Package ‘metaDigitise’

March 13, 2020

Title Extract and Summarise Data from Published Figures
Version 1.0.1
Description High-throughput, flexible and reproducible extraction of data from figures in primary research papers. metaDigitise() can extract data and / or automatically calculate summary statistics for users from box plots, bar plots (e.g., mean and errors), scatter plots and histograms.
Depends R (>= 3.4)
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports magick, stats, graphics, utils, purrr
Suggests mockery, testthat, knitr, rmarkdown
BugReports https://github.com/daniel1noble/metaDigitise/issues
VignetteBuilder knitr
NeedsCompilation no
Author Joel Pick [aut],
 Shinichi Nakagawa [aut],
 Daniel Noble [aut, cre]
Maintainer Daniel Noble <daniel.wa.noble@gmail.com>
Repository CRAN
Date/Publication 2020-03-13 06:10:02 UTC

R topics documented:

 ask_variable ... 3
 bulk_edit ... 3
 calibrate .. 4
 cal_coords .. 4
 cat_matrix .. 5
 CI95_to_sd ... 5
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>convert_group_data</td>
<td>6</td>
</tr>
<tr>
<td>convert_histogram_data</td>
<td>6</td>
</tr>
<tr>
<td>delete_group</td>
<td>6</td>
</tr>
<tr>
<td>dir_details</td>
<td>7</td>
</tr>
<tr>
<td>edit_group</td>
<td>8</td>
</tr>
<tr>
<td>edit_metaDigitise</td>
<td>8</td>
</tr>
<tr>
<td>enter_N</td>
<td>9</td>
</tr>
<tr>
<td>error_to_sd</td>
<td>9</td>
</tr>
<tr>
<td>extract_digitised</td>
<td>10</td>
</tr>
<tr>
<td>filename</td>
<td>10</td>
</tr>
<tr>
<td>getExtracted</td>
<td>11</td>
</tr>
<tr>
<td>getVals</td>
<td>12</td>
</tr>
<tr>
<td>get_notDone_file_details</td>
<td>12</td>
</tr>
<tr>
<td>grandMean</td>
<td>13</td>
</tr>
<tr>
<td>grandSD</td>
<td>14</td>
</tr>
<tr>
<td>group_scatter_extract</td>
<td>15</td>
</tr>
<tr>
<td>histogram_extract</td>
<td>15</td>
</tr>
<tr>
<td>import_menu</td>
<td>16</td>
</tr>
<tr>
<td>import_metaDigitise</td>
<td>16</td>
</tr>
<tr>
<td>internal_digitise</td>
<td>17</td>
</tr>
<tr>
<td>internal_redraw</td>
<td>17</td>
</tr>
<tr>
<td>is.even</td>
<td>18</td>
</tr>
<tr>
<td>is.wholenumber</td>
<td>19</td>
</tr>
<tr>
<td>isNumeric</td>
<td>19</td>
</tr>
<tr>
<td>knownN</td>
<td>20</td>
</tr>
<tr>
<td>load_metaDigitise</td>
<td>20</td>
</tr>
<tr>
<td>locator_mD</td>
<td>21</td>
</tr>
<tr>
<td>logAxes</td>
<td>21</td>
</tr>
<tr>
<td>MB_extract</td>
<td>22</td>
</tr>
<tr>
<td>metaDigitise</td>
<td>22</td>
</tr>
<tr>
<td>order_lists</td>
<td>24</td>
</tr>
<tr>
<td>plot.metaDigitise</td>
<td>25</td>
</tr>
<tr>
<td>point_extraction</td>
<td>25</td>
</tr>
<tr>
<td>print.metaDigitise</td>
<td>26</td>
</tr>
<tr>
<td>print_cal_instructions</td>
<td>26</td>
</tr>
<tr>
<td>process_data</td>
<td>27</td>
</tr>
<tr>
<td>process_new_files</td>
<td>27</td>
</tr>
<tr>
<td>range_to_sd</td>
<td>28</td>
</tr>
<tr>
<td>redraw_calibration</td>
<td>29</td>
</tr>
<tr>
<td>redraw_points</td>
<td>29</td>
</tr>
<tr>
<td>redraw_rotation</td>
<td>30</td>
</tr>
<tr>
<td>rqm_to_mean</td>
<td>30</td>
</tr>
<tr>
<td>rqm_to_sd</td>
<td>31</td>
</tr>
<tr>
<td>setup_calibration_dir</td>
<td>32</td>
</tr>
<tr>
<td>se_to_sd</td>
<td>32</td>
</tr>
<tr>
<td>single_MB_extract</td>
<td>33</td>
</tr>
<tr>
<td>specify_type</td>
<td>33</td>
</tr>
<tr>
<td>summary.metaDigitise</td>
<td>34</td>
</tr>
</tbody>
</table>
ask_variable

Description

asks user what variable(s) is depending on plot type

Usage

ask_variable(plot_type)

Arguments

plot_type plot_type

bulk_edit

Description

Function for bulk editing previous data extraction through ‘metaDigitise’

Usage

bulk_edit(dir, summary = TRUE, cex)

Arguments

dir parent directory
summary logical; whether summary is returned
 cex relative size of text and points in replotting

Author(s)

Joel Pick
calibrate

Description

Converts x and y coordinates from original plot coords to actual coords using previous identified coordinates. Modified from digitise package

Usage

```r
 calibrated(raw_data, calpoints, point_vals, log_axes, ...)
```

Arguments

- `raw_data`: The raw data
- `calpoints`: The calibration points
- `point_vals`: The point values
- `log_axes`: whether x or y is logged
- `...`: further arguments passed to or from other methods

cal_coords

Description

Prompts user to enter axis coordinates, and their values. Modified from the digitize package

Usage

```r
 cal_coords(plot_type, cex, ...)
```

Arguments

- `plot_type`: plot type
- `cex`: size of points
- `...`: further arguments passed to or from other methods.
cat_matrix

Description

prints a vector as a number list of items with a certain number of columns

Usage

\[\text{cat_matrix}(x, \text{cols}) \]

Arguments

- \(x \) vector
- \(\text{cols} \) number of columns

CI95_to_sd

Description

Transforms symmetrical confidence interval to standard deviation

Usage

\[\text{CI95_to_sd}(\text{CI}, n) \]

Arguments

- \(\text{CI} \) Interval difference from the mean
- \(n \) Sample Size

Value

Returns vector of standard deviations

Author(s)

Joel Pick

Examples

\[\text{CI95_to_sd} (\text{CI} = 2, n = 10) \]
convert_group_data

Description
Converts, pre-calibrated points clicked into a meaningful dataframe

Usage
convert_group_data(cal_data, plot_type)

Arguments
- cal_data: Calibrated data
- plot_type: The type of plot

convert_histogram_data

Description
Conversion of extracted data from histogram

Usage
convert_histogram_data(cal_data)

Arguments
- cal_data: The calibration data

delete_group

Description
Delete groups from scatterplots

Usage
delete_group(raw_data)

Arguments
- raw_data: data
Description

Function will gather important directory details about calibration files and figures needed for processing.

Usage

`dir_details(dir)`

Arguments

- `dir` the path name to the directory / folder where the files are located

Author(s)

Daniel Noble - daniel.wa.noble@gmail.com

Examples

```r
# temporary directory
tmp_dir <- tempdir()

setup_calibration_dir(paste0(tmp_dir, "/"))

# Simulate data
set.seed(103)
x <- rnorm(20,0,1)
y <- rnorm(20,0,1)
means <- c(mean(x),mean(y))
ses <- c(sd(x)/sqrt(length(x))*1.96, sd(y)/sqrt(length(y))*1.96)

#Generate mock figures
png(filename = paste0(tmp_dir,"/mean_error.png"), width = 480, height = 480)
plot(means, ylim = c(min(means-ses)-0.1,max(means+ses)+0.1), xlim=c(0.5,2.5),
xaxt="n", pch=19, cex=2, ylab="Variable +/- SE", xlab="Treatment", main="Mean Error")
arrows(1:length(means),means+ses, 1:length(means), means-ses, code=3, angle=90, length=0.1)
axis(1,length(means),names(means))
dev.off()

png(filename = paste0(tmp_dir, "/boxplot.png"), width = 480, height = 480)
boxplot(x,y, main="Boxplot")
dev.off()

png(filename = paste0(tmp_dir, "/histogram.png"),width = 480, height = 480)
hist(c(x,y), xlab = "variable", main="Histogram")
dev.off()

png(filename = paste0(tmp_dir, "/scatterplot.png"), width = 480, height = 480)
plot(x,y, main="Scatterplot")
```
dev.off()

Obtain details on directory structure that are used for metaDigitise
data <- dir_details(tmp_dir)

edit_group

Description

Edit group points in scatterplots

Usage

`edit_group(raw_data, group_id, calpoints, cex, ...)`

Arguments

- `raw_data`: data
- `group_id`: group_id
- `calpoints`: The calibration points
- `cex`: point size
- `...`: other functions to pass to `internal_redraw`

edit_metaDigitise

Description

Function for editing previous data extraction through `metaDigitise`

Usage

`edit_metaDigitise(object)`

Arguments

- `object`: an R object of class `metaDigitise`

Value

Data.frame

Author(s)

Joel Pick
Description

Enter sample sizes for a group

Usage

```r
enter_N(raw_data, ...)
```

Arguments

- `raw_data`
- `...` Pass additional arguments

Author(s)

Joel Pick

Description

Transforms error to standard deviation

Usage

```r
error_to_sd(error, n, error_type = c("se", "CI95", "sd", NA))
```

Arguments

- `error` some form of error
- `n` Sample Size
- `error_type` type of error measured

Value

Returns vector of standard errors

Author(s)

Joel Pick
Description

Function for extracting the data from a metaDigitise list and creating either summary data or a list of the raw data.

Usage

```r
extract_digitised(list, summary = TRUE)
```

Arguments

- `list` A list of objects returned from metaDigitise
- `summary` A logical 'TRUE' or 'FALSE' indicating whether metaDigitise should print summary statistics from each figure and group.

Value

The function will return a data frame with the data across all the digitised files

Description

extracts filename from filepath

Usage

```r
filename(x)
```

Arguments

- `x` filepath
Description

Extracts data from a directory that has been previously digitised using metaDigitise()

Usage

getExtracted(dir, summary = TRUE)

Arguments

dir The directory where figures have already been digitised. There
summary Logical indicating whether summarised (default) or calibrated data should be
 returned.

Value

Returns a data frame (summary = TRUE) or a list with slots for each plot type (summary = FALSE)

Examples

Make some mock metaDigitise object
mock_metaDig <- list(
 image_file = "/image.png",
 flip=FALSE,
 rotate=0,
 plot_type="mean_error",
 variable="y",
 calpoints = data.frame(x=c(0,0),y=c(0,100)),
 point_vals = c(1,2),
 entered_N=TRUE,
 raw_data = data.frame(id=rep("control",2),
 x=c(60,60),
 y=c(75,50),
 n=rep(20,2)),
 knownN = NULL,
 error_type="sd",
 processed_data=data.frame(id=as.factor("control"),
 mean=1.5,
 error=0.25,
 n=20,
 variable="y",
 stringsAsFactors = FALSE)
)
class(mock_metaDig) <- 'metaDigitise'
getVals

Description

Gets values needed to calibrate axis coordinated. Modified from the digitize package.

Usage

```r
getVals(calpoints, ...)
```

Arguments

- `calpoints`: Calibration points
- `...`: further arguments passed to or from other methods.

get_notDone_file_details

Description

Function will get file information from the directory and the calibration files. It will also exclude files that have already been processed, as is judged by the match between file names in the calibration folder and the imported details object.

Usage

```r
get_notDone_file_details(dir)
```

Arguments

- `dir`: Path name to the directory / folder where the figure files are located.
Value

Returns a list containing details on the images names and their paths, the calibration file names (or files already completed) as well as the paths to these files.

Author(s)

Daniel Noble - daniel.wa.noble@gmail.com

Examples

```r
# temporary directory
tmp_dir <- tempdir()

# Simulate data
set.seed(103)
x <- rnorm(20,0,1)
y <- rnorm(20,0,1)
means <- c(mean(x),mean(y))
ses <- c(sd(x)/sqrt(length(x))*1.96, sd(y)/sqrt(length(y))*1.96)

# Generate mock figures
png(filename = paste0(tmp_dir,"/mean_error.png"), width = 480, height = 480)
plot(means, ylim = c(min(means-ses)-0.1,max(means+ses)+0.1), xlim=c(0.5,2.5), xaxt="n", pch=19, cex=2, ylab="Variable +/- SE", xlab="Treatment", main="Mean Error")
arrows(1:length(means),means+ses, 1:length(means), means-ses, code=3, angle=90, length=0.1)
axis(1,1:length(means),names(means))
dev.off()

png(filename = paste0(tmp_dir,"/boxplot.png"), width = 480, height = 480)
boxplot(x,y, main="Boxplot")
dev.off()

png(filename = paste0(tmp_dir,"/histogram.png"),width = 480, height = 480)
hist(c(x,y),xlab="variable", main="Histogram")
dev.off()

png(filename = paste0(tmp_dir,"/scatterplot.png"), width = 480, height = 480)
plot(x,y, main="Scatterplot")
dev.off()

# Obtain file names that are incomplete within the tmp directory
data <- get_notDone_file_details(tmp_dir)
```

Description

Pooled mean of a set of group means
Usage

grandMean(mean, n)

Arguments

mean | Mean
n | Sample size

Value

Returns vector of pooled mean

Author(s)

Joel Pick

Examples

grandMean(mean = 10, n = 30)

Description

Pooled standard deviation of a set of groups

Usage

grandSD(mean, sd, n, equal = FALSE)

Arguments

mean | Mean
sd | standard deviation
n | Sample size
equal | Logical: Whether to calculate pooled SD assuming groups have the same means (TRUE) or different means (FALSE)

Value

Returns vector of pooled mean

Author(s)

Joel Pick
Examples

```r
grandSD(mean = 10, sd = 3, n = 40)
```

Description

Extraction of data from scatterplots

Usage

```r
group_scatter_extract(edit = FALSE, 
raw_data = data.frame(stringsAsFactors = TRUE), cex, ...)
```

Arguments

- `edit` logical; whether in edit mode
- `raw_data` raw data
- `cex` point size
- `...` arguments passed to `internal_redraw`

Description

Extraction of data from histograms

Usage

```r
histogram_extract(edit = FALSE, raw_data = data.frame(), calpoints, 
cex, ...)
```

Arguments

- `edit` logical; whether in edit mode
- `raw_data` raw data
- `calpoints` The calibration points
- `cex` point size
- `...` arguments to pass to `internal_redraw`
import_menu

Description

Imports metaDigitise() calibration files from a directory that is partially or fully digitised already

Usage

import_menu(dir, summary)

Arguments

dir

The directory where figures have already been digitised

summary

Logical indicating whether the imported data should be returned in summarised or processed form.

Value

Returns a list (summary = FALSE) or data frame (summary = TRUE)

import_metaDigitise

Description

Imports metaDigitise() calibration files from a directory that is partially or fully digitised already

Usage

import_metaDigitise(dir, summary)

Arguments

dir

The directory where figures have already been digitised

summary

Logical indicating whether the imported data should be returned in summarised form ("TRUE") or not ("FALSE")

Value

Returns a list (summary = FALSE) or data frame (summary = TRUE)

Author(s)

Daniel Noble - daniel.wa.noble@gmail.com
internal_digitise

Description

Extracts points from a single figure and processes data

Usage

internal_digitise(image_file, plot_type = NULL, cex)

Arguments

image_file Image file
plot_type Type of plot from "mean_error", "boxplot", "scatterplot" or "histogram". Function will prompt if not entered by user.
cex point size for replotting

Value

List of user inputs and transformed data from digitisation

Author(s)

Joel Pick

internal_redraw

Description

Redraws figure and extraction data

Usage

internal_redraw(image_file, flip = FALSE, rotate = 0,
plot_type = NULL, variable = NULL, cex = NULL, calpoints = NULL,
point_vals = NULL, raw_data = NULL, rotation = TRUE,
calibration = TRUE, points = TRUE, ...)

is.even

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>image_file</td>
<td>Image filename</td>
</tr>
<tr>
<td>flip</td>
<td>whether to flip figure</td>
</tr>
<tr>
<td>rotate</td>
<td>how much to rotate figure</td>
</tr>
<tr>
<td>plot_type</td>
<td>plot_type</td>
</tr>
<tr>
<td>variable</td>
<td>variable</td>
</tr>
<tr>
<td>cex</td>
<td>relative size of points and text</td>
</tr>
<tr>
<td>calpoints</td>
<td>The calibration points</td>
</tr>
<tr>
<td>point_vals</td>
<td>The point values</td>
</tr>
<tr>
<td>raw_data</td>
<td>The raw data</td>
</tr>
<tr>
<td>rotation</td>
<td>logical, should figure be rotated</td>
</tr>
<tr>
<td>calibration</td>
<td>logical, should calibration be redrawn</td>
</tr>
<tr>
<td>points</td>
<td>logical, should points be redrawn</td>
</tr>
<tr>
<td>...</td>
<td>further arguments passed to or from other methods.</td>
</tr>
</tbody>
</table>

Description

Checks whether a integer is even

Usage

is.even(x)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>integer value</td>
</tr>
</tbody>
</table>

Value

Logical (TRUE or FALSE) indicating whether value is an even number or not
is.wholenumber

Description
Checks whether value is a whole number

Usage
is.wholenumber(x, tol = .Machine$double.eps^0.5)

Arguments
- x: object to be tested
- tol: tolerance

Value
Logical value (TRUE or FALSE)

isNumeric

Description
Checks whether a character is a number

Usage
isNumeric(x)

Arguments
- x: character to be tested

Value
Logical (TRUE or FALSE) indicating whether value is numeric or not
knownN

knownN

Description

prints a vector as a number list of items with a certain number of columns

Usage

\[
\text{knownN}(\text{plot_type}, \text{processed_data}, \text{knownN} = \text{NULL}, \ldots)
\]

Arguments

- **plot_type**: plot type
- **processed_data**: raw data
- **knownN**: previously entered N
- **...**: arguments from other calls

load_metaDigitise

load_metaDigitise

Description

Loads metaDigitise calibration / data files from a directory containing a set of figures that are partially or fully digitised already.

Usage

\[
\text{load_metaDigitise}(\text{doneCalFiles}, \text{names})
\]

Arguments

- **doneCalFiles**: The metaDigitise objects that have already been completed in the directory
- **names**: The names of the finished metaDigitise objects

Value

Returns a list of metaDigitised objects that have already been completed

Author(s)

Daniel Noble - daniel.wa.noble@gmail.com
locator_mD

Description

Wrapper function for locator, with more control over point size etc

Usage

locator_mD(nPoints = 1, line = TRUE, cex = 1, col = "red", ...)

Arguments

nPoints number of points in a sequence
line logical; plot lines between points
cex size of points
col colour of points
... further arguments passed to or from other methods.

Value

Plots clicked points, and returns their x,y coordinates as a data.frame

logAxes

Description

Ask user for information about whether axes are on log scale

Usage

logAxes(...)
MB_extract

Description

Extraction of data from boxplots of mean_error plots, from multiple groups

Usage

```r
MB_extract(edit = FALSE, plot_type, entered_N,
            raw_data = data.frame(stringsAsFactors = TRUE), cex, ...)
```

Arguments

- `edit`: logical; whether in edit mode
- `plot_type`: The type of plot
- `entered_N`: ask for sample sizes?
- `raw_data`: raw data
- `cex`: point size
- `...`: further arguments to `MB_extract`

metaDigitise

Description

Single or batch processing of figures with .png, .jpg, .tiff, .pdf extensions within a set directory. metaDigitise() consolidates the data and exports the data for each image and image type. It can also summarise the data, provide the raw data (if scatterplots) and automatically imports previously finished data and merges it with newly digitised data. metaDigitise() also allows users to check their calibration along with editing previous digitisations.

Usage

```r
metaDigitise(dir, summary = TRUE, cex = 1)
```

Arguments

- `dir`: the path name to the directory / folder where the files are located
- `summary`: whether the digitised data should be returned as a summary (TRUE) or as a concatenated list of similar types.
- `cex`: relative size of points and text in replotting of digitisation. Default is 1.
metaDigitise

Details

`metaDigitise()` can be used on a directory with a whole host of different figure types (mean and error, scatter plots, box plots and histograms) and file types (.jpeg, .png, .tiff, .pdf). There are three major options provided to users:

If the "1: Process new images" option is chosen, it will automatically cycle through all figures not already completed within a directory in order, prompting the user for specific information as they go. At the end of each figure users will be asked if they would like to continue or not, providing flexibility to leave a job should they need to. As figures are digitised it will automatically write `metaDigitise()` object files (in .RDS format containing processed and calibration data along with directory and file details), into a special caldat/ folder within the directory. Importantly, as new files are added to a directory that has already been "completed", `metaDigitise()` will recognize these unfinished files and only cycle through the digitisation of these new files. This easily allows users to pick up from where they left off. It will also automatically re-merge completed figure with any newly digitised figures at the end of this process keeping everything together throughout the process.

If the "2: Import existing data" is chosen, all existing files that have already been digitised will be automatically imported from the given directory.

Finally, `metaDigitise` is built for ease of editing and reproducibility in mind. Hence, if "3: Edit existing data" is chosen by the user then users will have the options to "1: Cycle through images" (that are complete), overlaying digitisations with each figure and asking whether they would like to edit each figure or "2: Choose specific file to edit" allowing editing for a specific file. Here a list of all files are provided and the user simply needs to pick the one in the console they would like to view. Alternatively, the "3: Enter previously omitted sample sizes" option allows the user to go back and enter sample sizes that they may not have had on hand at the time of digitisation. This means that, so long as the caldat/ folder along with respective images are maintained, anyone using `metaDigitise()` can simply import existing digitisations, modify them and fix them. This folder can then be shared with colleagues to allow them to reproduce any data extraction.

Value

A data frame or list containing the raw digitised data or the processed, summary statistics from the digitised data

Author(s)

Joel Pick - joel.l.pick@gmail.com
Daniel Noble - daniel.wa.noble@gmail.com

Examples

```r
# temporary directory
tmp_dir <- tempdir()

# Simulate data
set.seed(103)
x <- rnorm(20,0,1)
y <- rnorm(20,0,1)
```
order_lists

Description
Will re-order the processed data such that similar types of data are organised into a single list defined by their plot type.

Usage
order_lists(list, plot_types)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list</td>
<td>The list of metaDigitise objects that have already been finished within the caldat/folder</td>
</tr>
<tr>
<td>plot_types</td>
<td>The list of plot types extracted from metaDigitised objects</td>
</tr>
</tbody>
</table>

Value
Returns a list ordered by the plot type
plot.metaDigitise

Author(s)
Daniel Noble - daniel.wa.noble@gmail.com

Description
Re-plots figure and extraction data

Usage
S3 method for class 'metaDigitise'
plot(x, cex = NULL, ...)

Arguments
x an R object of class `metaDigitise`
cex size of points
... further arguments passed to or from other methods.

Author(s)
Joel Pick

point_extraction

Description
Extracts or edits point of a digitisation

Usage
point_extraction(object, edit = FALSE)

Arguments
object Object
edit Logical (TRUE or FALSE) indicating whether a point would like to be edited
Description

Print method for class ‘metaDigitise’

Usage

```r
## S3 method for class 'metaDigitise'
print(x, ...)
```

Arguments

- `x` : an R object of class ‘metaDigitise’
- `...` : further arguments passed to or from other methods.

Author(s)

Joel Pick

Description

Prints instructions for calibration. Modified from the digitize package

Usage

```r
print_cal_instructions(plot_type, ...)
```

Arguments

- `plot_type` : plot type
- `...` : further arguments passed to or from other methods.
process_data

Description

Processes points clicked into a meaningful dataframe

Usage

```r
process_data(object)
```

Arguments

- `object` object from metaDigitise

process_new_files

Description

Batch processes image files within a set directory, consolidates the data and exports the data for each image and type

Usage

```r
process_new_files(dir, summary = TRUE, cex)
```

Arguments

- `dir` the path name to the directory / folder where the files are located
- `summary` summary = TRUE or FALSE is most relevant as it will print a simple summary statistics that are the same across all files
- `cex` relative size of points and text in replotting of digitisation.

Author(s)

Joel Pick - joel.l.pick@gmail.com

Daniel Noble - daniel.wa.noble@gmail.com
Examples

```r
# temporary directory
tmp_dir <- tempdir()

# Simulate data
set.seed(103)
x <- rnorm(20,0,1)
y <- rnorm(20,0,1)
means <- c(mean(x),mean(y))
bes <- c(sd(x)/sqrt(length(x))*1.96, sd(y)/sqrt(length(y))*1.96)

#Generate mock mean error plot
png(filename = paste0(tmp_dir,"/mean_error.png"), width = 480, height = 480)
plot(means, ylim = c(min(means-ses)-0.1,max(means+ses)+0.1), xlim=c(0.5,2.5),
xaxt="n", pch=19, cex=2, ylab="Variable +/- SE", xlab="Treatment", main="Mean Error")
arrows(1:length(means),means+ses, 1:length(means), means-ses, code=3, angle=90, length=0.1)
axis(1,1:length(means),names(means))
dev.off()

## Not run:
#metaDigitise figures
data <- process_new_files(paste0(tmp_dir, ",/"), summary = TRUE, cex = 2)
## End(Not run)
```

range_to_sd

Description

Converts a range to a standard deviation

Usage

`range_to_sd(min, max, n)`

Arguments

- `min` Minimum value
- `max` Maximum value
- `n` Sample size

Value

Returns vector of standard deviation
redraw_calibration

Author(s)

Joel Pick

Examples

```r
gerange_to_sd(min = 3, max = 8, n = 40)
```

redraw_calibration **redraw_calibration**

Description

plots calibration data on graph

Usage

```r
redraw_calibration(plot_type, variable, calpoints, point_vals, image_details, cex)
```

Arguments

- `plot_type`
- `variable`
- `calpoints` The calibration points
- `point_vals` The point values
- `image_details` image_details
- `cex` relative size of points and text

redraw_points **redraw_points**

Description

plots clicked data on graph

Usage

```r
redraw_points(plot_type, raw_data, image_details, cex)
```

Arguments

- `plot_type`
- `raw_data` The raw data
- `image_details` image_details
- `cex` relative size of points and text
Description

Rotates/flips imported figures

Usage

redraw_rotation(image, flip, rotate)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>image</td>
<td>Image object from magick::image_read</td>
</tr>
<tr>
<td>flip</td>
<td>whether to flip figure</td>
</tr>
<tr>
<td>rotate</td>
<td>how much to rotate figure</td>
</tr>
</tbody>
</table>

Description

Calculate the mean from the box plots

Usage

rqm_to_mean(min, LQ, median, UQ, max, n)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>Minimum value</td>
</tr>
<tr>
<td>LQ</td>
<td>Lower 75th quartile</td>
</tr>
<tr>
<td>median</td>
<td>Median</td>
</tr>
<tr>
<td>UQ</td>
<td>Upper 75th quartile</td>
</tr>
<tr>
<td>max</td>
<td>Maximum value</td>
</tr>
<tr>
<td>n</td>
<td>Sample size</td>
</tr>
</tbody>
</table>

Value

Returns vector of mean

Author(s)

Joel Pick
Examples

rqm_to_mean(min = 2, LQ = 3, median = 5, UQ = 6, max = 9, n = 30)

Description

Calculate the standard deviation from box plots

Usage

rqm_to_sd(min, LQ, UQ, max, n)

Arguments

- min: Minimum value
- LQ: Lower 75th quartile
- UQ: Upper 75th quartile
- max: Maximum value
- n: Sample size

Value

Returns vector of standard deviation

Author(s)

Joel Pick

Examples

rqm_to_sd(min = 2, LQ = 3, UQ = 6, max = 9, n = 30)
setup_calibration_dir

Description
Function will check whether the calibration directory has been setup and if not, create one.

Usage
setup_calibration_dir(dir)

Arguments
 dir Path name to the directory / folder where the files are located.

Value
 Returns a caldat/ folder within the directory where all metaDigitise objects are stored.

Author(s)
Daniel Noble - daniel.wa.noble@gmail.com

Examples

 # temporary directory
 tmp_dir <- tempdir()

 #Create the calibration folder in the directory specified that is used to store files.
 setup_calibration_dir(paste0(tmp_dir, "/"))

se_to_sd

Description
Transforms standard error to standard deviation

Usage
se_to_sd(se, n)
Arguments

- **se** Standard Error of the mean
- **n** Sample Size

Value

Returns vector of standard errors

Author(s)

Joel Pick

Examples

```
se_to_sd(se = 5, n = 10)
```

Description

Takes points user defined points from a single group mean_error plot or boxplot, in a set order, and returns them.

Usage

```
single_MB_extract(plot_type, cex)
```

Arguments

- **plot_type** Type of plot
- **cex** point size

Description

Function that allows user to interface with function to specific each type of plot prior to digitising

Usage

```
specify_type()
```
Value

The function will return the type of plot specified by the user and feed this argument back into metDigitise

Author(s)

Daniel Noble - daniel.wa.noble@gmail.com
Joel Pick - joel.l.pick@gmail.com

summary.metaDigitise summary.metaDigitise

Description

Summary method for class ‘metaDigitise’

Usage

S3 method for class 'metaDigitise'
summary(object, ...)

Arguments

object an R object of class ‘metaDigitise’
... further arguments passed to or from other methods.

Value

Data.frame

Author(s)

Joel Pick

user_base

user_base

Description

asks user for base of logarithm, accept numeric or "e"

Usage

user_base(...)

Arguments

... arguments passed to other functions
Description

Gets values needed to calibrate axis coordinates. Modified from the digitize package.

Usage

user_calibrate(object)

Arguments

object metaDigitise object

Description

Asks user for count.

Usage

user_count(question)

Arguments

question question

Description

Asks user for numeric.

Usage

user_numeric(question)

Arguments

question question
user_options

Description

Asks user for option from specified list

Usage

```python
user_options(question, allowed_answers)
```

Arguments

- `question`: question
- `allowed_answers`: allowed answers

user_rotate_graph

Description

Rotates/flips imported figures according to user input, in order to align them properly. Asks the user after each change if further alteration is required

Usage

```python
user_rotate_graph(image_file)
```

Arguments

- `image_file`: Image filename
Description

asks user for option from specified list

Usage

user_unique(question, previous_answers)

Arguments

 question question
 previous_answers allowed answers
Index

ask_variable, 3
bulk_edit, 3
cal_coords, 4
calibrate, 4
cat_matrix, 5
CI95_to_sd, 5
convert_group_data, 6
convert_histogram_data, 6
delete_group, 6
dir_details, 7
dir_details, 7
edit_group, 8
edit_metaDigitise, 8
enter_N, 9
error_to_sd, 9
extract_digitised, 10
filename, 10
get_notDone_file_details, 12
getExtracted, 11
getVals, 12
grandMean, 13
grandSD, 14
group_scatter_extract, 15
histogram_extract, 15
import_menu, 16
import_metaDigitise, 16
internal_digitise, 17
internal_redraw, 17
is.even, 18
is.wholenumber, 19
isNumeric, 19
knownN, 20
load_metaDigitise, 20
locator_mD, 21
logAxes, 21
MB_extract, 22
metaDigitise, 22
order_lists, 24
plot.metaDigitise, 25
point_extraction, 25
print.metaDigitise, 26
print_cal_instructions, 26
process_data, 27
process_new_files, 27
range_to_sd, 28
redraw_calibration, 29
redraw_points, 29
redraw_rotation, 30
rqm_to_mean, 30
rqm_to_sd, 31
se_to_sd, 32
setup_calibration_dir, 32
single_MB_extract, 33
specify_type, 33
summary.metaDigitise, 34
user_base, 34
user_calibrate, 35
user_count, 35
user_numeric, 35
user_options, 36
user_rotate_graph, 36
user_unique, 37