Package ‘metadynminer’

August 20, 2019

Type Package

Title Tools to Read, Analyze and Visualize Metadynamics HILLS Files from ‘Plumed’

Version 0.1.6

Date 2019-08-20

Depends R (>= 3.3.0)

LinkingTo Rcpp

LazyData true

License GPL-3

RoxygenNote 6.1.0

Imports Rcpp

Suggests testthat

URL http://www.metadynamics.cz/metadynminer

NeedsCompilation yes

Author Vojtech Spiwok [aut, cre] (<https://orcid.org/0000-0001-8108-2033>)

Maintainer Vojtech Spiwok <spiwkv@vscht.cz>

Repository CRAN

Date/Publication 2019-08-20 10:50:05 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>acealanme</td>
<td>3</td>
</tr>
<tr>
<td>acealanme1d</td>
<td>3</td>
</tr>
<tr>
<td>feprof</td>
<td>4</td>
</tr>
<tr>
<td>feprof.minima</td>
<td>4</td>
</tr>
<tr>
<td>fes</td>
<td>5</td>
</tr>
<tr>
<td>fes.hillsfile</td>
<td>5</td>
</tr>
<tr>
<td>fes2</td>
<td>6</td>
</tr>
<tr>
<td>fes2.hillsfile</td>
<td>7</td>
</tr>
<tr>
<td>fes2d21d</td>
<td>7</td>
</tr>
<tr>
<td>fesminima</td>
<td>8</td>
</tr>
<tr>
<td>fesminima.fes</td>
<td>9</td>
</tr>
<tr>
<td>head.hillsfile</td>
<td>9</td>
</tr>
<tr>
<td>lines.fes</td>
<td>10</td>
</tr>
<tr>
<td>lines.hillsfile</td>
<td>10</td>
</tr>
<tr>
<td>lines.nebpath</td>
<td>11</td>
</tr>
<tr>
<td>linesonfes</td>
<td>12</td>
</tr>
<tr>
<td>max.fes</td>
<td>12</td>
</tr>
<tr>
<td>min.fes</td>
<td>13</td>
</tr>
<tr>
<td>neb</td>
<td>13</td>
</tr>
<tr>
<td>oneminimum</td>
<td>14</td>
</tr>
<tr>
<td>oneminimum.fes</td>
<td>15</td>
</tr>
<tr>
<td>plot.fes</td>
<td>15</td>
</tr>
<tr>
<td>plot.hillsfile</td>
<td>17</td>
</tr>
<tr>
<td>plot.minima</td>
<td>18</td>
</tr>
<tr>
<td>plot.nebpath</td>
<td>19</td>
</tr>
<tr>
<td>plot.profiles</td>
<td>20</td>
</tr>
<tr>
<td>plotheights</td>
<td>21</td>
</tr>
<tr>
<td>plotheights.hillsfile</td>
<td>22</td>
</tr>
<tr>
<td>points.fes</td>
<td>23</td>
</tr>
<tr>
<td>points.hillsfile</td>
<td>23</td>
</tr>
<tr>
<td>points.nebpath</td>
<td>24</td>
</tr>
<tr>
<td>pointsonfes</td>
<td>25</td>
</tr>
<tr>
<td>print.fes</td>
<td>26</td>
</tr>
<tr>
<td>print.hillsfile</td>
<td>26</td>
</tr>
<tr>
<td>print.minima</td>
<td>27</td>
</tr>
<tr>
<td>print.nebpath</td>
<td>27</td>
</tr>
<tr>
<td>print.profiles</td>
<td>28</td>
</tr>
<tr>
<td>prob</td>
<td>28</td>
</tr>
<tr>
<td>read.hills</td>
<td>29</td>
</tr>
<tr>
<td>read.plumed</td>
<td>29</td>
</tr>
<tr>
<td>summary.fes</td>
<td>30</td>
</tr>
<tr>
<td>summary.hillsfile</td>
<td>31</td>
</tr>
<tr>
<td>summary.minima</td>
<td>31</td>
</tr>
<tr>
<td>summary.nebpath</td>
<td>32</td>
</tr>
<tr>
<td>summary.profiles</td>
<td>32</td>
</tr>
<tr>
<td>tail.hillsfile</td>
<td>33</td>
</tr>
<tr>
<td>acealanme</td>
<td>Hills from 30 ns metadynamics of AceAlaNme in water with two collective variables</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
</tbody>
</table>

Description
Hills from 30 ns metadynamics of AceAlaNme (Amber99SB-ILDN) in water (TIP3P) with Ramachandran dihedrals phi and psi as collective variables.

Usage
acealanme

Format
hillsfile object

Source
http://www.metadynamics.cz/metadynminer/data/HILLS2d

<table>
<thead>
<tr>
<th>acealanme1d</th>
<th>Hills from 30 ns metadynamics of AceAlaNme in water with one collective variable</th>
</tr>
</thead>
</table>

Description
Hills from 30 ns metadynamics of AceAlaNme (Amber99SB-ILDN) in water (TIP3P) with a Ramachandran dihedral phi as the collective variable.

Usage
acealanme1d

Format
hillsfile object

Source
http://www.metadynamics.cz/metadynminer/data/HILLS1d
feprof

Calculate free energy profile for minima object (generic function for
'metadynminer' and 'metadynminer3d')

Description

‘feprof‘ calculates free energy profiles for free energy minima. It finds the global minimum at the
‘imax‘ and calculates the evolution of free energies of a local vs. the global free energy minimum. The free energy of the global minimum is constant (zero).

Usage

feprof(minims, imax)

Arguments

minims
minima object.
imax
index of a hill from which summation stops (default the rest of hills).

feprof.minima

Calculate free energy profile for minima object

Description

‘feprof.minima‘ calculates free energy profiles for free energy minima. It finds the global minimum at the ‘imax‘ and calculates the evolution of free energies of a local vs. the global free energy minimum. The free energy of the global minimum is constant (zero).

Usage

S3 method for class 'minima'
feprof(minims, imax = NULL)

Arguments

minims
minima object.
imax
index of a hill from which summation stops (default the rest of hills).

Examples

tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
prof<-feprof(minima)
prof
Calculate free energy surface by Bias Sum algorithm (generic function for 'metadynminer' and 'metadynminer3d')

Description

'fes' sums up hills using fast Bias Sum algorithm.

Usage

fes(hills, imin, imax, xlim, ylim, zlim, npoints)

Arguments

hills hillsfile object.
imin index of a hill from which summation starts (default 1).
imax index of a hill from which summation stops (default the rest of hills).
xlim numeric vector of length 2, giving the CV1 coordinates range.
ylim numeric vector of length 2, giving the CV2 coordinates range.
zlim numeric vector of length 2, giving the CV3 coordinates range.
npoints resolution of the free energy surface in number of points.

Value

fes object.

Calculate free energy surface by Bias Sum algorithm

Description

'fes.hillsfile' sums up hills using fast Bias Sum algorithm.

Usage

S3 method for class 'hillsfile'
fes(hills, imin = 1, imax = NULL, xlim = NULL, ylim = NULL, zlim = NULL, npoints = 256)
Arguments

- **hills**: hillsfile object.
- **imin**: index of a hill from which summation starts (default 1).
- **imax**: index of a hill from which summation stops (default the rest of hills).
- **xlim**: numeric vector of length 2, giving the CV1 coordinates range.
- **ylim**: numeric vector of length 2, giving the CV2 coordinates range.
- **zlim**: numeric vector of length 2, giving the CV3 coordinates range.
- **npoints**: resolution of the free energy surface in number of points.

Value

fes object.

Examples

```r
tfes <- fes(acealanme, imax=5000)
```

Calculate free energy surface by conventional algorithm (generic function for 'metadynminer' and 'metadynminer3d')

Description

'fes2' sums up hills using slow conventional algorithm. It can be used as a reference or when hill widths are variable.

Usage

```r
fes2(hills, imin, imax, xlim, ylim, zlim, npoints)
```

Arguments

- **hills**: hillsfile object.
- **imin**: index of a hill from which summation starts (default 1).
- **imax**: index of a hill from which summation stops (default the rest of hills).
- **xlim**: numeric vector of length 2, giving the CV1 coordinates range.
- **ylim**: numeric vector of length 2, giving the CV2 coordinates range.
- **zlim**: numeric vector of length 2, giving the CV3 coordinates range.
- **npoints**: resolution of the free energy surface in number of points.

Value

fes object.
Calculate free energy surface by conventional algorithm

Description
‘fes2.hillsfile’ sums up hills using slow conventional algorithm. It can be used as a reference or when hill widths are variable.

Usage
S3 method for class 'hillsfile'
fes2(hills, imin = 1, imax = NULL, xlim = NULL, ylim = NULL, zlim = NULL, npoints = 256)

Arguments
- **hills**: hillsfile object.
- **imin**: index of a hill from which summation starts (default 1).
- **imax**: index of a hill from which summation stops (default the rest of hills).
- **xlim**: numeric vector of length 2, giving the CV1 coordinates range.
- **ylim**: numeric vector of length 2, giving the CV2 coordinates range.
- **zlim**: numeric vector of length 2, giving the CV3 coordinates range.
- **npoints**: resolution of the free energy surface in number of points.

Value
fes object.

Examples
tfes<-fes2(acealanme, imax=1000)

Calculate 1D free energy surface from hillsfile object

Description
‘fes2d21d’ calculates 2D free energy surface, converts free energies to probabilities (exp(-F/kT)), sums them up along one collective variable and converts back to free energy (-kT log(P)).

Usage
fes2d21d(hills, remdim = 2, temp = 300, eunit = "kJ/mol", imin = 1, imax = NULL, xlim = NULL, ylim = NULL, npoints = 256)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hills</td>
<td>hillsfile object.</td>
</tr>
<tr>
<td>remdim</td>
<td>dimension to be removed (1 for CV1, 2 for CV2, default 2).</td>
</tr>
<tr>
<td>temp</td>
<td>temperature in Kelvins (default 300).</td>
</tr>
<tr>
<td>eunit</td>
<td>energy units (kJ/mol or kcal/mol, kJ/mol is default).</td>
</tr>
<tr>
<td>imin</td>
<td>index of a hill from which summation starts (default 1).</td>
</tr>
<tr>
<td>imax</td>
<td>index of a hill from which summation stops (default the rest of hills).</td>
</tr>
<tr>
<td>xlim</td>
<td>numeric vector of length 2, giving the CV1 coordinates range.</td>
</tr>
<tr>
<td>ylim</td>
<td>numeric vector of length 2, giving the CV2 coordinates range.</td>
</tr>
<tr>
<td>npoints</td>
<td>resolution of the free energy surface in number of points.</td>
</tr>
</tbody>
</table>

Value

fes object.

Examples

tfes<-fes2d21d(acealanme, remdim=2, imax=5000)

fesminima

Find free energy minima in the fes object (generic function for 'metadynminer' and 'metadynminer3d')

Description

'fesminima' finds free energy minima on 1D or 2D free energy surface. The surface is divided by a 1D or 2D grid and minima are found for each bin. Next the program determines whether the minimum of a bin is a local minimum of the whole free energy surface. Free energy minima are labeled constitutively by capital letters.

Usage

fesminima(inputfes, nbins)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inputfes</td>
<td>fes object.</td>
</tr>
<tr>
<td>nbins</td>
<td>number of bins for each CV (default 8).</td>
</tr>
</tbody>
</table>

Value

minima object.
Find free energy minima in the fes object

Description

`fesminima.fes` finds free energy minima on 1D or 2D free energy surface. The surface is divided by a 1D or 2D grid and minima are found for each bin. Next the program determines whether the minimum of a bin is a local minimum of the whole free energy surface. Free energy minima are labeled constitutively by capital letters.

Usage

```r
## S3 method for class 'fes'
fesminima(inputfes, nbins = 8)
```

Arguments

- **inputfes**: fes object.
- **nbins**: number of bins for each CV (default 8).

Value

minima object.

Examples

```r
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
minima
```

Print first n lines of hillsfile

Description

`head.hillsfile` prints first n lines of a hillsfile object.

Usage

```r
## S3 method for class 'hillsfile'
head(x, n = 10, ...)
```

Arguments

- **x**: hillsfile object.
- **n**: number of lines (default 10).
- **...**: further arguments passed to or from other methods.
Examples

head(acealanme)

lines.fes

Plots 1D free energy surface object as lines

Description

‘lines.fes’ plots 1D free energy surface as lines.

Usage

S3 method for class 'fes'
lines(x, lwd = 1, col = "black", ...)

Arguments

x fes object.

lwd line width for drawing symbols see 'par'.

col color code or name, see 'par'.

... further arguments passed to or from other methods.

Examples

tfes<-fes(acealanme1d, imax=5000)
plot(tfes)
lines(tfes, lwd=4)

lines.hillsfile

Plot lines for hillsfile object

Description

‘lines.hillsfile’ plots lines for hillsfile object. For a hillsfile with one collective variable it plots its evolution. For a hillsfile with two collective variables it plots CV1 vs. CV2.

Usage

S3 method for class 'hillsfile'
lines(x, ignoretime = FALSE, lwd = 1,
 col = "black", ...)
Arguments

- **x**
 - hillsfile object.
- **ignoretime**
 - time in the first column of the HILLS file will be ignored.
- **lwd**
 - line width for drawing symbols see 'par'.
- **col**
 - color code or name, see 'par'.
- **...**
 - further arguments passed to or from other methods.

Examples

```r
plot(acealanme)
lines(acealanme, col="red")
```

Description

'lines.nebpath' plots lines for free energy profile calculated by Nudged Elastic Band.

Usage

```r
## S3 method for class 'nebpath'
lines(x, col = "red", lwd = 1, ...)
```

Arguments

- **x**
 - nebpath object.
- **col**
 - color code or name, see 'par'.
- **lwd**
 - line width for drawing symbols see 'par'.
- **...**
 - further arguments passed to or from other methods.

Examples

```r
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
plot(nebAD)
lines(nebAD, lwd=4)
```
linesonfes

Plot lines for Nudged Elastic Band projected onto free energy surface

Description

'linesonfes' plots lines for free energy profile calculated by Nudged Elastic Band projected onto free energy surface.

Usage

```r
linesonfes(x, col = "red", lwd = 1)
```

Arguments

- `x`: nebpath object.
- `col`: color code or name, see 'par'.
- `lwd`: line width for drawing symbols see 'par'.

Examples

```r
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
plot(minima)
linesonfes(nebAD)
```

max.fes

Calculate maximum of free energy surface

Description

'max.fes' calculates maximum of free energy in a fes object.

Usage

```r
## S3 method for class 'fes'
max(inputfes, na.rm = NULL, ...)
```

Arguments

- `inputfes`: fes object.
- `na.rm`: a logical indicating whether missing values should be removed.
- `...`: further arguments passed to or from other methods.

Examples

```r
tfes<-fes(acealanme, imax=5000)
max(tfes)
```
min.fes

Calculate minimum of free energy surface

Description

`min.fes` calculates minimum of free energy in a fes object.

Usage

```r
## S3 method for class 'fes'
min(inputfes, na.rm = NULL, ...)
```

Arguments

- `inputfes`: fes object.
- `na.rm`: a logical indicating whether missing values should be removed.
- `...`: further arguments passed to or from other methods.

Examples

```r
tfes<-fes(acealanme, imax=5000)
min(tfes)
```

neb

Find transition path on free energy surface by Nudged Elastic Band method

Description

`neb` finds a transition path on free energy surface for a given pair of minima. For a 1D surface it simply takes the free energy profile between the two minima. For 2D surface it calculates the transition path by Nudged Elastic

Usage

```r
neb(minims = minims, min1 = "A", min2 = "B", nbins = 20,
   nsteps = 100, step = 1, k = 0.2)
```

Arguments

- `minims`: minima object.
- `min1`: starting minimum identifier (can be letter or index, default "A").
- `min2`: final minimum identifier (can be letter or index, default "B").
- `nbins`: number of bins along Nudged Elastic Band (default 20).
- `nsteps`: number of Nudged Elastic Band iterations (default 100).
- `step`: Nudged Elastic Band iteration step (default 1).
- `k`: Nudged Elastic Band toughness (default 0.2).
oneminimum

Value

NEB path

Examples

tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
nebAD

oneminimum

Creates one ad hoc free energy minimum for a fes object (generic function for 'metadynminer' and 'metadynminer3d')

Description

'oneminimum' creates an ad hoc free energy minimum on free energy surface. This can be used to calculate free energy surface evolution at arbitrary point of free energy surface.

Usage

oneminimum(inputfes, cv1, cv2, cv3)

Arguments

inputfes fes object.
cv1 the value of collective variable 1.
cv2 the value of collective variable 2.
cv3 the value of collective variable 3.

Value

minima object.
oneminimum.fes

Creates one ad hoc free energy minimum for a fes object

Description

'oneminimum.fes' creates an ad hoc free energy minimum on free energy surface. This can be used to calculate free energy surface evolution at arbitrary point of free energy surface.

Usage

```r
## S3 method for class 'fes'
oneminimum(inputfes, cv1, cv2, cv3)
```

Arguments

- `inputfes` fes object.
- `cv1` the value of collective variable 1.
- `cv2` the value of collective variable 2.
- `cv3` the value of collective variable 3.

Value

minima object.

Examples

```r
tfes<-fes(acealanme1d)
minima<-fesminima(tfes)
minima<-minima+oneminimum(tfes, cv1=0, cv2=0)
minima
```

plot.fes

Plot free energy surface object

Description

'plot.fes' plots free energy surface. For a fes with one collective variable it plots a 1D profile. For a fes with two collective variables it plots 2D free energy surface using image, contours or combination of both (default).
Usage

S3 method for class 'fes'
plot(x, plottype = "both", colscale = F, xlim = NULL, ylim = NULL, zlim = NULL, main = NULL, sub = NULL, xlab = NULL, ylab = NULL, nlevels = 10, levels = NULL, col = rainbow(135)[100:1], labels = NULL, labcex = 0.6, drawlabels = TRUE, colscalelab = "free energy", method = "flattest", contcol = par("fg"), lty = par("lty"), lwd = 1, asp = NULL, axes = T, ...)

Arguments

x
fes object.

plottype
specifies whether 2D free energy surface will be plotted as image, contours or both (default "both").

colscale
specifies whether color scale will be plotted (default False).

xlim
numeric vector of length 2, giving the x coordinates range.

ylim
numeric vector of length 2, giving the y coordinates range.

zlim
numeric vector of length 2, giving the z coordinates range.

main
an overall title for the plot: see 'title'.

sub
a sub title for the plot: see 'title'.

xlab
a title for the x axis: see 'title'.

ylab
a title for the y axis: see 'title'.

nlevels
number of contour levels desired if 'levels' is not supplied.

levels
numeric vector of levels at which to draw contour lines.

col
color of the free energy surface. For 1D surface it is the color of the line. For 2D it is a list of colors such as that generated by 'rainbow', 'heat.colors', 'topo.colors', 'terrain.colors' or similar functions (default=rainbow(135)[100:1]).

labels
a vector giving the labels for the contour lines. If 'NULL' then the levels are used as labels, otherwise this is coerced by 'as.character'.

labcex
'cex' for contour labeling. This is an absolute size, not a multiple of 'par("cex")'.

drawlabels
logical. Contours are labeled if 'TRUE'.

colscalelab
color scale label (default "free energy").

method
character string specifying where the labels will be located. Possible values are "simple", "edge" and "flattest" (the default). See the 'Details' section.

contcol
contour color.

lty
line type for the lines drawn.

lwd
contour line width.

asp
the y/x aspect ratio, see 'plot.window'.

axes
a logical value indicating whether both axes should be drawn on the plot.

...
further arguments passed to or from other methods.
Examples

```r
tfes2d <- fes(acealanme, imax=5000)
plot(tfes2d)
tfes1d <- fes(acealanme1d)
plot(tfes1d)
```

plot.hillsfile

Plot hillsfile object

Description

'plot.hillsfile' plots hillsfile object. For a hillsfile with one collective variable it plots its evolution. For a hillsfile with two collective variables it plots CV1 vs. CV2.

Usage

```r
## S3 method for class 'hillsfile'
plot(x, ignoretime = FALSE, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, main = NULL, sub = NULL, pch = 1, col = "black", bg = "red", cex = 1, asp = NULL, lwd = 1, axes = TRUE, ...)
```

Arguments

- `x`: hillsfile object.
- `ignoretime`: time in the first column of the HILLS file will be ignored.
- `xlab`: a title for the x axis: see 'title'.
- `ylab`: a title for the y axis: see 'title'.
- `xlim`: numeric vector of length 2, giving the x coordinates range.
- `ylim`: numeric vector of length 2, giving the y coordinates range.
- `main`: an overall title for the plot: see 'title'.
- `sub`: a sub title for the plot: see 'title'.
- `pch`: plotting 'character', i.e., symbol to use. See 'points'.
- `col`: color code or name, see 'par'.
- `bg`: background (fill) color for the open plot symbols given by 'pch = 21:25'.
- `cex`: character (or symbol) expansion: a numerical vector. This works as a multiple of 'par("cex")'.
- `asp`: the y/x aspect ratio, see 'plot.window'.
- `lwd`: line width for drawing symbols see 'par'.
- `axes`: a logical value indicating whether both axes should be drawn on the plot.
- `...`: further arguments passed to or from other methods.

Examples

```r
plot(acealanme)
```
Description

‘plot.minima’ plots free energy surface with minima. The free energy surface is plotted the same way as by plot.fes with additional minima labels.

Usage

S3 method for class 'minima'
plot(x, plottype = "both", xlim = NULL, ylim = NULL,
zlim = NULL, colscale = F, colscalelab = "free energy",
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
nlevels = 10, levels = NULL, col = rainbow(135)[100:1],
labels = NULL, labcex = 0.6, drawlabels = TRUE,
method = "flattest", textcol = "black", pch = 1, bg = "red",
cex = 1, contcol = par("fg"), lty = par("lty"), lwd = par("lwd"),
asp = NULL, axes = TRUE, ...)

Arguments

x minima object.
plottype specifies whether 2D free energy surface will be plotted as image, contours or both (default "both").
xlim numeric vector of length 2, giving the x coordinates range.
ylim numeric vector of length 2, giving the y coordinates range.
zlim numeric vector of length 2, giving the z coordinates range.
colscale specifies whether color scale will be plotted (default False).
colscalelab color scale label (default “free energy”).
main an overall title for the plot: see ‘title’.
sub a sub title for the plot: see ‘title’.
xlab a title for the x axis: see ‘title’.
ylab a title for the y axis: see ‘title’.
nlevels number of contour levels desired if ‘levels’ is not supplied.
levels numeric vector of levels at which to draw contour lines.
col color of the free energy surface. For 1D surface it is the color of the line. For 2D it is a list of colors such as that generated by ‘rainbow’, ‘heat.colors’, ‘topo.colors’, ‘terrain.colors’ or similar functions (default=rainbow(135)[100:1]).
labels a vector giving the labels for the contour lines. If ‘NULL’ then the levels are used as labels, otherwise this is coerced by ‘as.character’.
labcex ‘cex’ for contour labeling. This is an absolute size, not a multiple of ‘par("cex")’.
Description

'plot.nebpath' plots free energy profile calculated by Nudged Elastic Band.

Usage

```r
## S3 method for class 'nebpath'
plot(x, xlim = NULL, ylim = NULL, main = NULL, sub = NULL, xlab = "bin", ylab = "free energy", col = "red", lwd = 1, asp = NULL, cex = 1, axes = T, ...)```

### Arguments

- **x**: nebpath object.
- **xlim**: numeric vector of length 2, giving the x coordinates range.
- **ylim**: numeric vector of length 2, giving the y coordinates range.
- **main**: an overall title for the plot: see 'title'.
- **sub**: a sub title for the plot: see 'title'.
- **xlab**: a title for the x axis: see 'title'.
- **ylab**: a title for the y axis: see 'title'.
- **col**: color of minima labels.
- **lwd**: contour line width.
- **asp**: the y/x aspect ratio, see 'plot.window'.
- **axes**: a logical value indicating whether both axes should be drawn on the plot.
- **...**: further arguments passed to or from other methods.
plot.profiles

Description

'plot.profiles' plots evolution of free energy differences between minima. They are colored by rainbow colors from the global one (blue) to the highest (red).

Usage

## S3 method for class 'profiles'
plot(x, which = NULL, ignoretime = FALSE,
     xlim = NULL, ylim = NULL, main = NULL, sub = NULL, xlab = NULL, ylab = NULL, col = NULL, asp = NULL, lwd = 1, axes = T, ...)

Arguments

x profiles object.
which vector of indexes of profiles to be plotted (default all).
ignoretime time in the first column of the HILLS file will be ignored.
xlim numeric vector of length 2, giving the x coordinates range.
ylim numeric vector of length 2, giving the y coordinates range.
main an overall title for the plot: see 'title'.
sub a sub title for the plot: see 'title'.
xlab a title for the x axis: see 'title'.
ylab a title for the y axis: see 'title'.
col color code or name, see 'par'.
asp the y/x aspect ratio, see 'plot.window'.
lwd line width.
axes a logical value indicating whether both axes should be drawn on the plot.
... further arguments passed to or from other methods.

Examples

tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
plot(nebAD)
Examples

```r
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
prof<-feprof(minima)
plot(prof)
```

Description

‘plotheights’ plots evolution of heights of hills. In well tempered metadynamics hill heights decrees with flooding of the free energy surface. Evolution of heights may be useful to evaluate convergence of the simulation.

Usage

```r
plotheights(hills, ignoretime, xlab, ylab, xlim, ylim, main, sub, col, asp,
 lwd, axes)
```

Arguments

- `hills`: hillsfile object.
- `ignoretime`: time in the first column of the HILLS file will be ignored.
- `xlab`: a title for the x axis: see 'title'.
- `ylab`: a title for the y axis: see 'title'.
- `xlim`: numeric vector of length 2, giving the x coordinates range.
- `ylim`: numeric vector of length 2, giving the y coordinates range.
- `main`: an overall title for the plot: see 'title'.
- `sub`: a sub title for the plot: see 'title'.
- `col`: color code or name, see 'par'.
- `asp`: the y/x aspect ratio, see 'plot.window'.
- `lwd`: line width for drawing symbols see 'par'.
- `axes`: a logical value indicating whether both axes should be drawn on the plot.
plotheights.hillsfile  Plot evolution of heights of hills in hillsfile object

**Description**

‘plotheights.hillsfile’ plots evolution of heights of hills. In well tempered metadynamics hill heights decrees with flooding of the free energy surface. Evolution of heights may be useful to evaluate convergence of the simulation.

**Usage**

```r
S3 method for class 'hillsfile'
plotheights(hills, ignoretime = FALSE, xlab = NULL,
 ylab = NULL, xlim = NULL, ylim = NULL, main = NULL, sub = NULL,
 col = "black", asp = NULL, lwd = 1, axes = TRUE)
```

**Arguments**

- `hills`: hillsfile object.
- `ignoretime`: time in the first column of the HILLS file will be ignored.
- `xlab`: a title for the x axis: see 'title'.
- `ylab`: a title for the y axis: see 'title'.
- `xlim`: numeric vector of length 2, giving the x coordinates range.
- `ylim`: numeric vector of length 2, giving the y coordinates range.
- `main`: an overall title for the plot: see 'title'.
- `sub`: a sub title for the plot: see 'title'.
- `col`: color code or name, see 'par'.
- `asp`: the y/x aspect ratio, see 'plot.window'.
- `lwd`: line width for drawing symbols see 'par'.
- `axes`: a logical value indicating whether both axes should be drawn on the plot.

**Examples**

```r
plotheights(acealanme)
```
points.fes

Plots 1D free energy surface object as points

Description

'points.fes' plots 1D free energy surface as points.

Usage

## S3 method for class 'fes'
points(x, pch = 1, col = "black", bg = "red",
cex = 1, lwd = 1, ...)

Arguments

x fes object.
pch plotting 'character', i.e., symbol to use. See 'points'
col color code or name, see 'par'.
bg background (fill) color for the open plot symbols given by 'pch = 21:25'.
cex character (or symbol) expansion: a numerical vector. This works as a multiple
of 'par("cex")'.
lwd line width for drawing symbols see 'par'.
... further arguments passed to or from other methods.

Examples

tfes<-fes(acealanme1d, imax=5000)
plot(tfes)
points(tfes)

points.hillsfile

Plot points for hillsfile object

Description

'points.hillsfile' plots points for hillsfile object. For a hillsfile with one collective variable it plots its evolution. For a hillsfile with two collective variables it plots CV1 vs. CV2.

Usage

## S3 method for class 'hillsfile'
points(x, ignoretime = FALSE, pch = 1,
col = "black", bg = "red", cex = 1, lwd = 1, ...)

...
Arguments

- **x**: hillsfile object.
- **ignoretime**: time in the first column of the HILLS file will be ignored.
- **pch**: plotting 'character', i.e., symbol to use. See 'points'.
- **col**: color code or name, see 'par'.
- **bg**: background (fill) color for the open plot symbols given by 'pch = 21:25'.
- **cex**: character (or symbol) expansion: a numerical vector. This works as a multiple of 'par("cex")'.
- **lwd**: line width for drawing symbols see 'par'.
- **...**: further arguments passed to or from other methods.

Examples

```r
plot(acealanme)
points(acealanme, col="red")
```

Description

'points.nebpath' plots points for free energy profile calculated by Nudged Elastic Band.

Usage

```r
S3 method for class 'nebpath'
points(x, pch = NULL, cex = 1, bg = NULL,
 col = "red", lwd = 1, ...)
```

Arguments

- **x**: nebpath object.
- **pch**: plotting 'character', i.e., symbol to use. See 'points'.
- **cex**: character (or symbol) expansion: a numerical vector. This works as a multiple of 'par("cex")'.
- **bg**: background (fill) color for the open plot symbols given by 'pch = 21:25'.
- **col**: color code or name, see 'par'.
- **lwd**: line width for drawing symbols see 'par'.
- **...**: further arguments passed to or from other methods.
Examples

```r
tfes <- fes(acealanme, imax=5000)
minima <- fesminima(tfes)
nebAD <- neb(minima, min1="A", min2="D", nsteps=20)
plot(nebAD)
points(nebAD)
```

Description

'pointsonfes' plots points for free energy profile calculated by Nudged Elastic Band projected onto free energy surface.

Usage

```r
pointsonfes(x, pch = NULL, cex = 1, bg = NULL, col = "red", lwd = 1)
```

Arguments

- `x`: nebpath object.
- `pch`: plotting 'character', i.e., symbol to use. See 'points'.
- `cex`: character (or symbol) expansion: a numerical vector. This works as a multiple of 'par("cex")'.
- `bg`: background (fill) color for the open plot symbols given by 'pch = 21:25'.
- `col`: color code or name, see 'par'.
- `lwd`: line width for drawing symbols see 'par'.

Examples

```r
tfes <- fes(acealanme, imax=5000)
minima <- fesminima(tfes)
nebAD <- neb(minima, min1="A", min2="D", nsteps=20)
plot(minima)
pointsonfes(nebAD)
```
print.fes  
*Print dimensionality, minimum and maximum of free energy surface*

**Description**

`print.fes` prints dimensionality, minimum and maximum of free energy in a fes object

**Usage**

```r
S3 method for class 'fes'
print(x, ...)
```

**Arguments**

- `x` fes object
- `...` further arguments passed to or from other methods.

**Examples**

```r
tfes<-fes(acealanme, imax=5000)
tfes
```

print.hillsfile  
*Print hillsfile*

**Description**

`print.hillsfile` prints dimensionality and size of a hillsfile object.

**Usage**

```r
S3 method for class 'hillsfile'
print(x, ...)
```

**Arguments**

- `x` hillsfile object.
- `...` further arguments passed to or from other methods.

**Examples**

```r
acealanme
```
print.minima

Print minima object

Description

'print.minima' prints free energy minima (identifier, values of bins and collective variables and free energy).

Usage

## S3 method for class 'minima'
print(x, ...)

Arguments

x
minima object.

... further arguments passed to or from other methods.

Examples

tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)

minima

print.nebpath

Print Nudged Elastic Band minima

Description

'print.nebpath' prints the list minima for Nudged Elastic Band

Usage

## S3 method for class 'nebpath'
print(x, ...)

Arguments

x
nebpath object

... further arguments passed to or from other methods.

Examples

tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)

minima

nebAD<-neb(minima, min1="A", min2="D", nsteps=20)

nebAD
print.profiles  

Description

‘print.profiles’ prints free energy profile.

Usage

## S3 method for class 'profiles'
print(x, ...)

Arguments

x  minima object.
...

Arguments passed to or from other methods.

Examples

tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
prof<-feprof(minima)
prof

prob  

Calculate probability of free energy surface

Description

‘prob’ calculates probability from free energy in a fes object.

Usage

prob(inputfes, temp = 300, eunit = "kJ/mol")

Arguments

inputfes  fes object.
temp  temperature in Kelvins.
eunit  energy units (kJ/mol or kcal/mol, kJ/mol is default).

Examples

tfes<-fes(acealanme, imax=5000)
print(prob(tfes))
read.hills  

Description

‘read.hills’ reads a HILLS file generated by Plumed and returns a hillsfile object. User can specify whether some collective variables are periodic.

Usage

read.hills(file = "HILLS", per = c(FALSE, FALSE), pcv1 = c(-pi, pi), pcv2 = c(-pi, pi), ignoretime = FALSE)

Arguments

file  
HILLS file from Plumed.

per  
logical vector specifying periodicity of collective variables.

pcv1  
periodicity of CV1.

pcv2  
periodicity of CV2.

ignoretime  
time in the first column of the HILLS file will be ignored.

Value

hillsfile object.

Examples

```r
l1<"1 -1.409 2.808 0.3 0.3 1.111 10"
l2<"2 -2.505 2.791 0.3 0.3 1.111 10"
l3<"3 -2.346 2.754 0.3 0.3 1.069 10"
l4<"4 -1.198 2.872 0.3 0.3 1.074 10"
fourhills<-c(l1,l2,l3,l4)
tf <- tempfile()
writeLines(fourhills, tf)
read.hills(tf, per=c(TRUE,TRUE))
```

read.plumed  

Description

‘read.plumed’ reads 1D or 2D free energy surface from PLUMED sum_hills. The grid in the (2D) inputfile must contain the same number of points for CV1 and CV2. It does not use the header of the file. Instead, user must specify the dimensionality (1 or 2). Periodicity must be specified as well.
Usage

read.plumed(file = "fes.dat", dim = 2, per = c(F, F, F))

Arguments

file input file from PLUMED sum_hills.
per logical vector specifying periodicity of collective variables.
dim dimension (1 or 2, default 2).

Value

fes object.

Examples

l1 <- c(-3.142, -124.8, -44.76)
l2 <- c(-3.117, -125.9, -43.05)
l3 <- c(-3.092, -126.9, -41.22)
l4 <- c(-3.068, -127.9, -39.36)
l5 <- c(-3.043, -128.8, -37.45)

fourpoints <- c(l1, l2, l3, l4)
tf <- tempfile()
writeLines(fourpoints, tf)
read.plumed(tf, dim=1, per=c(TRUE, TRUE))

summary.fes

Print summary of free energy surface

Description

'summary.fes' prints dimensionality, minimum and maximum of free energy in a fes object.

Usage

## S3 method for class 'fes'
summary(object, ...)

Arguments

object fes object.
...

further arguments passed to or from other methods.

Examples

tfes <- fes(acealanme, imax=5000)
summary(tfes)
summary.hillsfile

Print summary for hillsfile

**Description**

`summary.hillsfile` prints dimensionality, size and collective variable ranges of a hillsfile object.

**Usage**

```r
S3 method for class 'hillsfile'
summary(object, ...)
```

**Arguments**

- `object` hillsfile object.
- `...` further arguments passed to or from other methods.

**Examples**

```r
summary(acealanme)
```

summary.minima

Print minima object summary

**Description**

`summary.minima` prints summary for free energy minima (identifier, values of bins and collective variables, free energy and equilibrium populations).

**Usage**

```r
S3 method for class 'minima'
summary(object, temp = 300, eunit = "kJ/mol", ...)
```

**Arguments**

- `object` minima object
- `temp` temperature in Kelvins
- `eunit` energy units (kJ/mol or kcal/mol, kJ/mol is default)
- `...` further arguments passed to or from other methods.

**Examples**

```r
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
summary(minima)
```
summary.nebpath Print summary for Nudged Elastic Band

Description

'print.nebpath' prints the list minima for Nudged Elastic Band, activation energies and half lives calculated by Eyring equation (https://doi.org/10.1063/1.1749604).

Usage

## S3 method for class 'nebpath'
summary(object, temp = 300, eunit = "kJ/mol", ...)

Arguments

object nebpath object.
temp temperature in Kelvins.
eunit energy units (kJ/mol or kcal/mol, kJ/mol is default).
... further arguments passed to or from other methods.

Examples

tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
summary(nebAD)

summary.profiles Print summary for free energy profile

Description

'summary.profiles' prints the list of free energy minima with maximal and minimal free energy differences.

Usage

## S3 method for class 'profiles'
summary(object, imind = 1, imaxd = NULL, ...)

Arguments

object profiles object.
imind index of a hill from which calculation of difference starts (default 1).
imaxd index of a hill from which calculation of difference stops (default the rest of hills).
... further arguments passed to or from other methods.
tail.hillsfile

Examples

tfes <- fes(acealanme, imax=5000)
minima <- fesminima(tfes)
prof <- feprof(minima)
summary(prof)

tail.hillsfile

Print last n lines of hillsfile

Description

‘tail.hillsfile’ prints last n lines of a hillsfile object.

Usage

## S3 method for class 'hillsfile'
tail(x, n = 10, ...)

Arguments

x        hillsfile object.
n        number of lines (default 10).
...      further arguments passed to or from other methods.

Examples

tail(acealanme)
Index

*Topic datasets
  acealanme, 3
  acealanmelm, 3
  acealanme, 3
  acealanmelm, 3
  feprof, 4
  feprof.minima, 4
  fes, 5
  fes.hillsfile, 5
  fes2, 6
  fes2.hillsfile, 7
  fes2d2id, 7
  fesminima, 8
  fesminima.fes, 9
  head.hillsfile, 9
  lines.fes, 10
  lines.hillsfile, 10
  lines.nebpath, 11
  linesonfes, 12
  max.fes, 12
  min.fes, 13
  neb, 13
  oneminimum, 14
  oneminimum.fes, 15
  plot.fes, 15
  plot.hillsfile, 17
  plot.minima, 18
  plot.nebpath, 19
  plot.profiles, 20
  plotheights, 21
  plotheights.hillsfile, 22
  points.fes, 23
  points.hillsfile, 23
  points.nebpath, 24
  pointsonfes, 25
  print.fes, 26
  print.hillsfile, 26
  print.minima, 27
  print.nebpath, 27
  print.profiles, 28
  prob, 28
  read.hills, 29
  read.plumed, 29
  summary.fes, 30
  summary.hillsfile, 31
  summary.minima, 31
  summary.nebpath, 32
  summary.profiles, 32
  tail.hillsfile, 33