Package ‘metaforest’

January 26, 2024

Type Package

Title Exploring Heterogeneity in Meta-Analysis using Random Forests

Version 0.1.4

Author Caspar J. van Lissa

Maintainer Caspar J. van Lissa <c.j.vanlissa@gmail.com>

Description Conduct random forests-based meta-analysis, obtain partial dependence plots for metaforest and classic meta-analyses, and cross-validate and tune metaforest- and classic meta-analyses in conjunction with the caret package. A requirement of classic meta-analysis is that the studies being aggregated are conceptually similar, and ideally, close replications. However, in many fields, there is substantial heterogeneity between studies on the same topic. Classic meta-analysis lacks the power to assess more than a handful of univariate moderators. MetaForest, by contrast, has substantial power to explore heterogeneity in meta-analysis. It can identify important moderators from a larger set of potential candidates (Van Lissa, 2020). This is an appealing quality, because many meta-analyses have small sample sizes. Moreover, MetaForest yields a measure of variable importance which can be used to identify important moderators, and offers partial prediction plots to explore the shape of the marginal relationship between moderators and effect size.

Depends R (>= 3.5.0), ggplot2, metafor, ranger, data.table, methods

Imports gtable, grid

Suggests testthat, caret, knitr, rmarkdown, covr

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2024-01-26 09:40:05 UTC
R topics documented:

coef_test . 2
curry . 3
extract_proximity . 4
fukkink_lont . 4
MetaForest . 5
ModelInfo mf . 8
ModelInfo rma . 9
PartialDependence . 10
plot.MetaForest . 13
predict.MetaForest . 13
preselect . 14
preselect vars . 15
print.summary.MetaForest . 16
SimulateSMD . 17
VarImpPlot . 18
WeightedScatter . 19

Index 21

| coef_test |
|---|---|
| Test coefficients of a model |

Description

Conduct a t-test or z-test for coefficients of a model.

Usage

```
coef_test(x, par1, par2, distribution = "pt")
```

Arguments

- `x`: A model.
- `par1`: Numeric or character. Name or position of the first parameter.
- `par2`: Numeric or character. Name or position of the second parameter.
- `distribution`: Character. Which distribution to use. Currently, can be one of c("pt", "pnorm"), for a t-test or z-test, respectively. Defaults to "pt".

Value

Named vector.

Examples

```
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
res <- rma(yi, vi, mods = alloc-1, data=dat, method="REML")
coef_test(res, 1, 2)
```
Happy to Help?

Description
A systematic review and meta-analysis of the effects of performing acts of kindness on the well-being of the actor.

Usage
data(curry)

Format
A data.frame with 56 rows and 18 columns.

Details

study_id	factor	Unique identifier of the study
effect_id	integer	Unique identifier of the effect size
d	numeric	Standardized mean difference between the control group and intervention group
vi	numeric	Variance of the effect size
n1i	numeric	Number of participants in the intervention group
n1c	numeric	Number of participants in the control group
sex	numeric	Percentage of male participants
age	numeric	Mean age of participants
location	character	Geographical location of the study
donor	character	From what population did the donors (helpers) originate?
donorcode	factor	From what population did the donors (helpers) originate? Dichotomized to Anxious or Typical
intervention	character	Description of the intervention / independent variable
interventioncode	factor	Description of the intervention / independent variable, categorized to Acts of Kindness, Prosocial Spending, or Other
control	character	Description of the control condition
controlecode	factor	Description of the control condition, categorized to Neutral Activity, Nothing, or Self Help
recipients	character	Who were the recipients of the act of kindness?
outcomedv	character	What was the outcome, or dependent variable, of the study?
outcomecode	factor	What was the outcome, or dependent variable, of the study? Categorized into Happiness, Life Satisfaction, PN Affect (positive or negative), and Other

Source
doi:10.1016/j.jesp.2018.02.014

References

extract_proximity

Extract proximity matrix for a MetaForest object.

Description

Extract proximity matrix for a MetaForest object.

Usage

```r
extract_proximity(fit, newdata)
```

Arguments

- `fit`: object of class `MetaForest`.
- `newdata`: new data with the same columns as the data used for `fit`.

Value

An n x n matrix where position i, j gives the proportion of times observation i and j are in the same terminal node across all trees.

Examples

```r
# Example usage
fit <- metaforest(...)  # Assume metaforest function is defined
newdata <- ...  # Assume new data is available
prox_matrix <- extract_proximity(fit, newdata)
```

fukkink_lont

Does training matter? A meta-analysis of caregiver training studies

Description

Usage

```r
data(fukkink_lont)
```

Format

A data.frame with 78 rows and 30 columns.
MetaForest

Conduct a MetaForest analysis to explore heterogeneity in meta-analytic data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id_exp</td>
<td>integer</td>
<td>Unique identifier of the study</td>
</tr>
<tr>
<td>yi</td>
<td>numeric</td>
<td>Standardized mean difference between the control group and</td>
</tr>
<tr>
<td>vi</td>
<td>numeric</td>
<td>Variance of the effect size</td>
</tr>
<tr>
<td>Journal</td>
<td>factor</td>
<td>Publication type (scientific journal or other publications)</td>
</tr>
<tr>
<td>Setting</td>
<td>factor</td>
<td>Setting (center-based care or family daycare)</td>
</tr>
<tr>
<td>Integrated</td>
<td>factor</td>
<td>Whether the training was integrated into childcare practice</td>
</tr>
<tr>
<td>Supervision</td>
<td>factor</td>
<td>Whether supervision was part of the training</td>
</tr>
<tr>
<td>Scope</td>
<td>factor</td>
<td>Scope of the training (narrow or broad)</td>
</tr>
<tr>
<td>Location</td>
<td>factor</td>
<td>Location of the training (one-site or multi-site)</td>
</tr>
<tr>
<td>Curriculum</td>
<td>factor</td>
<td>Fixed curriculum</td>
</tr>
<tr>
<td>Control</td>
<td>factor</td>
<td>Alternative treatment for control group</td>
</tr>
<tr>
<td>Assignment</td>
<td>factor</td>
<td>Random assignment or matching (at the level of the individual caregiver or childcare center)</td>
</tr>
<tr>
<td>Train_Knowledge</td>
<td>factor</td>
<td>Explicit focus on knowledge</td>
</tr>
<tr>
<td>Train_Skills</td>
<td>factor</td>
<td>Explicit focus on skills</td>
</tr>
<tr>
<td>Train_Attitude</td>
<td>factor</td>
<td>Explicit focus on attitude</td>
</tr>
<tr>
<td>Video</td>
<td>factor</td>
<td>Use of video feedback</td>
</tr>
<tr>
<td>Design</td>
<td>factor</td>
<td>Single group, or two-group experimental design</td>
</tr>
<tr>
<td>Pre_Post</td>
<td>factor</td>
<td>Pretest/posttest design (yes/no)</td>
</tr>
<tr>
<td>Blind</td>
<td>factor</td>
<td>Was a blinding procedure used?</td>
</tr>
<tr>
<td>Attrition</td>
<td>numeric</td>
<td>Attrition from the experimental condition (percentage)</td>
</tr>
<tr>
<td>Pretest_es</td>
<td>numeric</td>
<td>Pre-test effect size</td>
</tr>
<tr>
<td>Self_report</td>
<td>factor</td>
<td>Self-report measures of caregiver competencies versus ‘objective’ test or observation by independent observers</td>
</tr>
<tr>
<td>DV_Knowledge</td>
<td>factor</td>
<td>Test focused on knowledge</td>
</tr>
<tr>
<td>DV_Skills</td>
<td>factor</td>
<td>Test focused skills</td>
</tr>
<tr>
<td>DV_Attitude</td>
<td>factor</td>
<td>Test focused on attitudes</td>
</tr>
<tr>
<td>DV_Aligned</td>
<td>factor</td>
<td>Test aligned with the content of the training (yes/no)</td>
</tr>
<tr>
<td>Two_group_design</td>
<td>factor</td>
<td>Single group, or two-group experimental design</td>
</tr>
<tr>
<td>Trainee_Age</td>
<td>numeric</td>
<td>Trainees’ age</td>
</tr>
<tr>
<td>Trainee_Experience</td>
<td>numeric</td>
<td>Trainees’ working experience</td>
</tr>
<tr>
<td>n_total</td>
<td>integer</td>
<td>Total n at post-test</td>
</tr>
</tbody>
</table>

Source

Description

MetaForest uses a weighted random forest to explore heterogeneity in meta-analytic data. MetaForest is a wrapper for ranger (Wright & Ziegler, 2015). As input, MetaForest takes the study effect sizes and their variances (these can be computed, for example, using the metafor package), as well as the moderators that are to be included in the model. By default, MetaForest uses random-effects weights, and estimates the between-studies variance using a restricted maximum-likelihood estimator. However, it may be beneficial to first conduct an unweighted MetaForest, and then use the estimated residual heterogeneity from this model as the estimate of tau2 for a random-effects weighted MetaForest.

Usage

MetaForest(
 formula,
 data,
 vi = "vi",
 study = NULL,
 whichweights = "random",
 num.trees = 500,
 mtry = NULL,
 method = "REML",
 tau2 = NULL,
 ...
)

Arguments

formula Formula. Specify a formula for the MetaForest model, for example, yi ~ . to predict the outcome yi from all moderators in the data. Only additive formulas are allowed (i.e., x1+x2+x3). Interaction terms and non-linear terms are not required, as the random forests algorithm inherently captures these associations.

data A data.frame containing the effect size, moderators, and the variance of the effect size.

vi Character. Specify the name of the column in the data that contains the variances of the effect sizes. This column will be removed from the data prior to analysis. Defaults to "vi".

study Character. Optionally, specify the name of the column in the data that contains the study id. Use this when the data includes multiple effect sizes per study. This column can be a vector of integers, or a factor. This column will be removed from the data prior to analysis. See Details for more information about analyzing dependent data.

whichweights Character. Indicate what type of weights are required. A random-effects MetaForest is grown by specifying whichweights = "random". A fixed-effects MetaForest is grown by specifying whichweights = "fixed". An unweighted MetaForest is grown by specifying whichweights = "unif". Defaults to "random".

num.trees Atomic integer. Specify the number of trees in the forest. Defaults to 500.
mtry Atomic integer. Number of candidate moderators available for each split. Defaults to the square root of the number moderators (rounded down).

method Character. Specify the method by which to estimate the residual variance. Can be set to one of the following: "DL", "HE", "SJ", "ML", "REML", "EB", "HS", or "GENQ". Default is "REML". See the metafor package for more information about these estimators.

tau2 Numeric. Specify a predetermined value for the residual heterogeneity. Entering a value here supersedes the estimated tau2 value. Defaults to NULL.

Additional arguments are passed directly to ranger. It is recommended not to use additional arguments.

Details

For dependent data, a clustered MetaForest analysis is more appropriate. This is because the predictive performance of a MetaForest analysis is evaluated on out-of-bootstrap cases, and when cases out of the bootstrap sample originate from the same study, the model will be overly confident in its ability to predict their value. When the MetaForest is clustered by the study variable, the dataset is first split into two cross-validation samples by study. All dependent effect sizes from each study are thus included in the same cross-validation sample. Then, two random forests are grown on these cross-validation samples, and for each random forest, the other sample is used to calculate prediction error and variable importance, see doi:10.1007/s1163401602764.

Value

List of length 3. The "forest" element of this list is an object of class "ranger", containing the results of the random forests analysis. The "rma_before" element is an object of class "rma.uni", containing the results of a random-effects meta-analysis on the raw data, without moderators. The "rma_after" element is an object of class "rma.uni", containing the results of a random-effects meta-analysis on the residual heterogeneity, or the difference between the effect sizes predicted by MetaForest and the observed effect sizes.

Examples

```r
#Example 1:
#Simulate data with a univariate linear model
set.seed(42)
data <- SimulateSMD()
#Conduct unweighted MetaForest analysis
mf.unif <- MetaForest(formula = yi ~ ., data = data$training,
                        whichweights = "unif", method = "DL")
#Print model
mf.unif
#Conduct random-effects weighted MetaForest analysis
mf.random <- MetaForest(formula = yi ~ ., data = data$training,
                         whichweights = "random", method = "DL",
                         tau2 = 0.0116)
#Print summary
summary(mf.random)
```

#Example 2: Real data from metafor
ModelInfo_mf

Returns a MetaForest ModelInfo list for use with caret

Description

This function allows users to rely on the powerful caret package for cross-validating and tuning a MetaForest analysis. Methods for MetaForest are not included in the caret package, because the interface of caret is not entirely compatible with MetaForest’s model call. Specifically, MetaForest is not compatible with the train methods for classes 'formula' or 'recipe', because the variance of the effect size must be a column of the training data x. The name of this column is specified using the argument 'vi'.

Usage

ModelInfo_mf()

Details

To train a clustered MetaForest, for nested data structures, simply provide the optional argument 'study' to the train function, to specify the study ID. This should again refer to a column of x.

When training a clustered MetaForest, make sure to use ‘index = groupKFold(your_study_id_variable, k = 10)’ in traincontrol, to sample by study ID when creating cross-validation partitions; otherwise the testing error will be positively biased.

Value

ModelInfo list of length 17.
Examples

```r
## Not run:
# Prepare data
data <- dat.bangertdrowns2004
data[, c(4:12)] <- apply(data[, c(4:12)], 2, function(x){
  x[is.na(x)] <- median(x, na.rm = TRUE)
})
data$subject <- factor(data$subject)
data$yi <- as.numeric(data$yi)
# Load caret
library(caret)
set.seed(999)
# Specify the resampling method as 10-fold CV
fit_control <- trainControl(method = "cv", number = 10)
cv_mf_fit <- train(y = data$yi, x = data[,c(3:13, 16)],
  method = ModelInfo_mf(), trControl = fit_control)

# Cross-validated clustered MetaForest
data <- get(data(dat.bourassa1996))
data <- escalc(measure = "OR", ai = lh.le, bi = lh.re, ci = rh.le, di= rh.re,
  data = data, add = 1/2, to = "all")
data$mage[is.na(data$mage)] <- median(data$mage, na.rm = TRUE)
data$c(5:8) <- lapply(data[c(5:8)], factor)
data$yi <- as.numeric(data$yi)
# Set up 10-fold grouped CV
fit_control <- trainControl(method = "cv", index = groupKFold(data$sample, k = 10))
# Set up a custom tuning grid for the three tuning parameters of MetaForest
rf_grid <- expand.grid(whichweights = c("random", "fixed", "unif"),
  mtry = c(2, 4, 6),
  min.node.size = c(2, 4, 6))
# Train the model
cv.mf.cluster <- train(y = data$yi, x = data[, c("selection", "investigator",
  "hand_assess", "eye_assess",
  "mage", "sex", "vi",
  "sample")],
  study = "sample", method = ModelInfo_mf(),
  trControl = fit_control, tuneGrid = rf_grid)
```

End(Not run)

ModelInfo_rma
Returns an rma ModelInfo list for use with caret

Description

This function allows users to rely on the powerful caret package for cross-validating and tuning a rma analysis. Methods for rma are not included in the caret package, because the interface of
caret is not entirely compatible with rma’s model call. Specifically, rma is not compatible with the train methods for classes ‘formula’ or ‘recipe’. The variance of the effect sizes can be passed to the ‘weights’ parameter of train.

Usage

ModelInfo_rma()

Details

When using clustered data (effect sizes within studies), make sure to use ‘index = groupKFold(your_study_id_variable, k = 10)’ in traincontrol, to sample by study ID when creating cross-validation partitions; otherwise the testing error will be positively biased.

Value

ModelInfo list of length 13.

Examples

Not run:
Prepare data
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
dat$yi <- as.numeric(dat$yi)
dat$alloc <- factor(dat$alloc)
Run rma
rma.model <- rma(y = dat$yi, mods = dat[, c("ablat", "year")], vi = dat$vi)
R^2 is estimated to be .64
rma.model$R2
Now, use cross-validation to see how well this model generalizes
Leave-one-out cross-validation is more appropriate than 10-fold cv because
the sample size is very small
fit_control <- trainControl(method = "LOOCV")
Train the model without tuning, because rma has no tuning parameters
cv.mf.cluster <- train(y = dat$yi, x = dat[, c("ablat", "year")],
 weights = dat$vi,
 method = ModelInfo_rma(),
 trControl = fit_control)
Cross-validated R^2 is .08, suggesting substantial overfitting of the
original rma model
cv.mf.cluster$results$results$R.squared

End(Not run)
Usage

PartialDependence(
 x,
 vars = NULL,
 pi = NULL,
 rawdata = FALSE,
 bw = FALSE,
 resolution = NULL,
 moderator = NULL,
 mod_levels = NULL,
 output = "plot",
 ...
)

Arguments

x Model object.

vars Character vector containing the moderator names for which to plot partial dependence plots. If empty, all moderators are plotted.

pi Numeric (0-1). What percentile interval should be plotted for the partial dependence predictions? Defaults to NULL. To obtain a 95% interval, set to .95.

rawdata Logical, indicating whether to plot weighted raw data. Defaults to FALSE. Uses the same weights as the model object passed to the x argument.

bw Logical, indicating whether the plot should be black and white, or color.

resolution Integer vector of length two, giving the resolution of the partial predictions. The first element indicates the resolution of the partial predictions; for Monte-Carlo integration, the second element gives the number of rows of the data to be sampled without replacement when averaging over values of the other predictors.

moderator Atomic character vector, referencing the name of one variable in the model. Results in partial prediction plots, conditional on the moderator. If moderator references a factor variable, separate lines/boxplots are plotted for each factor level. If moderator references a numeric variable, heatmaps are plotted - unless the moderator is categorized using the mod_levels argument.

mod_levels Vector. If moderator is continuous, specify thresholds for the cut function. The continuous moderator is categorized, and predictions are based on the median moderator value within each category. You can call quantile to cut the moderator at specific quantiles. If moderator is a factor variable, you can use mod_levels to specify a character vector with the factor levels to retain in the plot (i.e., dropping the other factor levels).

output Character. What type of output should be returned? Defaults to "plot", which returns and plots a gtable object. To obtain a list of ggplot objects instead, provide the argument "list".

... Additional arguments to be passed to and from functions.
Details

Plots partial dependence plots (predicted effect size as a function of the value of each predictor variable) for a MetaForest- or rma model object. For rma models, it is advisable to mean-center numeric predictors, and to not include plot_int effects, except when the rma model is bivariate, and the plot_int argument is set to TRUE.

Value

A gtable object.

Examples

```r
## Not run:
#
# Partial dependence plot for MetaForest() model:
sell.seed(42)
data <- SimulateSMD(k_train = 200, model = es * x[, 1] + es * x[, 2] + es * x[, 1] * x[, 2])$training
data$X2 <- cut(data$X2, breaks = 2, labels = c("Low", "High"))
mf.random <- MetaForest(formula = yi ~ ., data = data,
                       whichweights = "random", method = "DL",
tau2 = 0.2450)
# Examine univariate partial dependence plot for all variables in the model:
PartialDependence(mf.random, pi = .8)
# Examine bivariate partial dependence plot the plot_int between X1 and X2:
pd.plot <- PartialDependence(mf.random, vars = c("X1", "X2"), plot_int = TRUE)
# Save to pdf file
df("pd_plot.pdf")
gride.draw(pd.plot)
dev.off()
# Partial dependence plot for metafor rma() model:
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
dat$yi <- as.numeric(dat$yi)
dat$alloc <- factor(dat$alloc)
dat$ablat_d <- cut(dat$ablat, breaks = 2, labels = c("low", "high"))
# Demonstrate partial dependence plot for a bivariate plot_int
rma.model.int <- rma(yi, vi, mods=cbind(ablat, tpos),
data=dat, method="REML")
PartialDependence(rma.model.int, rawdata = TRUE, pi = .95,
plot_int = TRUE)

# Compare partial dependence for metaforest and rma
Dat2 <- dat
dat2[3:7] <- lapply(dat2[3:7],
function(x){as.numeric(scale(x, scale = FALSE))})
mf.model.all <- MetaForest(yi ~ ., dat2[, c(3:11)])
rma.model.all <- rma(dat$yi, dat2$yi,
mods = model.matrix(yi~., dat2[, c(3:10)][, -1]),
method="REML")
PartialDependence(mf.model.all, rawdata = TRUE, pi = .95)
PartialDependence(rma.model.all, rawdata = TRUE, pi = .95)
## End(Not run)
```
plot.MetaForest

Description

Plots cumulative MSE for a MetaForest object.

Usage

S3 method for class 'MetaForest'
plot(x, y, ...)

Arguments

x

MetaForest object.

y

not used for plot.MetaForest

...

Arguments to be passed to methods, not used for plot.MetaForest

Value

A ggplot object, visualizing the number of trees on the x-axis, and the cumulative mean of the MSE of that number of trees on the y-axis. As a visual aid to assess convergence, a dashed gray line is plotted at the median cumulative MSE value.

Examples

predict.MetaForest

METAFOREST prediction

Description

MetaForest prediction

Usage

S3 method for class 'MetaForest'
predict(object, data = NULL, type = "response", ...)

Arguments

object

MetaForest object.

data

New test data of class data.frame.

type

Type of prediction. One of 'response', 'se', 'terminalNodes' with default 'response'. See below for details.

...

further arguments passed to or from other methods.
Value

Object of class `MetaForest.prediction` with elements

- `predictions`: Predicted classes/values (only for classification and regression)
- `num.trees`: Number of trees.
- `num.independent.variables`: Number of independent variables.
- `treetype`: Type of forest/tree. Classification, regression or survival.
- `num.samples`: Number of samples.

See Also

- `ranger`

Examples

```r
set.seed(56)
data <- SimulateSMD(k_train = 100, model = es * x[,1] * x[,2])
# Conduct fixed-effects MetaForest analysis
mf.fixed <- MetaForest(formula = yi ~ ., data = data$training,
                       whichweights = "fixed", method = "DL")
predicted <- predict(mf.fixed, data = data$testing)$predictions
r2_cv <- sum((predicted - mean(data$training$yi)) ^ 2) / 
           sum((data$testing$yi - mean(data$training$yi)) ^ 2)
```

preselect

Preselect variables for MetaForest analysis

Description

Takes a `MetaForest` object, and applies different algorithms for variable selection.

Usage

```r
preselect(x, replications = 100L, algorithm = "replicate", ...)
```

Arguments

- `x`: Model to perform variable selection for. Accepts MetaForest objects.
- `replications`: Integer. Number of replications to run for variable preselection. Default: 100.
- `algorithm`: Character. Preselection method to apply. Currently, 'replicate', 'recursive', and 'bootstrap' are available.
- `...`: Other arguments to be passed to and from functions.
Details

Currently, available methods under algorithm are:

replicate This simply replicates the analysis, which means the forest has access to the full data set, but the trees are grown on different bootstrap samples across replications (thereby varying monte carlo error).

bootstrap This replicates the analysis on bootstrapped samples, which means each replication has access to a different sub-sample of the full data set. When selecting this algorithm, cases are either bootstrap-sampled by study, or a new study column is generated, and a clustered MetaForest is grown (because some of the rows in the data will be duplicated), and this would lead to an under-estimation of the OOB error.

recursive Starting with all moderators, the variable with the most negative variable importance is dropped from the model, and the analysis re-run. This is repeated until only variables with a positive variable importance are left, or no variables are left. The proportion of final models containing each variable reflects its importance.

Value

An object of class 'mf_preselect'

Examples

```r
## Not run:
data <- get(data(dat.bourassa1996))
data <- escalc(measure = "OR", ai = lh.le, bi = lh.re, ci = rh.le, di = rh.re,
data = data, add = 1/2, to = "all")
data$mage[is.na(data$mage)] <- median(data$mage, na.rm = TRUE)
data[, 5:8] <- lapply(data[, 5:8], factor)
data$yi <- as.numeric(data$yi)
mf.model <- MetaForest(formula = yi ~ selection + investigator + hand_assess + eye_assess +
mage + sex,
data, study = "sample",
whichweights = "unif", num.trees = 300)
preselect(mf.model,
replications = 10,
algorith = "bootstrap")

## End(Not run)
```

preselect_vars

Extract variable names from mf_preselect object

Description

Returns a vector of variable names from an mf_preselect object, based on a cutoff criterion provided.

Usage

```r
preselect_vars(x, cutoff = NULL, criterion = NULL)
```
Arguments

- **x**: Object of class mf_preselect.
- **cutoff**: Numeric. Must be a value between 0 and 1. By default, uses .95 for bootstrapped preselection, and .1 for recursive preselection.
- **criterion**: Character. Which criterion to use. See Details for more information. By default, uses ‘ci’ (confidence interval) for bootstrapped preselection, and ‘p’ (proportion) for recursive preselection.

Details

For criterion = 'p', the function evaluates the proportion of replications in which a variable achieved a positive (>0) variable importance. For criterion = 'ci', the function evaluates whether the lower bound of a confidence interval of a variable’s importance across replications exceeds zero. The width of the confidence interval is determined by cutoff.

For recursive preselection, any variable not included in a final model is assigned zero importance.

Value

Character vector.

Examples

```r
## Not run:
data <- get(data(dat.bourassa1996))
data <- escalc(measure = "OR", ai = lh.le, bi = lh.re, ci = rh.le, di= rh.re,
              data = data, add = 1/2, to = "all")
data$mage[is.na(data$mage)] <- median(data$mage, na.rm = TRUE)
data[c(5:8)] <- lapply(data[c(5:8)], factor)
data$yi <- as.numeric(data$yi)
preselected <- preselect(formula = yi~ selection + investigator + hand_assess + eye_assess + mage + sex,
data, study = "sample",
whichweights = "unif", num.trees = 300,
replications = 10,
algorithm = "bootstrap")
preselect_vars(preselected)

## End(Not run)
```

print.summary.MetaForest

Prints summary.MetaForest object.

Description

Prints summary.MetaForest object.
Usage

```r
## S3 method for class 'summary.MetaForest'
print(x, digits, ...)
```

Arguments

- `x`: an object used to select a method.
- `digits`: minimal number of significant digits, see `print.default`.
- `...`: further arguments passed to or from other methods.

Examples

```r
SimulateSMD
Simulates a meta-analytic dataset
```

Description

This function simulates a meta-analytic dataset based on the random-effects model. The simulated effect size is Hedges’ G, an estimator of the Standardized Mean Difference. The functional form of the model can be specified, and moderators can be either normally distributed or Bernoulli-distributed. See Van Lissa, 2018, for a detailed explanation of the simulation procedure.

Usage

```r
SimulateSMD(
  k_train = 20,
  k_test = 100,
  mean_n = 40,
  es = 0.5,
  tau2 = 0.04,
  moderators = 5,
  distribution = "normal",
  model = es * x[, 1]
)
```

Arguments

- `k_train`: Atomic integer. The number of studies in the training dataset. Defaults to 20.
- `k_test`: Atomic integer. The number of studies in the testing dataset. Defaults to 100.
- `mean_n`: Atomic integer. The mean sample size of each simulated study in the meta-analytic dataset. Defaults to 40. For each simulated study, the sample size `n` is randomly drawn from a normal distribution with mean `mean_n`, and sd `mean_n/3`.
es

Atomic numeric vector. The effect size, also known as beta, used in the model statement. Defaults to .5.

tau2

Atomic numeric vector. The residual heterogeneity. Defaults to 0.04.

moderators

Atomic integer. The number of moderators to simulate for each study. Make sure that the number of moderators to be simulated is at least as large as the number of moderators referred to in the model parameter. Internally, the matrix of moderators is referred to as “x”. Defaults to 5.

distribution

Atomic character. The distribution of the moderators. Can be set to either "normal" or "bernoulli". Defaults to "normal".

model

Expression. An expression to specify the model from which to simulate the mean true effect size, mu. This formula may use the terms "es" (referring to the es parameter of the call to SimulateSMD), and "x[,]" (referring to the matrix of moderators, x). Thus, to specify that the mean effect size, mu, is a function of the effect size and the first moderator, one would pass the value model = es * x[, 1]. Defaults to es * x[, 1].

Value

List of length 4. The "training" element of this list is a data.frame with k_train rows. The columns are the variance of the effect size, vi; the effect size, yi, and the moderators, X. The "testing" element of this list is a data.frame with k_test rows. The columns are the effect size, yi, and the moderators, X. The "housekeeping" element of this list is a data.frame with k_train + k_test rows. The columns are n, the sample size n for each simulated study; mu_i, the mean true effect size for each simulated study; and theta_i, the true effect size for each simulated study.

References

Examples

```r
set.seed(8)
SimulateSMD()
SimulateSMD(k_train = 50, distribution = "bernoulli")
SimulateSMD(distribution = "bernoulli", model = es * x[, 1] * x[, 2])
```

VarImpPlot

Plots variable importance for a MetaForest object.

Description

Plots variable importance for a MetaForest object.
WeightedScatter

Usage

VarImpPlot(mf, n.var = 30, sort = TRUE, ...)

Arguments

mf MetaForest object.
n.var Number of moderators to plot.
sort Should the moderators be sorted from most to least important?
... Parameters passed to and from other functions.

Value

A ggplot object.

Examples

set.seed(42)
data <- SimulateSMD()
mf.random <- MetaForest(formula = yi ~ ., data = data$training,
 whichweights = "random", method = "DL",
 tau2 = 0.0116)

VarImpPlot(mf.random)
VarImpPlot(mf.random, n.var = 2)
VarImpPlot(mf.random, sort = FALSE)

WeightedScatter

Plots weighted scatterplots for meta-analytic data. Can plot effect size as a function of either continuous (numeric, integer) or categorical (factor, character) predictors.

Description

Plots weighted scatterplots for meta-analytic data. Can plot effect size as a function of either continuous (numeric, integer) or categorical (factor, character) predictors.

Usage

WeightedScatter(
 data,
 yi = "yi",
 vi = "vi",
 vars = NULL,
 tau2 = NULL,
 summarize = TRUE
)
WeightedScatter

Arguments

data A data.frame.
yi Character. The name of the column in data that contains the meta-analysis effect sizes. Defaults to "yi".
vi Character. The name of the column in the data that contains the variances of the effect sizes. Defaults to "vi". By default, vi is used to calculate fixed-effects weights, because fixed effects weights summarize the data set at hand, rather than generalizing to the population.
vars Character vector containing the names of specific moderator variables to plot. When set to NULL, the default, all moderators are plotted.
tau2 Numeric. Provide an optional value for tau2. If this value is provided, random-effects weights will be used instead of fixed-effects weights.
summarize Logical. Should summary stats be displayed? Defaults to FALSE. If TRUE, a smooth trend line is displayed for continuous variables, using [stats::loess()] for less than 1000 observations, and [mgcv::gam()] for larger datasets. For categorical variables, box-and-whiskers plots are displayed. Outliers are omitted, because the raw data fulfill this function.

Value

A gtable object.

Examples

```r
## Not run:
set.seed(42)
data <- SimulateSMD(k_train = 100, model = es * x[, 1] + es * x[, 2] + es * x[, 1] * x[, 2])$training
data$X2 <- cut(data$X2, breaks = 2, labels = c("Low", "High"))
data$X3 <- cut(data$X3, breaks = 2, labels = c("Small", "Big"))
WeightedScatter(data, summarize = FALSE)
WeightedScatter(data, vars = c("X3"))
WeightedScatter(data, vars = c("X1", "X3"))

## End(Not run)
```
Index

* datasets
 curry, 3
 fukkink_lont, 4

coef_test, 2
curry, 3
cut, 11

extract_proximity, 4
fukkink_lont, 4

metafor, 6, 7
MetaForest, 5, 14
ModelInfo_mf, 8
ModelInfo_rma, 9

PartialDependence, 10
plot.MetaForest, 13
predict.MetaForest, 13
preselect, 14
preselect_vars, 15
print.summary.MetaForest, 16

quantile, 11

ranger, 6, 7, 14

SimulateSMD, 17

VarImpPlot, 18

WeightedScatter, 19