Package ‘metaGE’

March 8, 2023

Title Meta-Analysis for Detecting Genotype \times Environment Associations

Version 1.0.0

Maintainer Annaïg De Walsche <annaig.de-walsche@inrae.fr>

Description Meta-analysis of genome-wide association studies for studying
Genotype \times Environment interactions. The 4 main functions of the
package metaGE.collect(), metaGE.cor(), metaGE.fit() and metaGE.test()
correspond to 4 steps to perform the meta-analysis: Collecting the
results of genome-wide association studies data from different files;
Inferring the inter-environment correlation matrix; Performing global
test procedure for quantitative trait loci detection (using a Fixed or
Random effect model); Performing tests of contrast or meta-regression
using an environmental co-factor. (De Walsche, A., et al. (2023)
<doi:10.1101/2023.03.01.530237>).

License GPL-3

Depends R (>= 3.0.2)

Imports circlize, ComplexHeatmap, corrplot, data.table, dplyr,
emdbook, future, ggplot2, ggrepel, graphics, grid, ks, purrr,
qqman, Rfast, stats, stringr, tibble, tidyr, utils, viridis

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Annaïg De Walsche [aut, cre] (<https://orcid.org/0000-0003-0603-1716>),
Tristan Mary-Huard [aut] (<https://orcid.org/0000-0002-3839-9067>)

Repository CRAN

Date/Publication 2023-03-08 19:40:06 UTC

R topics documented:

 autocor .. 2
 CheckContrast ... 3
The function autocor computes the autocorrelation. (function from localscore)

Usage

 autocor(x)

Arguments

 x
 A numeric vector.

Value

 the autocorrelation.
CheckContrast

Description

The function CheckContrast check and reformat the matrix of contrast.

Usage

```
CheckContrast(Contrast, ContrastName)
```

Arguments

- **Contrast**: A matrix of contrast.
- **ContrastName**: The name of the contrast.

Value

The matrix of contrast in the right format.

CheckIncidence

Description

The function CheckIncidence check and reformat the matrix of incidence.

Usage

```
CheckIncidence(Incidence, IncidenceName)
```

Arguments

- **Incidence**: A matrix of incidence, as obtained from metaGE.incidence.
- **IncidenceName**: The name of the incidence.

Value

The matrix of incidence in the right format.
ContrastStatTest

Compute the statistic of the contrast test.

Description

The function ContrastStatTest compute the statistic of the contrast test.

Usage

```r
ContrastStatTest(Incidence, Contrast = NULL, Zmat, MatCorr, IncidenceName)
```

Arguments

- **Incidence**: A matrix of incidence, as obtained from metaGE.incidence.
- **Contrast**: A matrix of contrast, if NULL the identity matrix is used. (NULL by default)
- **Zmat**: A matrix containing the Zscores of all markers (in rows) in each environment (in columns).
- **MatCorr**: The inter-environments correlation matrix. Can be computed using MetaGE.cor.
- **IncidenceName**: The name of the incidence.

Value

A dataset of two columns containing the pvalue of the test of contrast and the minimum number of environment per group of all markers.

ContrastStatTest.NA

Compute the statistic of the contrast test in presence of missing values

Description

The function ContrastStatTest compute the statistic of the contrast test.

Usage

```r
ContrastStatTest.NA(
  Incidence,
  Contrast = NULL,
  Zmat,
  MatCorr,
  Data,
  Configs.list,
  IncidenceName
)
```
Arguments

Incidence A matrix of incidence, as obtained from metaGE.incidence.
Contrast A matrix of contrast, if NULL the identity matrix is used. (NULL by default)
Zmat A matrix containing the Zscores of all markers (in rows) in each environment (in columns).
MatCorr The inter-environments correlation matrix. Can be computed using MetaGE.cor.
Data A dataset containing the effect, the pvalues and the na configuration for all marker
Configs.list A vector containing the NA configurations present in the dataset
IncidenceName The name of the incidence.

Value

A dataset of two columns containing the pvalue of the test of contrast and the minimum number of environment per group of all markers.

Description

A dataset containing variables describing the 22 environments.

Usage

envDesc

Format

A data frame with 22 rows and 3 variables:

- FileName: environment name
- Temp: temperature
- Water: water condition

Description of the environments.
FastKerFdr

Description

Computes H1 posteriors of the Z-scores.

Usage

```r
FastKerFdr(Z, p0, plotting = FALSE, NbKnot = 1e+05, tol = 1e-05)
```

Arguments

- `Z`
 A vector containing Zscores

- `p0`
 A double between 0 and 1. A priori proportion of H0 hypotheses

- `plotting`
 A boolean saying to plot or not (FALSE by default)

- `NbKnot`
 The (maximum) number of knot for the kde procedure. (1e5 by default)

- `tol`
 A tolerance value for convergence (1e-5 by default)

Value

- `tau`
 is the vector of H1 posteriors

GetH0Items

Description

This function give the index of the markers which seems not significant (under H0)

Usage

```r
GetH0Items(Zmat, Threshold = 0.8, plotting = FALSE)
```

Arguments

- `Zmat`
 A matrix containing the Zscore (in rows) for each environment (in columns)

- `Threshold`
 Threshold on posteriors (to be H1) to filter markers for correlation computation (0.6 by default)

- `plotting`
 A boolean saying to plot or not (FALSE by default)

Value

- A vector of index of markers which seems not significant (under H0)
lindley

Computation of the lindley process from scores.

Description
The function lindley computes the lindley process from scores.

Usage
lindley(scores)

Arguments
scores A numeric vector.

Value
the lindley.

LLikelihoodT_vect

Description
This function compute the values of loglikelihood for all markers.

Usage
LLikelihoodT_vect(Zmat, Delta, P, Mu, Tau)

Arguments
Zmat A matrix containing the Zscores of all markers (in rows) in each environment (in columns)
Delta A vector containing the diagonal coefficients of the diagonal matrix obtained by the diagonalization of the correlation matrix
P Matrix such that MatCorr = P Delta t(P), with Delta diagonal
Mu A vector containing the average effect of the markers
Tau A vector containing the heterogeneity between environments of the markers

Value
A vector containing the value of the Log-Likelihood of all markers
MakeQQplot
Drawing a QQplot

Description

The function `MakeQQplot` displays the QQplot of the -log10(pvalues).

Usage

```r
MakeQQplot(Pvalues, Name = NULL, Xrange = NULL, Yrange = NULL)
```

Arguments

- **Pvalues**
 A vector containing pvalues.

- **Name**
 A name of the corresponding test. (optional)

- **Xrange**
 A range for the x axis. (optional)

- **Yrange**
 A range for the y axis. (optional)

metaData
Results of different GWAS.

Description

A dataset containing the results of 10 different genetic association studies testing the association between a set of 25,436 markers and the grain yield. The data are extracted from: Drops Amaizing available on the https://doi.org/10.15454/6TL2N4 website. This dataset were obtained thanks to the `metaGE.collect` function.

Usage

```r
metaData
```

Format

A data frame with 25,436 rows and 35 variables:

- **CHR**: chromosome of the marker
- **POS**: position of the marker
- **MARKER**: name of the marker
- **FREQ.env**: maf of the marker in the environment env
- **EFFECT.env**: regression coefficient of the marker in the environment env
- **EFFECT_SE.env**: standard error of the regression coefficient of the marker in the environment env
• PVAL.env: pvalue of the marker in the environment env
• WEIGHT.env: weight of the marker in the environment env
• ALLELE0: allele0
• ALLELE1: allele1

Description

This function merges files containing the summary statistics of GWAS in different environments (one file per environment).

Usage

```r
metaGE.collect(
  FileNames,
  VariableNames,
  MinFreq = 0,
  DropDuplicates = TRUE,
  Verbose = FALSE,
  NA.rmv = TRUE
)
```

Arguments

- **FileNames**: A list containing the file paths to merge (one trait only) or a list of such lists
- **VariableNames**: A named list containing the column names in the original files corresponding to the variables below:
 - MARKER, CHR, POS, EFFECT, EFFECT_SE, PVAL,
 - (optional: FREQ, ALLELE0, ALLELE1, WEIGHT) or a list of such lists.
- **MinFreq**: A numeric value allowing to filter markers based on the maf. (optional)
- **DropDuplicates**: A boolean indicating whether duplicate markers should be removed or not. (TRUE by default)
- **Verbose**: A boolean indicating whether progression messages should be printed or not. (FALSE by default)
- **NA.rmv**: A boolean should the NA be removed or not (TRUE by default)

Details

Each file MUST contain the variables below:

- MARKER = marker,
- CHR = the chromosome,
• POS = the position of the marker on the chromosome,
• EFFECT = the mean effect of the marker,
• EFFECT_SE = the standard error of the mean effect,
• PVAL = the pvalue of the mean effect. Each file might contain the variables:
• FREQ = MAF
• ALLELE0
• ALLELE1
• WEIGHT

Value
A list of:
• Data -> a tibble containing all the columns of interest of all the files from FileNames,
• RemovedMarkers -> same kind of tibble, but containing the markers that have been removed due to unclear allele coding.

Examples
```
require(dplyr)
require(tibble)
require(stringr)
RepData <- system.file("extdata", package = "metaGE")
# Get the complete list of association files
File.list <- list.files(RepData ,full.names = TRUE) %>%
  tibble(Names = .) %>%
  mutate(ShortNames = Names %>%
    str_remove(pattern = paste0(RepData,"/")) %>%
    str_remove(pattern = ".DF.txt")) %>%
  select(ShortNames,Names) %>%
deframe
###Build the dataset
## First provide the list of variable names
Names.list <- list(MARKER="Marker_Name",
CHR="Chromosome",
POS="Marker_Position",
FREQ="Maf",
EFFECT="SNP_Weight",
PVAL="Pvalue",
ALLELE0="Allele1",
ALLELE1="Allele2")

MinFreq <- 0.07

## Now collect
metaData <- metaGE.collect(File.list, Names.list, MinFreq = MinFreq)
```
metaGE.cor

Infer inter-environment correlation matrix

Description

This function infer the inter-environment correlation matrix from the z-scores after filtering markers with high probability of being under H1.

Usage

\[
\text{metaGE.cor}(\text{Data}, \text{Threshold} = 0.6, \text{NA.omit} = \text{TRUE})
\]

Arguments

- **Data**: A dataset containing the effects and pvalues of each marker (in rows) in each environment (in columns) as obtained by metaGE.collect
- **Threshold**: Threshold on posteriors (to be H1) to filter markers before computing correlation (0.6 by default)
- **NA.omit**: A boolean: should the NA be removed for the inter-environment correlation matrix computation (default=TRUE)

Value

The inter-environment correlation matrix

Examples

```r
require(corrplot)
data("metaData")
Threshold <- 0.8
matCorr <- metaGE.cor(metaData, Threshold = Threshold)
#corrplot(matCorr,order = "hclust")
```

metaGE.fit

Meta-analysis procedure: Fixed or Random effect.

Description

Quantitative trait loci detection via Fixed or Random effect meta-analysis GWAS procedure.

Usage

\[
\text{metaGE.fit}(\text{Data}, \text{MatCorr}, \text{Method}, \text{NA.omit} = \text{TRUE}, \text{DropZScores} = \text{FALSE})
\]
Arguments

Data A dataset containing the estimated marker effect and its associated pvalue of each marker (in rows) in each environment (in columns), as obtained from metaGE.collect.

MatCorr The inter-environments correlation matrix. Can be computed using metaGE.cor.

Method A string specifying the method to be performed: either 'Fe' or 'Re'.

NA.omit A boolean specifying whether the markers with some NA values should be removed. (TRUE by default)

DropZScores A boolean specifying whether the Zscores should be dropped from the dataset or not. (FALSE by default)

Details

Different tests may be performed:

- Fixed Effect (Fe), to identify markers with a stable effect across environments.
- Random Effect (Re), to identify markers whose effects may be unstable across environments.

Value

The dataset Data with supplementary columns:

- Mu: Estimation of Mu,
- Tau: Estimation of Tau, the heterogeneity,
- Pvalue: The Pvalue of the test,
- the Zscores for each environment if DropLocalScores = FALSE.

Examples

```r
require(dplyr)
# Import the data
data("metaData")

# Compute the inter-environment correlation matrix
matCorr <- metaGE.cor(metaData, Threshold = 0.8)

# Fixed Effect
FeDF <- metaGE.fit(metaData, matCorr, Method = "Fe")
head(FeDF %>% select(CHR, POS, MARKER, Mu, Tau, PVALUE))

# Random Effect
ReDF <- metaGE.fit(metaData, matCorr, Method = "Re")
head(ReDF %>% select(CHR, POS, MARKER, Mu, Tau, PVALUE))
```
metaGE.heatmap

Draw the heatmap to see markers effects across environments.

Description

The function metaGE.heatmap displays the heatmap of the zscores, the estimated marker effects or the pvalues of each markers (in rows) in each environments (in columns).

Usage

```r
metaGE.heatmap(
  Data, 
  Prefix = "Z.", 
  EnvGroups = NULL, 
  QTLsVarName = NULL, 
  RowOrder = TRUE, 
  ColOrder = TRUE, 
  ShowDendogram = FALSE, 
  Colors = c("red", "black", "green")
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>A dataset containing the zscores, the effects or the pvalues of each marker (in rows) in each environment (in columns), as obtained from metaGE.fit.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The prefix of the score to display in the heatmap: 'Z.' for the zscores, 'EFFECT.' for the effects and 'PVAL.' for the pvalues. ('Z.' by default)</td>
</tr>
<tr>
<td>EnvGroups</td>
<td>A dataset containing the names of the environments (in the first column) and the groups to which the environments belong (in the second column). (optional)</td>
</tr>
<tr>
<td>QTLsVarName</td>
<td>The name of the column indicating to which QTL the marker belongs. (optional)</td>
</tr>
<tr>
<td>RowOrder</td>
<td>A boolean specifying whether to reorder the markers or not. (TRUE by default)</td>
</tr>
<tr>
<td>ColOrder</td>
<td>A boolean specifying whether to reorder the environments or not. (TRUE by default)</td>
</tr>
<tr>
<td>ShowDendogram</td>
<td>A boolean specifying whether to show the clustering of the rows and/or the columns. (FALSE by default)</td>
</tr>
<tr>
<td>Colors</td>
<td>A vector of three colors corresponding to the</td>
</tr>
</tbody>
</table>

Value

The heatmap
Examples

```r
require(dplyr)
data("metaData")

# Compute the inter-environment correlation matrix
matCorr <- metaGE.cor(metaData, Threshold = 0.8)

# Fit the Fixed Effect model
FeDF <- metaGE.fit(metaData, matCorr, Method = "Fe")

# Control the FDR (here Benjamini-Hochberg)
Alpha <- 0.05
Signif <- FeDF$PVALUE %>% p.adjust(method = "BH") %>% \textless \textasciitilde (Alpha) %>% which

# Draw the z-scores heatmap of the significant markers
heatmap <- metaGE.heatmap(Data = FeDF[Signif,], Prefix = "Z."")
```

`metaGE.incidence`
Create the matrix of incidence.

Description

The function `metaGE.incidence` converts a categorical variable describing the environments into a matrix of dummy variables with rows for the levels of the variable and columns for the environment.

Usage

```r
metaGE.incidence(VarName, Covariate, EnvName, Data, AtLeast = 1)
```

Arguments

- **VarName**: The name of the column containing the categorical variable in the `Covariate` dataset.
- **Covariate**: A dataset containing categorical variables (in columns) describing the environments (in rows).
- **EnvName**: The name of the column containing the names of the environment in the `Covariate` dataset.
- **Data**: A dataset containing the effects and p-values of each marker (in rows) in each environment (in columns), as obtained from `metaGE.collect`.
- **AtLeast**: A numeric value indicating the minimum number of environments must belong to each level (equals 1 by default).

Details

The names of the environment must be the same as used in the `Data` dataset.
Value

A binary matrix containing indicator variables with in rows the levels of the variables and in columns the environment.

Examples

```r
# Import the data
data("metaData")
data("envDesc")

# Build the matrix of incidence
(Incidence.Temp <- metaGE.incidence(VarName = "Temp", Covariate = envDesc, 
                      EnvName = "ShortName", Data = metaData))
```

metaGE.lscore
Compute the local score from a set of pvalues.

Description

The function metaGE.lscore computes the local score and the significant regions from a set of pvalues.

Usage

```r
metaGE.lscore(Data, PvalName, xi)
```

Arguments

- `Data`: A dataset containing the following columns: CHR, POS, MARKER and PvalName.
- `PvalName`: The name of the column containing the p-value.
- `xi`: The threshold of the score, xi = 1, 2, 3 or 4.

Details

This function is directly inherited from the scorelocalfunctions.R R code file of Fariello MI, Boitard S, Mercier S, et al., as available on the https://forge-dga.jouy.inra.fr/projects/local-score website. The technical details of the computation can be found in Fariello MI, Boitard S, Mercier S, et al. Accounting for linkage disequilibrium in genome scans for selection without individual genotypes: The local score approach. https://doi.org/10.1111/mec.14141. The function computes a local score for the detection of significant regions based on the hypothesis that the H0 distribution of the pvalues is uniform. Under this hypothesis the local score follows a Gumbel distribution (under H0) whose parameters depend on the threshold xi and on the autocorrelation between pvalues within each chromosome. The threshold has to be selected in 1,2,3,4 and the autocorrelation is computed internally.
Value

A list of:

- Data the dataset Data with the local score as supplementary column.
- SigZones a dataset containing informations about the significative regions.
- SigMarker a dataset containing the significative markers.
- ChrThreshold a dataset containing the chromosome-wide significance thresholds.

Examples

```r
require(dplyr)
# Import the data
data("metaData")

# Compute the inter-environment correlation matrix
matCorr <- metaGE.cor(metaData, Threshold = 0.8)

# Fit the Fixed Effect model
FeDF <- metaGE.fit(metaData, matCorr, Method = "Fe")

# Compute the score local
xi <- 2
FeScore <- metaGE.lscore(FeDF,"PVALUE", xi)
#FeScore$SigZones
```

Description

The function `metaGE.manhattan` displays the Manhattan plot of the \(-\log_{10}(p\text{-value})\) or the local score of each marker along the genome.

Usage

```r
metaGE.manhattan(
  Data, 
  VarName, 
  Threshold = NULL, 
  SigZones = NULL, 
  Score = FALSE, 
  AnnotateMarker = NULL, 
  Main = "", 
  col = c("grey", "black"), 
  colSigZones = "blue", 
  Ylim = NULL
)
```
Arguments

- **Data**
 A dataset containing the columns: CHR, POS, MARKER and the variable to plot for each marker, as obtained from metaGE.fit.

- **VarName**
 The name of the column containing the variable to plot, generally the p-value or a score.

- **Threshold**
 A threshold in order to draw a "genome-wide significant" line. (optional)

- **SigZones**
 A dataset containing the significant zones to plot, as obtained from metaGE.lscore. Must have columns: CHR, POS, START, END. (optional)

- **Score**
 A boolean. If FALSE, the -log10 of the variable is plotted, useful for plotting p-values. If TRUE, the raw values of the variable is plotted, useful for plotting scores. (FALSE by default)

- **AnnotateMarker**
 A list of markers name to annotate in the plot. (optional)

- **Main**
 The main to display. (optional)

- **col**
 A character vector indicating which colors to alternate for different chromosomes. (c('grey', 'black') by default)

- **colSigZones**
 A character indicating which color to plot the significant zones. ('blue' by default)

- **Ylim**
 Two numeric values, specifying the lower limit and the upper limit of the y-axe scale. (optional)

Value

The Manhattan plot

Examples

```r
require(dplyr)
# Import the data
data("metaData")

# Compute the inter-environment correlation matrix
matCorr <- metaGE.cor(metaData, Threshold = 0.8)

# Fit the Fixed Effect model
FeDF <- metaGE.fit(metaData, matCorr, Method = "Fe")

# Control the FDR (here Benjamini-Hochberg)
Alpha <- 0.05
Signif <- FeDF$PVALUE %>% p.adjust(method = "BH") %>% (Alpha) %>% which

# Draw the corresponding manhattan plot
# PvalThresholdFe <- FeDF[Signif,]$PVALUE%>% max %>% max(.,0)
# manhattan_pval <- metaGE.manhattan(Data = FeDF,VarName = 'PVALUE',
#   Threshold = PvalThresholdFe,
#   Main = '-log10(Pval) alongside the chromosome Fe method')
```
Compute the score local
xi <- 2
FeScore <- metaGE.lscore(FeDF,"PVALUE", xi)

Draw the corresponding manhattan plot
manhattan_lscore <- metaGE.manhattan(Data = FeScore$Data,VarName = 'SCORE',
 SigZones = FeScore$SigZones, Score = TRUE,
 Main = 'Local score alongside the chromosome Fe method')

metaGE.pvalplot
Display visual checks of pvalues.

Description

The function metaGE.pvalplot displays the pvalue distribution and the QQplot of the -log10(pvalues).

Usage

```r
metaGE.pvalplot(Pvalues, Main = "")
```

Arguments

- `Pvalues`
 A vector containing pvalues.

- `Main`
 The main to display.(optional)

Value

No return value, the plot is displayed in the active graphics window.

Examples

```r
# Import the data
data("metaData")

# Compute the inter-environment correlation matrix
matCorr <- metaGE.cor(metaData, Threshold = 0.8)

# Fit the Fixed Effect model
FeDF <- metaGE.fit(metaData, matCorr, Method = "Fe")

# Check the pvalues
metaGE.pvalplot(Pvalues = FeDF$PVALUE, Main = "Pvalue Fe")
```
`metaGE.regplot`

Plot the z-score of a marker according to a covariate.

Description

The function `metaGE.regplot` displays the graph of the z-scores of a marker according to a covariate.

Usage

```r
metaGE.regplot(
  Data,
  Covariate,
  EnvName,
  MarkerName,
  VarName,
  Zscore = FALSE,
  aesCol = NULL,
  Main = ""
)
```

Arguments

- **Data**: A dataset containing the columns: MARKER and the z-scores of each marker (in rows) in each environment (in columns), as obtained from `metaGE.collect`.
- **Covariate**: A dataset containing the values of one or more covariates (in columns) in each environment (in rows).
- **EnvName**: The name of the column containing the names of the environment in the `Covariate` dataset.
- **MarkerName**: The name of the marker.
- **VarName**: The name of the column containing the covariable to plot.
- **Zscore**: A boolean. If FALSE, the estimated marker effects is plotted. If TRUE, the z-scores of the marker is plotted. (FALSE by default)
- **aesCol**: The name of the column containing a qualitative covariable to specify the color of the points. (optional)
- **Main**: The main to display. (optional)

Value

The plot.

Examples

```r
data("metaData")
data("envDesc")
metaGE.regplot(Data = metaData, Covariate = envDesc, EnvName = "ShortName", MarkerName = "AX-91369217", VarName = "Tnight.mean", aesCol = "Classification")
```
metaGE.test

Meta-analysis test for Genotype x Environment interactions: Contrast or Regression.

Description

The function metaGE.test compute meta-analysis contrast or regression test.

Usage

```
metaGE.test(
  Data,  
  MatCorr, 
  Incidence = NULL, 
  Contrast = NULL, 
  Covariate = NULL, 
  EnvName = NULL, 
  NA.omit = TRUE, 
  DropZScores = FALSE 
)
```

Arguments

- **Data** A dataset containing the estimated marker effect and its associated pvalue of each marker (in rows) in each environment (in columns), as obtained from metaGE.collect.
- **MatCorr** The inter-environment correlation matrix. It can be compute by the metaGE.cor function.
- **Incidence** A matrix of incidence, as obtained from metaGE.incidence or a list of such matrix.
- **Contrast** A matrix of contrast, or a list of such matrix.
- **Covariate** A dataset containing the values of one or more covariates (in columns) in each environment (in rows).
- **EnvName** The name of the column containing the names of the environment in the covariate dataset.
- **NA.omit** A boolean specifying whether the markers with some NA values should be removed from the test procedure. (TRUE by default)
- **DropZScores** A boolean specifying whether the Zscores should be dropped from the dataset or not. (FALSE by default)

Details

If Incidence is provided, the function will perform all the corresponding tests of contrast. If Covariate is provided, the function will perform all the corresponding meta-regression tests. The Contrast can be NULL, in this case the identity matrix is used.
Value

The dataset Data with supplementary columns containing the Pvalue of each test performed.

Examples

```r
require(dplyr)

# Import the data
data("metaData")
data("envDesc")

# ' # Compute the inter-environment correlation matrix
matCorr <- metaGE.cor(metaData, Threshold = 0.8)

#### Contrast test
# Build the matrix of incidence
Incidence.Water <- metaGE.incidence(VarName = "Water", Covariate = envDesc,
                                   EnvName = "ShortName", Data = metaData)

# Perform the contrast test
ContrastDF <- metaGE.test(metaData, matCorr, Incidence = Incidence.Water,
                           Contrast = NULL)
head(ContrastDF %>% select(CHR, POS, MARKER, PVALUE.Contrast1))

#### Regression test
RegressionDF <- metaGE.test(metaData, matCorr, Covariate = envDesc[,c(1,5)], EnvName = "ShortName"
                            )
head(RegressionDF %>% select(CHR, POS, MARKER, PVALUE.Tnight.mean))
```

Description

This function reads the one file, select interesting columns and rename them.

Usage

```r
ReadData(ListN, FileN, VarN, MinFreq = 0)
```

Arguments

- **ListN**: The name of the list of files where the file to read belongs or NULL if there is only one list of files
- **FileN**: The name of the file to read
- **VarN**: A named list containing the column names in the file corresponding to the variables below: MARKER, CHROM, POS, EFFECT, EFFECT.SE, PVAL, (optional: FREQ, ALLELE0, ALLELE1, WEIGHT)
- **MinFreq**: A numeric value allowing to filter to keep markers with MAF > MinFreq
RegressionStatTest

Compute the pvalue of the meta-regression test.

Description

The function RegressionStatTest compute the statistic and the pvalue of the regression test.

Usage

RegressionStatTest(Covariate, CovName, Zmat, MatCorr)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>A dataset containing the values of one Covariate (in columns) in each environment (in rows).</td>
</tr>
<tr>
<td>CovName</td>
<td>The name the Covariate.</td>
</tr>
<tr>
<td>Zmat</td>
<td>A matrix containing the Zscores of all markers (in rows) in each environment (in columns).</td>
</tr>
<tr>
<td>MatCorr</td>
<td>The inter-environments correlation matrix. Can be computed using MetaGE.cor.</td>
</tr>
</tbody>
</table>

Value

A dataset of two columns containing the pvalue of the meta-regression test and the number of environment used to perform the test of all markers.

RegressionStatTestNA

Compute the pvalue of the regression test in presence of missing values.

Description

The function RegressionStatTest compute the statistic and the pvalue of the regression test.

Usage

RegressionStatTestNA(Covariate, CovName, Zmat, MatCorr, Data, Configs.list)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>A dataset containing the values of one covariate (in columns) in each environment (in rows).</td>
</tr>
<tr>
<td>CovName</td>
<td>The name of the covariate.</td>
</tr>
<tr>
<td>Zmat</td>
<td>A matrix containing the Z-scores of all markers (in rows) in each environment (in columns).</td>
</tr>
<tr>
<td>MatCorr</td>
<td>The inter-environments correlation matrix. Can be computed using MetaGE.cor.</td>
</tr>
<tr>
<td>Data</td>
<td>A dataset containing the effect, the p-values and the na configuration for all markers.</td>
</tr>
<tr>
<td>Configs.list</td>
<td>A vector containing the NA configurations present in the dataset.</td>
</tr>
</tbody>
</table>

Value

A dataset of two columns containing the p-value of the meta-regression test and the number of environment used to perform the test of all markers.

Computation of the significative regions

Description

The function `sig_sl` computes the significative regions from a lindley process given a significance threshold.

Usage

```r
sig_sl(lind, pos, th)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lind</td>
<td>The lindley</td>
</tr>
<tr>
<td>pos</td>
<td>The position</td>
</tr>
<tr>
<td>th</td>
<td>The threshold</td>
</tr>
</tbody>
</table>

Value

the significance threshold.
thresUnif

Computation of the significance threshold

Description

The function thresUnif computes the significance threshold. (function from localscore)

Usage

```r
thresUnif(L, cor, xi, alpha = 0.05)
```

Arguments

- `L`: The length of the chromosome
- `cor`: The autocorrelation of the chromosome
- `xi`: The threshold of the score, `xi = 1, 2, 3` or `4`.
- `alpha`: The nominal threshold.

Details

The distribution of the p-values is uniform, the local score follows a Gumbel distribution under the null.

Value

the significance threshold.
Index

* datasets
 envDesc, 5
 metaData, 8

autocor, 2

CheckContrast, 3
CheckIncidence, 3
ContrastStatTest, 4
ContrastStatTest.NA, 4

envDesc, 5

FastKerFdr, 6

GetH0Items, 6

lindley, 7
LLikelihoodT_vect, 7

MakeQQplot, 8
metaData, 8
metaGE.collect, 9
metaGE.cor, 11
metaGE.fit, 11
metaGE.heatmap, 13
metaGE.incidence, 14
metaGE.lscore, 15
metaGE.manhattan, 16
metaGE.pvalplot, 18
metaGE.regplot, 19
metaGE.test, 20

ReadData, 21
RegressionStatTest, 22
RegressionStatTestNA, 22

sig_sl, 23

thresUnif, 24