tau2 = gs("digits.tau2"),
digits.tau = gs("digits.tau"),
digits.I2 = gs("digits.I2"),
digits.prop = gs("digits.prop"),
digits.weight = gs("digits.weight"),
scientific.pval = gs("scientific.pval"),
zero.pval = gs("zero.pval"),
JAMA.pval = gs("JAMA.pval"),
big.mark = gs("big.mark"),
text.tau2 = gs("text.tau2"),
text.tau = gs("text.tau"),
text.I2 = gs("text.I2"),
truncate,
text.truncate = "*** Output truncated ***",
details.methods = TRUE,
warn.backtransf = FALSE,
...
)

Arguments

x An object of class `summary.meta`
sortvar An optional vector used to sort the individual studies (must be of same length as x$TE).
common A logical indicating whether a common effect meta-analysis should be conducted.
random A logical indicating whether a random effects meta-analysis should be conducted.
details A logical indicating whether further details of individual studies should be printed.
ma A logical indicating whether the summary results of the meta-analysis should be printed.
overall A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.
backtransf A logical indicating whether printed results should be back transformed. If backtransf = TRUE, results for sm = "OR" are printed as odds ratios rather than log odds ratios and results for sm = "ZCOR" are printed as correlations rather than Fisher's z transformed correlations, for example.
pscale A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument sm is equal to "PLOGIT", "PLN", "PRAW", "PAS", "PFT", or "RD".
irscale
A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument sm is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".

irunit
A character specifying the time unit used to calculate rates, e.g. person-years.

digits
Minimal number of significant digits, see print.default.

digits.se
Minimal number of significant digits for standard deviations and standard errors, see print.default.

digits.pval
Minimal number of significant digits for p-value of test of treatment effect, see print.default.

digits.tau2
Minimal number of significant digits for between-study variance, see print.default.

digits.tau
Minimal number of significant digits for square root of between-study variance, see print.default.

digits.I2
Minimal number of significant digits for I-squared and Rb statistic, see print.default.

digits.prop
Minimal number of significant digits for proportions, see print.default.

digits.weight
Minimal number of significant digits for weights, see print.default.

scientific.pval
A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.

zero.pval
A logical specifying whether p-values should be printed with a leading zero.

JAMA.pval
A logical specifying whether p-values for test of overall effect should be printed according to JAMA reporting standards.

big.mark
A character used as thousands separator.

text.tau2
Text printed to identify between-study variance τ^2.

text.tau
Text printed to identify τ, the square root of the between-study variance τ^2.

text.I2
Text printed to identify heterogeneity statistic I^2.

truncate
An optional vector used to truncate the printout of results for individual studies (must be a logical vector of same length as x$TE or contain numerical values).

text.truncate
A character string printed if study results were truncated from the printout.

details.methods
A character string printed if study results were truncated from the printout.

warn.backtransf
A logical indicating whether a warning should be printed if backtransformed proportions and rates are below 0 and backtransformed proportions are above 1.

... Additional arguments (passed on to print.meta called internally).

Details
Print method for objects of class summary.meta giving detailed information on the meta-analysis.
Argument pscale can be used to rescale single proportions or risk differences, e.g. pscale = 1000 means that proportions are expressed as events per 1000 observations. This is useful in situations with (very) low event probabilities.
Argument `irscale` can be used to rescale single rates or rate differences, e.g. `irscale = 1000` means that rates are expressed as events per 1000 time units, e.g. person-years. This is useful in situations with (very) low rates. Argument `irunit` can be used to specify the time unit used in individual studies (default: "person-years"). This information is printed in summaries and forest plots if argument `irscale` is not equal to 1.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`summary.meta`, `update.meta`, `metabin`, `metacont`, `metagen`

Examples

data(Fleiss1993cont)

```r
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
               data = Fleiss1993cont, sm = "SMD", studlab = paste(study, year))
sm1 <- summary(m1)
sm1

print(sm1, digits = 2)
## Not run:
# Use unicode characters to print tau^2, tau, and I^2
print(sm1,
  text.tau2 = "\u00b2",
  text.tau = "\u03c4",
  text.I2 = "I\u00b2")
## End(Not run)
```

radial.meta

Radial plot

Description

Draw a radial plot (also called Galbraith plot) which can be used to assess bias in meta-analysis.
Usage

```r
## S3 method for class 'meta'
radial(
  x,
  xlim = NULL,
  ylim = NULL,
  xlab = "Inverse of standard error",
  ylab = "Standardised treatment effect (z-score)",
  common = TRUE,
  axes = TRUE,
  pch = 1,
  text = NULL,
  cex = 1,
  col = NULL,
  level = NULL,
  warn.deprecated = gs("warn.deprecated"),
  fixed,
  ...
)
```

```r
## Default S3 method:
radial(
  x,
  y,
  xlim = NULL,
  ylim = NULL,
  xlab = "Inverse of standard error",
  ylab = "Standardised treatment effect (z-score)",
  common = TRUE,
  axes = TRUE,
  pch = 1,
  text = NULL,
  cex = 1,
  col = NULL,
  level = NULL,
  ...
)
```

Arguments

- **x**: An object of class `meta`, or estimated treatment effect in individual studies.
- **xlim**: The x limits (min, max) of the plot.
- **ylim**: The y limits (min, max) of the plot.
- **xlab**: A label for the x-axis.
- **ylab**: A label for the y-axis.
- **common**: A logical indicating whether the pooled common effect estimate should be plotted.
axes A logical indicating whether axes should be drawn on the plot.
pch The plotting symbol used for individual studies.
text A character vector specifying the text to be used instead of plotting symbol.
cex The magnification to be used for plotting symbol.
col A vector with colour of plotting symbols.
level The confidence level utilised in the plot.
warn.deprecated A logical indicating whether warnings should be printed if deprecated arguments are used.
fixed Deprecated argument (replaced by 'common').
... Graphical arguments as in par may also be passed as arguments.
y Standard error of estimated treatment effect.

Details
A radial plot (Galbraith 1988a,b), also called Galbraith plot, is drawn in the active graphics window. If common is TRUE, the pooled estimate of the common effect model is plotted. If level is not NULL, the corresponding confidence limits are drawn.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References
Galbraith RF (1988b): A note on graphical presentation of estimated odds ratios from several clinical trials. Statistics in Medicine, 7, 889–94

See Also
metabias, metabin, metagen, funnel

Examples
data(Olkin1995)
m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
data = Olkin1995, subset = c(41, 47, 51, 59),
studlab = paste(author, year), sm = "RR", method = "I")

Radial plot
#
radial(m1, level = 0.95)
Description

Reads a file created with RevMan 4 and creates a data frame from it.

Usage

```r
read.mtv(file)
```

Arguments

- `file` The name of a file to read data values from.

Details

Reads a file created with RevMan 4 (Menu: “File” - “Export” - “Analysis data file...”) and creates a data frame from it.

Value

A data frame containing the following components:

- `comp.no` Comparison number.
- `outcome.no` Outcome number.
- `group.no` Group number.
- `studlab` Study label.
- `year` Year of publication.
- `event.e` Number of events in experimental group.
- `n.e` Number of observations in experimental group.
- `event.c` Number of events in control group.
- `n.c` Number of observations in control group.
- `mean.e` Estimated mean in experimental group.
- `sd.e` Standard deviation in experimental group.
- `mean.c` Estimated mean in control group.
- `sd.c` Standard deviation in control group.
- `O.E` Observed minus expected (IPD analysis).
- `V` Variance of `O.E` (IPD analysis).
- `order` Ordering of studies.
- `conceal` Concealment of treatment allocation.
- `grplab` Group label.
type Type of outcome. D = dichotomous, C = continuous, P = IPD.
outclab Outcome label.
graph.exp Graph label for experimental group.
graph.cont Graph label for control group.
label.exp Label for experimental group.
label.cont Label for control group.
complab Comparison label.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

metabin, metacont, metagen

Examples

Locate MTV-data file "FLEISS1993.MTV" in sub-directory of R package
meta
#
filename <- system.file("extdata/FLEISS1993.MTV", package = "meta")
fleiss1933.cc <- read.mtv(filename)

Same result as R Command example(Fleiss1993bin):
#
metabin(event.e, n.e, event.c, n.c,
data = fleiss1933.cc, subset = type == "D",
studlab = paste(studlab, year))

Same result: example(Fleiss1993cont)
#
metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c,
data = fleiss1933.cc, subset = type == "C",
studlab = paste(studlab, year))
Description

Reads analysis data from Cochrane intervention review created with RevMan 5 and creates a data frame from it.

Usage

```r
read.rm5(
  file,
  sep = ",", 
  quote = "\"",
  title,
  numbers.in.labels = TRUE, 
  debug = 0
)
```

Arguments

- **file**: The name of a file to read data values from.
- **sep**: The field separator character (only considered for CSV-files). Values on each line of the file are separated by this character. The comma is the default field separator character in RevMan 5.
- **quote**: The set of quoting characters (only considered for CSV-files). In RevMan 5 a "" is the default quoting character.
- **title**: Title of Cochrane review.
- **numbers.in.labels**: A logical indicating whether comparison number and outcome number should be printed at the beginning of the comparison (argument complab) and outcome label (argument outclab); this is the default in RevMan 5.
- **debug**: An integer between 0 and 3 indicating whether to print debug messages (only considered for RM5-files).

Details

Review Manager 5 (RevMan 5) was the software used for preparing and maintaining Cochrane reviews (https://training.cochrane.org/online-learning/core-software/revman). RevMan 5 includes the ability to write systematic reviews of interventions, diagnostic test accuracy reviews, methodology reviews and overviews of reviews.

This function provides the ability to read the analysis data from a Cochrane intervention review created with RevMan 5; a data frame is created from it. Cochrane intervention reviews are based on comparisons of two interventions.
By default in RevMan 5, the name of the exported CSV data file is the title of the Cochrane review. Furthermore, the title is part of the RM5-file. Argument title can be used to overwrite the title of the Cochrane review.

Import RM5-file:
A RM5-file (which is in a specific XML format) can be used directly to import the analysis dataset. If the import fails, use argument debug = 3 for more details.

Import CSV-file:
In the past, the following (rather complicated) procedure based on a CSV-file generated within RevMan 5 was necessary - which is only described here for backward compatibility.

In order to generate a data analysis file in RevMan 5 use the following Menu points: "File" - "Export" - "Data and analyses". It is mandatory to include the following fields in the exported data file by selecting them with the mouse cursor in the Export Analysis Data Wizard: (i) Comparison Number, (ii) Outcome Number, (iii) Subgroup Number. When these fields are not selected a corresponding error message will be printed in R. It is recommended to include all fields in the exported data file except for the last field "Risk of bias tables". For example, in order to redo the meta-analysis in R for the RevMan 5 data type "O-E and Variance" the fields "O-E" and "Variance" have to be selected in the Export Analysis Data Wizard. If the last field "Risk of bias tables" is selected the import in R fails with an error message "line X did not have Y elements".

Value
A data frame containing the following components:

- comp.no: Comparison number.
- outcome.no: Outcome number.
- group.no: Group number.
- studlab: Study label.
- year: Year of publication.
- event.e: Number of events in experimental group.
- n.e: Number of observations in experimental group.
- event.c: Number of events in control group.
- n.c: Number of observations in control group.
- mean.e: Estimated mean in experimental group.
- sd.e: Standard deviation in experimental group.
- mean.c: Estimated mean in control group.
- sd.c: Standard deviation in control group.
- O.E: Observed minus expected (IPD analysis).
- V: Variance of O.E (IPD analysis).
- TE, seTE: Estimated treatment effect and standard error of individual studies.
- lower, upper: Lower and upper limit of 95% confidence interval for treatment effect in individual studies.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>Weight of individual studies (according to meta-analytical method used in respective meta-analysis - see details).</td>
</tr>
<tr>
<td>order</td>
<td>Ordering of studies.</td>
</tr>
<tr>
<td>grplab</td>
<td>Group label.</td>
</tr>
<tr>
<td>type</td>
<td>Type of outcome. D = dichotomous, C = continuous, P = IPD.</td>
</tr>
<tr>
<td>method</td>
<td>A character string indicating which method has been used for pooling of studies. One of "Inverse", "MH", or "Peto".</td>
</tr>
<tr>
<td>sm</td>
<td>A character string indicating which summary measure has been used for pooling of studies.</td>
</tr>
<tr>
<td>model</td>
<td>A character string indicating which meta-analytical model has been used (either "Fixed" or "Random").</td>
</tr>
<tr>
<td>common</td>
<td>A logical indicating whether common effect meta-analysis has been used in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>random</td>
<td>A logical indicating whether random effects meta-analysis has been used in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>outclab</td>
<td>Outcome label.</td>
</tr>
<tr>
<td>k</td>
<td>Total number of studies combined in respective meta-analysis).</td>
</tr>
<tr>
<td>event.e.pooled</td>
<td>Number of events in experimental group in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>n.e.pooled</td>
<td>Number of observations in experimental group in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>event.c.pooled</td>
<td>Number of events in control group in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>n.c.pooled</td>
<td>Number of observations in control group in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>TE.pooled</td>
<td>Estimated treatment effect in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>lower, upper</td>
<td>Lower and upper limit of 95% confidence interval for treatment effect in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>weight.pooled</td>
<td>Total weight in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>Z.pooled</td>
<td>Z-score for test of overall treatment effect in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>pval.pooled</td>
<td>P-value for test of overall treatment effect in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>Q</td>
<td>Heterogeneity statistic Q in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>pval.Q</td>
<td>P-value of heterogeneity statistic Q in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>I2</td>
<td>Heterogeneity statistic I^2 in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>tau2</td>
<td>Between-study variance (moment estimator of DerSimonian-Laird) in respective meta-analysis.</td>
</tr>
<tr>
<td>Q.w</td>
<td>Heterogeneity statistic Q within groups in respective meta-analysis (see details).</td>
</tr>
<tr>
<td>pval.Q.w</td>
<td>P-value of heterogeneity statistic Q within groups in respective meta-analysis (see details).</td>
</tr>
</tbody>
</table>
I2.w Heterogeneity statistic I^2 within groups in respective meta-analysis (see details).
label.e Label for experimental group.
label.c Label for control group.
label.left Graph label on left side of forest plot.
label.right Graph label on right side of forest plot.
complab Comparison label.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration, 2020

See Also

summary.rm5, metabias.rm5, metabin, metacont, metagen, metacr, print.rm5

Examples

Locate export data file "Fleiss1993_CR.csv"
in sub-directory of package "meta"
#
filename <- system.file("extdata", "Fleiss1993_CR.csv", package = "meta")
Fleiss1993_CR <- read.rm5(filename)

Same result as R command example(Fleiss1993bin):
#
metacr(Fleiss1993_CR)

Same result as R command example(Fleiss1993cont):
#
metacr(Fleiss1993_CR, 1, 2)

settings.meta Print and change default settings to conduct and print or plot meta-analyses in R package meta.

Description

Print and change default settings to conduct and print or plot meta-analyses in R package meta. The following general settings are available: Review Manager 5, Journal of the American Medical Association.
settings.meta

Usage

settings.meta(..., quietly = TRUE)

Arguments

... Arguments to change default settings.
quietly A logical indicating whether information on settings should be printed.

Details

This function can be used to define defaults for several arguments (i.e., assignments using gs) of the following R functions: metabin, metacont, metacor, metacr, metagen, metainc, metaprop, metarate

Furthermore, some of these settings are considered to print meta-analysis results and to produce forest plots.

The function can be used to either change individual settings (see Examples) or use one of the following general settings:

- settings.meta("RevMan5")
- settings.meta("JAMA")
- settings.meta("IQWiG5")
- settings.meta("IQWiG6")
- settings.meta("geneexpr")
- settings.meta("meta4")

The first command can be used to reproduce meta-analyses from Cochrane reviews conducted with Review Manager 5 (RevMan 5, https://training.cochrane.org/online-learning/core-software/revman) and specifies to use a RevMan 5 layout in forest plots.

The second command can be used to generate forest plots following instructions for authors of the Journal of the American Medical Association (https://jamanetwork.com/journals/jama/pages/instructions-for-authors/). Study labels according to JAMA guidelines can be generated using labels.meta.

The next commands implement the recommendations of the Institute for Quality and Efficiency in Health Care, Germany (IQWiG) according to General Methods 5 and 6, respectively (https://www.iqwig.de/en/about-us/methods/methods-paper/).

The setting "geneexpr" can be used to print p-values in scientific notation and to suppress the calculation of confidence intervals for the between-study variance.

The last setting uses the default settings of R package meta, version 4 or below.

RevMan 5 settings, in detail:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.random.ci</td>
<td>"classic"</td>
<td>only available method in RevMan 5</td>
</tr>
<tr>
<td>method.tau</td>
<td>"DL"</td>
<td>only available method in RevMan 5</td>
</tr>
<tr>
<td>tau.common</td>
<td>FALSE</td>
<td>common between-study variance in subgroups</td>
</tr>
<tr>
<td>MH.exact</td>
<td>FALSE</td>
<td>exact Mantel-Haenszel method</td>
</tr>
</tbody>
</table>
RR.Cochrane | TRUE | calculation of risk ratios
Q.Cochrane | TRUE | calculation of heterogeneity statistic
layout | "RevMan5" | layout for forest plots
prediction | FALSE | no prediction interval
test.overall | TRUE | print information on test of overall effect
test.subgroup | TRUE | print information on test for subgroup differences
test.effect.subgroup | TRUE | print information on test for effect in subgroups
digits.I2 | 0 | number of digits for I-squared measure
digits.tau2 | 3 | number of digits for tau-squared
digits.tau | 4 | number of digits for square root of tau-squared
CIbracket, | "[" |
CIseparator | "," | print confidence intervals as "[. . .]

JAMA settings:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>layout</td>
<td>"JAMA"</td>
<td>layout for forest plots</td>
</tr>
<tr>
<td>test.overall</td>
<td>TRUE</td>
<td>print information on test of overall effect</td>
</tr>
<tr>
<td>test.subgroup</td>
<td>FALSE</td>
<td>print information on test for subgroup differences</td>
</tr>
<tr>
<td>test.effect.subgroup</td>
<td>FALSE</td>
<td>print information on test for effect in subgroups</td>
</tr>
<tr>
<td>digits.I2</td>
<td>0</td>
<td>number of digits for I-squared measure</td>
</tr>
<tr>
<td>digits.pval</td>
<td>3</td>
<td>number of digits for p-values</td>
</tr>
<tr>
<td>CIbracket,</td>
<td>"("</td>
<td></td>
</tr>
<tr>
<td>CIsseparator</td>
<td>","</td>
<td>print confidence intervals as "(. . .)"</td>
</tr>
<tr>
<td>zero.pval,</td>
<td>TRUE</td>
<td>print p-values with leading zero</td>
</tr>
<tr>
<td>JAMA.pval,</td>
<td>TRUE</td>
<td>round p-values to three digits (for 0.001 < p ≤ 0.01) or two digits (p > 0.01)</td>
</tr>
</tbody>
</table>

IQWiG, General Methods 5 settings:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.random.ci</td>
<td>"HK"</td>
<td>Hartung-Knapp method</td>
</tr>
<tr>
<td>prediction</td>
<td>TRUE</td>
<td>Prediction interval</td>
</tr>
</tbody>
</table>

IQWiG, General Methods 6 settings:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.random.ci</td>
<td>"HK"</td>
<td>Hartung-Knapp method</td>
</tr>
<tr>
<td>adhoc.hakn.ci</td>
<td>"IQWiG6"</td>
<td>ad hoc variance correction</td>
</tr>
<tr>
<td>method.tau</td>
<td>"PM"</td>
<td>Paule-Mandel estimator for between-study variance</td>
</tr>
<tr>
<td>prediction</td>
<td>TRUE</td>
<td>Prediction interval</td>
</tr>
</tbody>
</table>

Settings for gene expression data:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>scientific.pval</td>
<td>TRUE</td>
<td>Scientific notation for p-values</td>
</tr>
</tbody>
</table>
settings.meta

method.tau.ci FALSE no confidence interval for between-study heterogeneity variance

Settings for meta, version 4 or below:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>method.tau</td>
<td>"DL"</td>
<td>DerSimonian-Laird estimator</td>
</tr>
</tbody>
</table>

A list of all arguments with current settings is printed using the command `settings.meta("print")`. In order to reset all settings of R package meta the command `settings.meta("reset")` or `settings.meta(reset = TRUE)` can be used.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

gs, forest.meta, print.meta, labels.meta

Examples

Get listing of current settings
#
settings.meta()

Meta-analyses using default settings
#
metabin(10, 20, 15, 20)
metaprop(4, 20)
metabin(10, 20, 15, 20, sm = "RD")
metaprop(4, 20, sm = "PLN")

Change summary measure for R functions metabin and metaprop
and store old settings
#
oldset <- settings.meta(smbin = "RD", smprop = "PLN")
#
metabin(10, 20, 15, 20)
metaprop(4, 20)

Use old settings
#
settings.meta(oldset)

Change level used to calculate confidence intervals
(99%-CI for studies, 99.9%-CI for pooled effects)
#

```r
# Always print a prediction interval
#
# settings.meta(prediction = TRUE)
metagen(1:3, 2:4 / 10, sm = "MD")
metagen(4:6, 4:2 / 10, sm = "MD")

# Try to set unknown argument results in a warning
#
# try(settings.meta(unknownarg = TRUE))

# Reset to default settings of R package meta
#
# settings.meta("reset")
metabin(10, 20, 15, 20)
metaprop(4, 20)
metagen(1:3, 2:4 / 10, sm = "MD")

# Do not back transform results (e.g. print log odds ratios instead
# of odds ratios, print transformed correlations / proportions
# instead of correlations / proportions)
#
# settings.meta(backtransf = FALSE)
metabin(10, 20, 15, 20)
metaprop(4, 20)
metacor(c(0.85, 0.7, 0.95), c(20, 40, 10))

# Forest plot using RevMan 5 style
#
# settings.meta("RevMan5")
forest(metagen(1:3, 2:4 / 10, sm = "MD", common = FALSE),
    label.left = "Favours A", label.right = "Favours B",
    colgap.studlab = "2cm", colgap.forest.left = "0.2cm")

# Forest plot using JAMA style
#
# settings.meta("JAMA")
forest(metagen(1:3, 2:4 / 10, sm = "MD", common = FALSE),
    label.left = "Favours A", label.right = "Favours B",
    colgap.studlab = "2cm", colgap.forest.left = "0.2cm")

# Use slightly different layout for confidence intervals
# (especially useful if upper confidence limit can be negative)
#
# settings.meta(CIseparator = " - ")
forest(metagen(-(1:3), 2:4 / 10, sm = "MD", common = FALSE),
    label.left = "Favours A", label.right = "Favours B",
    colgap.studlab = "2cm", colgap.forest.left = "0.2cm")

# Use old settings
```

smd2or

settings.meta(oldset)

smd2or

Conversion from standardised mean difference to log odds ratio

Description

Conversion from standardised mean difference to log odds ratio using method by Hasselblad & Hedges (1995) or Cox (1970).

Usage

smd2or(
 smd,
 se.smd,
 studlab,
 data = NULL,
 subset = NULL,
 exclude = NULL,
 method = "HH",
 backtransf = gs("backtransf"),
 ...
)

Arguments

smd
 Standardised mean difference(s) (SMD) or meta-analysis object.
se.smd
 Standard error(s) of SMD (ignored if argument smd is a meta-analysis object).
studlab
 An optional vector with study labels (ignored if argument smd is a meta-analysis object).
data
 An optional data frame containing the study information (ignored if argument smd is a meta-analysis object).
subset
 An optional vector specifying a subset of studies to be used (ignored if argument smd is a meta-analysis object).
exclude
 An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots (ignored if argument smd is a meta-analysis object).
method
 A character string indicating which method is used to convert SMDs to log odds ratios. Either "HH" or "CS", can be abbreviated.
backtransf
 A logical indicating whether odds ratios (if TRUE) or log odds ratios (if FALSE) should be shown in printouts and plots.
...
 Additional arguments passed on to metagen (ignored if argument smd is a meta-analysis object).
Details

This function implements the following methods for the conversion from standardised mean difference to log odds ratio:

- Hasselblad & Hedges (1995) assuming logistic distributions (method == "HH")
- Cox (1970) and Cox & Snell (1989) assuming normal distributions (method == "CS")

Internally, `metagen` is used to conduct a meta-analysis with the odds ratio as summary measure.

Argument `smd` can be either a vector of standardised mean differences or a meta-analysis object created with `metacont` or `metagen` and the standardised mean difference as summary measure.

Argument `se.smd` is mandatory if argument `smd` is a vector and ignored otherwise. Additional arguments in ... are only passed on to `metagen` if argument `smd` is a vector.

Value

An object of class c("metagen", "meta") with corresponding generic functions (see meta-object).

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`or2smd`, `metacont`, `metagen`, `metabin`

Examples

Example from Borenstein et al. (2009), Chapter 7
#
mb <- smd2or(0.5, sqrt(0.0205), backtransf = FALSE)
TE = log odds ratio; seTE = standard error of log odds ratio
data.frame(lnOR = round(mb$TE, 4), varlnOR = round(mb$seTE^2, 4))

Use dataset from Fleiss (1993)
#
data(Fleiss1993cont)
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont, data = Fleiss1993cont, sm = "SMD",
 studlab = paste(study, year))
smoking

smd2or(m1)

smoking

Smoking example

Description

Meta-analyses on the effect of smoking on mortality risk.

Format

A data frame with the following columns:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>study</td>
<td>study label</td>
</tr>
<tr>
<td>participants</td>
<td>total number of participants</td>
</tr>
<tr>
<td>d.smokers</td>
<td>number of deaths in smokers’ group</td>
</tr>
<tr>
<td>py.smokers</td>
<td>person years at risk in smokers’ group</td>
</tr>
<tr>
<td>d.nonsmokers</td>
<td>number of deaths in non-smokers’ group</td>
</tr>
<tr>
<td>py.nonsmokers</td>
<td>person years at risk in non-smokers’ group</td>
</tr>
</tbody>
</table>

Details

Data have been reconstructed based on the famous Smoking and Health Report to the Surgeon General (Bayne-Jones S et al., 1964). Data sets can be used to evaluate the risk of smoking on overall mortality (dataset `smoking`) and lung-cancer deaths (dataset `lungcancer`), respectively.

The person time is attributed such that the rate ratios are equal to the reported mortality ratios implicitly assuming that the data have arisen from a homogeneous age group; more detailed information by age is not available from the report. Note, the group of "non-smokers" actually consists of all participants except those who are smokers of cigarettes only. Information on real non-smokers is not available from the published Smoking and Health Report.

Source

See Also

`metainc`

Examples

```r
data(smoking)
ml <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
               data = smoking, studlab = study)
```
print(m1, digits = 2)
data(lungcancer)
m2 <- metainc(d.smokers, py.smokers, d.nonsmokers, py.nonsmokers,
 data = lungcancer, studlab = study)
print(m2, digits = 2)

subset.longarm Return subset of longarm object

Description
The subset method returns a subset of a longarm object.

Usage
S3 method for class 'longarm'
subset(x, subset, ...)

Arguments
 x An object of class longarm.
 subset A logical expression indicating elements or rows to keep: missing values are taken as false.
 ... Additional arguments.

Value
A longarm object is returned.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also
longarm

Examples
Artificial example with three studies
m <- metabin(1:3, 100:102, 4:6, 200:202, studlab = LETTERS[1:3])
Transform data to long arm-based format
l1 <- longarm(m)
l1

Subset without Study B
subset(l1, studlab != "B")
Description

Summary method for objects of class meta.

Usage

S3 method for class 'meta'
summary(object, ...)

Arguments

object An object of class meta.
...
Additional arguments (ignored).

Details

Summary method for objects of class meta.

Value

An object of classes summary.meta and meta (see meta-object).

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Higgins JPT & Thompson SG (2002): Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539–58

See Also

print.summary.meta, metabin, metacont, metagen
Examples

```r
data(Fleiss1993cont)
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont, 
    data = Fleiss1993cont, studlab = paste(study, year), sm = "SMD")
summary(m1)

summary(update(m1, subgroup = c(1, 2, 1, 1, 2), subgroup.name = "group"))
forest(update(m1, subgroup = c(1, 2, 1, 1, 2), subgroup.name = "group"))

## Not run:
# Use unicode characters to print tau^2, tau, and I^2
print(summary(m1),
    text.tau2 = "\u03c4\u00b2", text.tau = "\u03c4", text.I2 = "I\u00b2")
## End(Not run)
```

summary.rm5

Cochrane review: detailed summary of meta-analyses

Description

Calculate and print a detailed summary of all meta-analyses in a Cochrane review.

Usage

```r
## S3 method for class 'summary.rm5'
print(x, ...)
```

Arguments

- `object` An object of class `summary.rm5`.
- `comp.no` Comparison number.
- `outcome.no` Outcome number.
- `...` Additional arguments (passed on to metacr).
- `x` An object of class `summary.rm5`.

Details

This function can be used to redo all or selected meta-analyses of a Cochrane Review.

Review Manager 5 (RevMan 5) was the software used for preparing and maintaining Cochrane Reviews (https://training.cochrane.org/online-learning/core-software/revman). In RevMan 5, subgroup analyses can be defined and data from a Cochrane review can be imported to R using the function `read.rm5`.

The R function `metacr` is called internally.
trimfill.meta

Trim-and-fill method to adjust for bias in meta-analysis

Description

Trim-and-fill method for estimating and adjusting for the number and outcomes of missing studies in a meta-analysis.

Usage

```r
trimfill(x, left = NULL, ma.common = TRUE, type = "L", n.iter.max = 50, common = FALSE, random = TRUE)
```

Examples

```r
# Locate export data file "Fleiss1993_CR.csv" in sub-directory of package "meta"
filename <- system.file("extdata", "Fleiss1993_CR.csv", package = "meta")
Fleiss1993_CR <- read.rm5(filename)

# Print summary results for all meta-analysis
summary(Fleiss1993_CR)

# Print summary results only for second outcome of first comparison
summary(Fleiss1993_CR, comp.no = 1, outcome.no = 2)
```
trimfill.meta

prediction = x$prediction,
backtransf = x$backtransf,
pcale = x$pcale,
irscale = x$irscale,
irunit = x$irunit,
silent = TRUE,
warn.deprecated = gs("warn.deprecated"),
...
)

Default S3 method:
trimfill(
x,
seTE,
left = NULL,
ma.common = TRUE,
type = "L",
n.iter.max = 50,
sm = "",
studlab = NULL,
level = 0.95,
level.ma = level,
common = FALSE,
random = TRUE,
method.random.ci = gs("method.random.ci"),
adhoc.hakn.ci = gs("adhoc.hakn.ci"),
method.tau = gs("method.tau"),
method.tau.ci = if (method.tau == "DL") "J" else "QP",
prediction = FALSE,
level.predict = level,
method.predict = gs("method.predict"),
adhoc.hakn.pi = gs("adhoc.hakn.pi"),
backtransf = TRUE,
pcale = 1,
irscale = 1,
irunit = "person-years",
silent = TRUE,
...
)

Arguments

x An object of class meta, or estimated treatment effect in individual studies.

left A logical indicating whether studies are supposed to be missing on the left or right side of the funnel plot. If NULL, the linear regression test for funnel plot symmetry (i.e., function metabias(..., method="Egger")) is used to determine whether studies are missing on the left or right side.

ma.common A logical indicating whether a common effect or random effects model is used
to estimate the number of missing studies.

type
A character indicating which method is used to estimate the number of missing studies. Either "L" or "R".

n.iter.max
Maximum number of iterations to estimate number of missing studies.

common
A logical indicating whether a common effect meta-analysis should be conducted.

random
A logical indicating whether a random effects meta-analysis should be conducted.

prediction
A logical indicating whether a prediction interval should be printed.

backtransf
A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE, results for sm="OR" are printed as odds ratios rather than log odds ratios and results for sm="ZCOR" are printed as correlations rather than Fisher’s z transformed correlations, for example.

pscale
A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument sm is equal to "PLOGIT", "PLN", "PRAW", "PAS", "PFT", or "RD".

irscale
A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument sm is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".

irunit
A character specifying the time unit used to calculate rates, e.g. person-years.

silent
A logical indicating whether basic information on iterations shown.

warn.deprecated
A logical indicating whether warnings should be printed if deprecated arguments are used.

... Additional arguments (to catch deprecated arguments).

seTE
Standard error of estimated treatment effect.

sm
An optional character string indicating underlying summary measure, e.g., "RD", "RR", "OR", "ASD", "HR", "MD", "SMD", or "ROM"; ignored if x is of class meta.

studlab
An optional vector with study labels; ignored if x is of class meta.

level
The level used to calculate confidence intervals for individual studies. If existing, x$level is used as value for level; otherwise 0.95 is used.

level.ma
The level used to calculate confidence interval for the pooled estimate. If existing, x$level.ma is used as value for level.ma; otherwise 0.95 is used.

method.random.ci
A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).

adhoc.hakn.ci
A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see meta-package).

method.tau
A character string indicating which method is used to estimate the between-study variance τ^2 and its square root τ (see meta-package).

method.tau.ci
A character string indicating which method is used to estimate the confidence interval of τ^2 and τ (see meta-package).
level.predict The level used to calculate prediction interval for a new study.

method.predict A character string indicating which method is used to calculate a prediction interval (see meta-package).

adhoc.hakn.pi A character string indicating whether an ad hoc variance correction should be applied for the prediction interval (see meta-package).

Details
The trim-and-fill method (Duval, Tweedie 2000a, 2000b) can be used for estimating and adjusting for the number and outcomes of missing studies in a meta-analysis. The method relies on scrutiny of one side of a funnel plot for asymmetry assumed due to publication bias.

Three different methods have been proposed originally to estimate the number of missing studies. Two of these methods (L- and R-estimator) have been shown to perform better in simulations, and are available in this R function (argument type).

A common effect or random effects model can be used to estimate the number of missing studies (argument ma.common). Furthermore, a common effect and/or random effects model can be used to summaries study results (arguments common and random). Simulation results (Peters et al. 2007) indicate that the common-random model, i.e. using a common effect model to estimate the number of missing studies and a random effects model to summaries results, (i) performs better than the common-common model, and (ii) performs no worse than and marginally better in certain situations than the random-random model. Accordingly, the common-random model is the default.

An empirical comparison of the trim-and-fill method and the Copas selection model (Schwarzer et al. 2010) indicates that the trim-and-fill method leads to excessively conservative inference in practice. The Copas selection model is available in R package metasens.

The function metagen is called internally.

Value
An object of class c("trimfill", "metagen", "meta") with corresponding generic functions (see meta-object).

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

References
update.meta

Update a meta-analysis object

Description
Update an existing meta-analysis object.

Usage
S3 method for class 'meta'
update(
 object,
 data = object$data,
 subset,
 studlab,
 exclude,
 cluster,
 method = object$method,
 sm = object$sm,
 incr,
 method.incr = object$method.incr,
 allstudies = object$allstudies,
 MH.exact = object$MH.exact,
 RR.Cochrane = object$RR.Cochrane,
 Q.Cochrane = object$Q.Cochrane,
 model.glmm = object$model.glmm,
 level = object$level,
)
level.ma = object$level.ma,
common = object$common,
random = object$random,
overall = object$overall,
overall.hetstat = object$overall.hetstat,
method.random.ci = object$method.random.ci,
adhoc.hakn.ci = object$adhoc.hakn.ci,
method.predict = object$method.predict,
adhoc.hakn.pi = object$adhoc.hakn.pi,
method.tau = object$method.tau,
method.tau.ci = object$method.tau.ci,
tau.preset = object$tau.preset,
TE.tau = object$TE.tau,
tau.common = object$tau.common,
prediction = object$prediction | !missing(method.predict),
level.predict = object$level.predict,
null.effect = object$null.effect,
method.bias = object$method.bias,
backtransf = object$backtransf,
pscale = object$pscale,
irscale = object$irscale,
irunit = object$irunit,
text.common = object$text.common,
text.random = object$text.random,
text.predict = object$text.predict,
text.w.common = object$text.w.common,
text.w.random = object$text.w.random,
title = object$title,
complab = object$complab,
outclab = object$outclab,
label.e = object$label.e,
label.c = object$label.c,
label.left = object$label.left,
label.right = object$label.right,
n.e = object$n.e,
n.c = object$n.c,
pooledvar = object$pooledvar,
method.smd = object$method.smd,
sd.glass = object$sd.glass,
exact.smd = object$exact.smd,
method.ci = object$method.ci,
subgroup,
subgroup.name = object$subgroup.name,
print.subgroup.name = object$print.subgroup.name,
sep.subgroup = object$sep.subgroup,
test.subgroup = object$test.subgroup,
prediction.subgroup = object$prediction.subgroup,
byvar,
id,
print.CMH = object$print.CMH,
keepdata = TRUE,
left = object$left,
ma.common = object$ma.common,
type = object$type,
n.iter.max = object$n.iter.max,
warn = FALSE,
warn.deprecated = gs("warn.deprecated"),
verbose = FALSE,
control = object$control,
...)

Arguments

object An object of class meta.
data Dataset.
subset Subset.
studlab Study label.
exclude An optional vector specifying studies to exclude from meta-analysis, however, to include in printouts and forest plots.
cluster An optional vector specifying which estimates come from the same cluster resulting in the use of a three-level meta-analysis model.
method A character string indicating which method is to be used for pooling of studies; see metabin and metainc function for admissible values.
sm A character string indicating which summary measure is used for pooling.
incr Either a numerical value or vector which can be added to each cell frequency for studies with a zero cell count or the character string "TA" which stands for treatment arm continuity correction.
method.incr A character string indicating which continuity correction method should be used ("only0", "if0all", or "all").
allstudies A logical indicating if studies with zero or all events in both groups are to be included in the meta-analysis (applies only if sm is equal to "RR" or "OR").
MH.exact A logical indicating if incr is not to be added to all cell frequencies for studies with a zero cell count to calculate the pooled estimate based on the Mantel-Haenszel method.
RR.Cochrane A logical indicating if 2*incr instead of 1*incr is to be added to n.e and n.c in the calculation of the risk ratio (i.e., sm="RR") for studies with a zero cell. This is used in RevMan 5, the program for preparing and maintaining Cochrane reviews.
Q.Cochrane A logical indicating if the Mantel-Haenszel estimate is used in the calculation of the heterogeneity statistic Q which is implemented in RevMan 5, the program for preparing and maintaining Cochrane reviews.
model.glmm A character string indicating which GLMM model should be used.
level

The level used to calculate confidence intervals for individual studies.

level.ma

The level used to calculate confidence intervals for meta-analysis estimates.

common

A logical indicating whether a common effect meta-analysis should be conducted.

random

A logical indicating whether a random effects meta-analysis should be conducted.

overall

A logical indicating whether overall summaries should be reported. This argument is useful in a meta-analysis with subgroups if overall results should not be reported.

overall.hetstat

A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level.

method.random.ci

A character string indicating which method is used to calculate confidence interval and test statistic for random effects estimate (see meta-package).

adhoc.hakn.ci

A character string indicating whether an ad hoc variance correction should be applied in the case of an arbitrarily small Hartung-Knapp variance estimate (see meta-package).

method.predict

A character string indicating which method is used to calculate a prediction interval (see meta-package).

adhoc.hakn.pi

A character string indicating whether an ad hoc variance correction should be applied for prediction interval (see meta-package).

method.tau

A character string indicating which method is used to estimate the between-study variance τ^2 and its square root τ (see meta-package).

method.tau.ci

A character string indicating which method is used to estimate the confidence interval of τ^2 and τ (see meta-package).

tau.preset

Prespecified value for the square root of the between-study variance τ^2.

TE.tau

Overall treatment effect used to estimate the between-study variance tau-squared.

tau.common

A logical indicating whether tau-squared should be the same across subgroups.

prediction

A logical indicating whether a prediction interval should be printed.

level.predict

The level used to calculate prediction interval for a new study.

null.effect

A numeric value specifying the effect under the null hypothesis.

method.bias

A character string indicating which test for funnel plot asymmetry is to be used, can be abbreviated. See function metabias.

backtransf

A logical indicating whether results should be back transformed in printouts and plots. If backtransf = TRUE, results for sm = "OR" are printed as odds ratios rather than log odds ratios and results for sm = "ZCOR" are printed as correlations rather than Fisher’s z transformed correlations, for example.

pscale

A numeric giving scaling factor for printing of single event probabilities or risk differences, i.e. if argument sm is equal to "PLOGIT", "PLN", "PRAW", "PAS", "PFT", or "RD".
irscale A numeric defining a scaling factor for printing of single incidence rates or incidence rate differences, i.e. if argument sm is equal to "IR", "IRLN", "IRS", "IRFT", or "IRD".

irunit A character specifying the time unit used to calculate rates, e.g. person-years.

text.common A character string used in printouts and forest plot to label the pooled common effect estimate.

text.random A character string used in printouts and forest plot to label the pooled random effects estimate.

text.predict A character string used in printouts and forest plot to label the prediction interval.

text.w.common A character string used to label weights of common effect model.

text.w.random A character string used to label weights of random effects model.

title Title of meta-analysis / systematic review.

complab Comparison label.

outclab Outcome label.

label.e Label for experimental group.

label.c Label for control group.

label.left Graph label on left side of forest plot.

label.right Graph label on right side of forest plot.

n.e Number of observations in experimental group. (only for metagen object)

n.c Number of observations in control group. (only for metagen object)

pooledvar A logical indicating if a pooled variance should be used for the mean difference (only for metacont object with sm = "MD").

method.smd A character string indicating which method is used to estimate the standardised mean difference (only for metacont object with sm = "SMD"). Either "Hedges" for Hedges’ g (default), "Cohen" for Cohen’s d, or "Glass" for Glass’ delta, can be abbreviated.

sd.glass A character string indicating which standard deviation is used in the denominator for Glass’ method to estimate the standardised mean difference (only for metacont object with sm = "SMD"). Either "control" using the standard deviation in the control group (sd.c) or "experimental" using the standard deviation in the experimental group (sd.e), can be abbreviated.

exact.smd A logical indicating whether exact formulae should be used in estimation of the standardised mean difference and its standard error.

method.ci A character string indicating which method is used to calculate confidence intervals for individual studies. Either "z", "t", "WS", "WSCC", "AC", "SA", "SACC", "NAsm", or "Poisson", can be abbreviated. See functions metacont, metaprop and metarate.

subgroup An optional vector to conduct a meta-analysis with subgroups.

subgroup.name A character string with a name for the subgroup variable.
print.subgroup.name
 A logical indicating whether the name of the subgroup variable should be printed in front of the group labels.

sep.subgroup
 A character string defining the separator between name of subgroup variable and subgroup label.

test.subgroup
 A logical value indicating whether to print results of test for subgroup differences.

prediction.subgroup
 A logical indicating whether prediction intervals should be printed for subgroups.

byvar
 Deprecated argument (replaced by 'subgroup').

id
 Deprecated argument (replaced by 'cluster').

print.CMH
 A logical indicating whether result of the Cochran-Mantel-Haenszel test for overall effect should be printed.

keepdata
 A logical indicating whether original data (set) should be kept in meta object.

left
 A logical indicating whether studies are supposed to be missing on the left or right side of the funnel plot. If NULL, the linear regression test for funnel plot symmetry (i.e., function metabias(..., method = "linreg")) is used to determine whether studies are missing on the left or right side.

ma.common
 A logical indicating whether a common effect or random effects model is used to estimate the number of missing studies.

type
 A character indicating which method is used to estimate the number of missing studies. Either "L" or "R".

n.iter.max
 Maximum number of iterations to estimate number of missing studies.

warn
 A logical indicating whether warnings should be printed (e.g., if incr is added to studies with zero cell frequencies).

warn.deprecated
 A logical indicating whether warnings should be printed if deprecated arguments are used.

verbose
 A logical indicating whether to print information on updates of older meta versions.

control
 An optional list to control the iterative process to estimate the between-study variance \(\tau^2 \). This argument is passed on to rma.uni or rma.glmm, respectively.

...
 Additional arguments (ignored at the moment).

Details

Wrapper function to update an existing meta-analysis object which was created with R function metabin, metacont, metacor, metagen, metaine, metamean, metaprop, or metarate. More details on function arguments are available in help files of respective R functions.

This function can also be used for objects of class 'trimfill', 'metacum', and 'metainf'.

Value

An object of class "meta" and "metabin", "metacont", "metacor", "metaine", "metagen", "metamean", "metaprop", or "metarate" (see meta-object).
weights.meta

Calculate absolute and percentage weights for meta-analysis

Description

This function returns a data frame containing information on absolute and percentage weights of individual studies contributing to common effect and random effects meta-analysis.

Usage

```r
## S3 method for class 'meta'
weights(
  object,
  common = object$common,
  random = object$random,
  warn.deprecated = gs("warn.deprecated"),
  ...
)
```

Examples

```r
data(Fleiss1993cont)
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
  data = Fleiss1993cont, studlab = paste(study, year), sm = "SMD")
m1

# Change summary measure (from 'SMD' to 'MD')
#
update(m1, sm = "MD")

# Restrict analysis to subset of studies
#
update(m1, subset = 1:2)

# Use different levels for confidence intervals
#
m2 <- update(m1, level = 0.66, level.ma = 0.99)
print(m2, digits = 2)
forest(m2)
```
Arguments

- **object**: An object of class `meta`.
- **common**: A logical indicating whether absolute and percentage weights from the common effect model should be calculated.
- **random**: A logical indicating whether absolute and percentage weights from the random effects model should be calculated.
- **warn.deprecated**: A logical indicating whether warnings should be printed if deprecated arguments are used.
- ... Additional arguments (to catch deprecated arguments).

Value

A data frame with the following variables is returned:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>w.common</td>
<td>absolute weights in common effect model</td>
<td>(if common = TRUE)</td>
</tr>
<tr>
<td>p.common</td>
<td>percentage weights in common effect model</td>
<td>(if common = TRUE)</td>
</tr>
<tr>
<td>w.random</td>
<td>absolute weights in random effects model</td>
<td>(if random = TRUE)</td>
</tr>
<tr>
<td>p.random</td>
<td>percentage weights in random effects model</td>
<td>(if random = TRUE)</td>
</tr>
</tbody>
</table>

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

`metabin`, `metacont`, `metagen`

Examples

data(Fleiss1993cont)
Do meta-analysis (common effect and random effects model)
#
meta1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, studlab = paste(study, year), sm = "SMD")

Print weights for common effect and random effects meta-analysis
#
weights(meta1)

Do meta-analysis (only random effects model)
#
meta2 <- update(meta1, common = FALSE)

Print weights for random effects meta-analysis
#
weights(meta2)
Print weights for common effect and random effects meta-analysis
#
weights(meta2, common = TRUE)

woodyplants
Elevated CO_2 and total biomass of woody plants

Description

Meta-analysis on effects of elevated CO_2 on total biomass of woody plants

This dataset has been used as an example in Hedges et al. (1999) to describe methods for the meta-analysis of response ratios. The complete dataset with 102 observations and 26 variables is available online as a supplement. Here only a subset of 10 variables is provided and used in the examples.

Format

A data frame with the following columns:

- **obsno**: observation number
- **papno**: database paper number
- **treat**: treatment code
- **level**: treatment level
- **n.elev**: number of observations in experimental group (elevated CO_2-level)
- **mean.elev**: estimated mean in experimental group
- **sd.elev**: standard deviation in experimental group
- **n.amb**: number of observations in control group (ambient CO_2-level)
- **mean.amb**: estimated mean in control group
- **sd.amb**: standard deviation in control group

Source

Website http://www.esapubs.org/archive/ecol/E080/008/

References

Examples

data(woodyplants)

Meta-analysis of response ratios (Hedges et al., 1999)
#
ml <- metacont(n.elev, mean.elev, sd.elev, n.amb, mean.amb, sd.amb,
 data = woodyplants, sm = "ROM", studlab = paste(obsno, papno, sep = " / "))
print(m1, prediction = TRUE)

Meta-analysis for plants grown with low soil fertility treatment
#
m2 <- update(m1, subset = (treat == "fert" & level == "low"))
print(m2, prediction = TRUE)

Meta-analysis for plants grown under low light conditions
#
m3 <- update(m1, subset = (treat == "light" & level == "low"))
print(m3, prediction = TRUE)
Index

* datagen
 longarm, 65
 read.mtv, 179
 read.rm5, 181

* datasets
 amlodipine, 9
 cisapride, 19
 Fleiss1993bin, 26
 Fleiss1993cont, 26
 Olkin1995, 165
 Pagliaro1992, 167
 smoking, 191
 woodyplants, 207

* hplot
 baujat.meta, 12
 bubble.metareg, 14
 drapery, 21
 forest.meta, 27
 forest.metabind, 49
 funnel.meta, 53
 labbe.metabin, 59
 radial.meta, 176

* htest
 metabias.rm5, 79

* list
 meta-object, 68

* models
 metareg, 160

* package
 meta-package, 3

* print
 print.summary.meta, 173

* regression
 metareg, 160

amlodipine, 9
as.data.frame.meta, 10, 68

baujat (baujat.meta), 12
baujat.meta, 3, 12

bubble, 161
bubble (bubble.metareg), 14
bubble.metareg, 3, 14
ci, 17
cilayout (print.meta), 168
cisapride, 19
copas, 141
dev.copy2eps, 41, 52
dev.copy2pdf, 41, 52
drapery, 21
Fleiss1993_CR (read.rm5), 181
Fleiss1993bin, 26, 27
Fleiss1993cont, 26
Fleiss93 (Fleiss1993bin), 26
Fleiss93cont (Fleiss1993cont), 26
forest, 25, 89
forest (forest.meta), 27
forest.meta, 3, 11, 27, 51, 52, 58, 64, 74, 107, 121, 139, 150, 187
forest.metabind, 3, 46, 49, 92
funnel, 78, 89, 178, 199
funnel (funnel.meta), 53
funnel.meta, 3, 53, 78
gpar, 37–39
gs, 57, 86, 99, 106, 119, 128, 137, 147, 157, 185, 187
JAMAlabels, 58
labbe (labbe.metabin), 59
labbe.default, 3
labbe.metabin, 3, 59
labels.meta, 7, 45, 46, 58, 64, 68, 185, 187
legend, 23
limitmeta, 141
longarm, 65, 192
lungcancer (smoking), 191

meta (meta-package), 3
meta-object, 68
meta-package, 3
metabias, 56, 80, 84, 89, 97, 105, 117, 127, 136, 146, 156, 178, 199, 202
metabias (metabias.meta), 74
metabias.meta, 4, 74
metabias.rm5, 4, 79, 173, 184, 195
metabin, 3, 11, 20, 42–44, 46, 52, 56, 57, 63, 66–68, 72, 78, 81, 102, 111, 113, 122, 130, 132, 141, 147, 164, 166, 167, 176, 178, 180, 184, 185, 190, 193, 201, 204–206
metabind, 7, 50, 52, 91, 141, 142
metacont, 3, 10, 11, 41–43, 46, 52, 57, 66–68, 72, 78, 89, 93, 107, 111, 113, 122, 132, 137, 150, 159, 167, 176, 180, 184, 185, 190, 193, 203–206
metacor, 3, 41, 42, 68, 73, 103, 185, 204, 205
metacr, 4, 68, 80, 108, 172, 173, 184, 185, 194, 195
metacum, 4, 42, 43, 112
metagen, 3, 11, 13, 17, 42, 43, 46, 52, 56, 68, 78, 88, 89, 92, 101, 102, 107, 111, 114, 129, 139, 141, 142, 147, 149, 150, 157–159, 161, 164, 166, 167, 176, 178, 180, 184, 185, 189, 190, 193, 198, 199, 204–206
metainc, 3, 41–43, 66–68, 73, 124, 157, 185, 191, 201, 204, 205
metainf, 4, 13, 17, 42, 43, 131
metamean, 3, 42, 68, 73, 133, 139, 204, 205
metamerge, 68, 92, 140
metaprop, 3, 42, 68, 73, 143, 185, 203–205
metarate, 3, 41, 42, 68, 73, 153, 185, 203–205
metareg, 4, 88, 89, 101, 106, 120, 129, 139, 149, 158, 160

nnt, 162

Olkin1995, 165
Olkin95 (Olkin1995), 165
or2smd, 165, 190

Pagliar01992, 167
pairwise, 66, 67
par, 13, 24, 34

pdf, 41, 52
pima, 6
png, 41, 52
print.meta, 43, 68, 74, 88, 89, 101, 107, 113, 121, 122, 129, 130, 132, 139, 149, 150, 158, 159, 168, 175, 187
print.metabias (metabias.meta), 74
print.nnt.meta (nnt), 162
print.rm5, 172, 184
print.summary.meta, 68, 173, 193
print.summary.rm5 (summary.rm5), 194
radial, 25, 56
radial (radial.meta), 176
radial.meta, 3, 176
read.mtv, 179
read.rm5, 4, 80, 111, 173, 181, 195
rma.glmm, 6, 81, 85–87, 124, 128, 129, 143, 147, 153, 157, 204
rma.mv, 86, 99, 106, 114, 118, 119, 128, 137, 147, 157
rma.uni, 75, 85, 98, 106, 118, 121, 128, 137, 147, 157, 160, 161, 204
robu, 141
settings.meta, 4, 7, 44, 46, 52, 57, 86, 99, 106, 111, 119, 121, 122, 128, 137, 147, 157, 184
smd2or, 167, 189
smoking, 191
subset.longarm, 192
summary.meta, 68, 74, 161, 173, 176, 193, 195
summary.rm5, 80, 184, 194
svg, 41, 52

text, 13, 16, 55, 62
to.long, 67
trimfill, 68, 74, 141
trimfill (trimfill.meta), 195
trimfill.default, 4
trimfill.meta, 4, 195

unit, 39
update.meta, 68, 86, 89, 99, 102, 106, 107, 119, 122, 128, 130, 137, 139, 147, 150, 157, 159, 176, 199

weights.meta, 68, 205
weights.rma.mv, 86, 99, 106, 119, 128, 137, 147, 157
woodyplants, 207