Calculate the Knowledge-Weighted Estimate

According to a phenomenon known as "the wisdom of the crowds," combining point estimates from multiple judges often provides a more accurate aggregate estimate than using a point estimate from a single judge. However, if the judges use shared information in their estimates, the simple average will over-emphasize this common component at the expense of the judges’ private information.

The authors use both simulation and data from six experimental studies to illustrate that the weighting procedure outperforms existing averaging-like methods, such as the equally weighted average, trimmed average, and median.

This aggregate estimate — known as "the knowledge-weighted estimate" — inputs a) judges’ estimates of a continuous outcome (E) and b) predictions of others’ average estimate of this outcome (P).

In this R-package, the function `knowledge_weighted_estimate(E,P)` implements the knowledge-weighted estimate. Its use is illustrated with a simple stylized example and on real-world experimental data.

License GPL-2
Copyright (c) Ville Satopaa
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports MASS, stats
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
Calorie_Counts

Description

Palley and Satopää (2021) conducted an experiment where participants were presented with 36 different pictures of food from different restaurants and were asked to estimate the total number of calories in these dishes. Each response involves three steps:

1. **Initial Estimates:** On the first screen the participant was presented with a picture of a meal and asked *How many calories do you think are in this meal?*

2. **Predictions of Others:** On the second screen the participant saw the same picture, was reminded of their previous estimate, and given the statement: *We will be showing this picture to other participants as well. Just as we did with you, we will ask them how many calories they believe are in this meal. The participant was then asked to predict How many calories do you think that others will guess on average?*

3. **Final Estimates:** On the third screen the participant saw the same picture again and was asked *After having reflected on others, what is your own final best estimate of the number of calories in this meal?*
Usage

- `E_CALORIES_INITIAL` is a list of the judges' initial estimates of the calorie counts in each of the 36 meals. Specifically, the jth element is a vector of the judges' initial estimates of the calories in the jth meal.

- `E_CALORIES_FINAL` is a list of the judges' final estimates of the calorie counts in each of the 36 meals. Specifically, the jth element is a vector of the judges' final estimates of the calories in the jth meal.

- `P_CALORIES` is a list of the judges' predictions of others. Specifically, the jth element is a vector of the judges' predictions of other judges' average estimate of the number of calories in the jth meal.

- `THETA_CALORIES` is a vector of the true calorie counts in each of the 36 meals. Specifically, the jth element is the true calorie count in the jth meal.

- `ID_CALORIES` is a list of the judges' identification numbers in each of the 36 meals. Specifically, the jth element is a vector of identification numbers of judges who gave responses for the jth meal. These values make it possible to track a judge across questions.

Remark. The elements of each list correspond to the same meal. Specifically, the jth elements of `THETA_CALORIES, E_CALORIES_INITIAL, E_CALORIES_FINAL, P_CALORIES, and ID_CALORIES` represent the true calories, initial estimates, final estimates, the predictions of others, and identification numbers of the jth meal.

Source

Description

Palley and Soll (2019) recruited individuals on Amazon Mechanical Turk and asked them to estimate the proportion of heads in 100 flips of a biased two-sided coin. The probability of heads was unknown to the participants, who were told that it could be anywhere between 1% and 99%. Before responding, each judge was shown a sample of flips that all judges saw (shared information) and another sample of flips that was only seen by that individual or by a subset of judges (private information). Three information structures were considered:

1. **Symmetric**: All judges saw their own unique sample of flips. There are a total of 72 judgment tasks under this condition.

2. **Nested**: Some judges saw only the shared sample while others saw an additional common sample. There are a total of 24 judgment tasks under this condition.

3. **Nested-Symmetric**: Some judges saw only the shared sample while others saw their own additional sample of flips. There are a total of 24 judgment tasks under this condition.

Usage

- E_COINS_SYMMETRIC
- E_COINS_NESTED
- E_COINS_NESTED_SYMMETRIC
- P_COINS_SYMMETRIC
- P_COINS_NESTED
- P_COINS_NESTED_SYMMETRIC
- THETA_COINS_SYMMETRIC
- THETA_COINS_NESTED
- THETA_COINS_NESTED_SYMMETRIC
- ID_COINS_SYMMETRIC
- ID_COINS_NESTED
- ID_COINS_NESTED_SYMMETRIC
Format

E_COINS_SYMMETRIC is a list of the judges’ estimates of the proportion of heads in 100 flips of a biased two-sided coin under the Symmetric condition. Specifically, the \(j \)th element is a vector of the judges’ estimated proportions in the \(j \)th task.

E_COINS_NESTED is a list of the judges’ estimates of the proportion of heads in 100 flips of a biased two-sided coin under the Nested condition. Specifically, the \(j \)th element is a vector of the judges’ estimated proportions in the \(j \)th task.

E_COINS_NESTED_SYMMETRIC is a list of the judges’ estimates of the proportion of heads in 100 flips of a biased two-sided coin under the Nested-Symmetric condition. Specifically, the \(j \)th element is a vector of the judges’ estimated proportions in the \(j \)th task.

P_COINS_SYMMETRIC is a list of the judges’ predictions of other judges’ average estimate of the proportion of heads in 100 flips of a biased two-sided coin under the Symmetric condition. Specifically, the \(j \)th element is a vector of the judges’ predictions of others in the \(j \)th task.

P_COINS_NESTED is a list of the judges’ predictions of other judges’ average estimate of the proportion of heads in 100 flips of a biased two-sided coin under the Nested condition. Specifically, the \(j \)th element is a vector of the judges’ predictions of others in the \(j \)th task.

P_COINS_NESTED_SYMMETRIC is a list of the judges’ predictions of other judges’ average estimate of the proportion of heads in 100 flips of a biased two-sided coin under the Nested-Symmetric condition. Specifically, the \(j \)th element is a vector of the judges’ predictions of others in the \(j \)th task.

THETA_COINS_SYMMETRIC is a vector of the actual proportions of heads under the Symmetric condition. Specifically, the \(j \)th element is the actual proportion of heads in the \(j \)th task.

THETA_COINS_NESTED is a vector of the actual proportions of heads under the Nested condition. Specifically, the \(j \)th element is the actual proportion of heads in the \(j \)th task.

THETA_COINS_NESTED_SYMMETRIC is a vector of the actual proportions of heads under the Nested-Symmetric condition. Specifically, the \(j \)th element is the actual proportion of heads in the \(j \)th task.

ID_COINS_SYMMETRIC is a list of the judges’ identification numbers in the judgment tasks under the Symmetric condition. Specifically, the \(j \)th element is a vector of identification numbers of judges’ who participated in estimating the proportion of heads in the \(j \)th task. These values make it possible to track a judge across judgment tasks.

ID_COINS_NESTED is a list of the judges’ identification numbers in the judgment tasks under the Nested condition. Specifically, the \(j \)th element is a vector of identification numbers of judges’ who participated in estimating the proportion of heads in the \(j \)th task. These values make it possible to track a judge across judgment tasks.

ID_COINS_NESTED_SYMMETRIC is a list of the judges’ identification numbers in the judgment tasks under the Nested-Symmetric condition. Specifically, the \(j \)th element is a vector of identification numbers of judges’ who participated in estimating the proportion of heads in the \(j \)th task. These values make it possible to track a judge across judgment tasks.
Remark. The elements of each list correspond to the same meal. For instance, the jth elements of THETA_COINS_SYMMETRIC, E_COINS_SYMMETRIC, P_COINS_SYMMETRIC, and ID_COINS_SYMMETRIC represent the true proportion, estimates, the predictions of others, and identification numbers associated with the jth task under the Symmetric condition.

Source

General Knowledge Statements

Data: General Knowledge Statements

Description

Martinie et al. (2020) recruited individuals on Amazon Mechanical Turk and asked them to provide subjective probabilities of whether various general science statements from U.S. grade school were true or false. Problems were classified into five levels of difficulty, with level 1 being the easiest and level 5 being the most difficult. For example, one easy problem (level 1) presented the statement *Omnivores only eat meat*, whereas one difficult problem (level 5) presented the statement *Sound waves and electromagnetic waves are examples of longitudinal waves*.

The full data have been split into 5 groups based on the difficulty the questions.

1. E_GK_1 to E_GK_5: A list of the judges’ estimates of the probabilities that the statements are true.
2. P_GK_1 to P_GK_5: A list of the judges’ predictions of others’ average probability estimates.
3. ID_GK_1 to ID_GK_5: A list of the judges’ identification numbers. These values make it possible to track a judge across different judgment tasks.
4. THETA_GK_1 to THETA_GK_5: Actual outcomes showing whether the statements are true (1) or not (0).

The final number in the name of the data set indicates the associated difficulty level. For instance, E_GK_5 holds the probability estimates of the most difficult questions, THETA_GK_1 holds actual outcomes for the easiest questions, and so on. The elements of each list correspond to the same question. For instance, the jth elements of THETA_GK_1, E_GK_1, P_GK_1, and ID_GK_1 give the true outcome, vector of probability estimates, vector of predictions of other judges’ average probability estimates, and vector of identification numbers of the jth question with difficulty level 1.

Usage

E_GK_1
E_GK_2
E_GK_3
Format

E_GK_1 holds judges’ estimates of the outcome. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 1. The jth element is a vector of the judges’ estimates of the probability that the jth statement is true.

E_GK_2 holds judges’ estimates of the outcome. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 2. The jth element is a vector of the judges’ estimates of the probability that the jth statement is true.

E_GK_3 holds judges’ estimates of the outcome. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 3. The jth element is a vector of the judges’ estimates of the probability that the jth statement is true.

E_GK_4 holds judges’ estimates of the outcome. Specifically, it holds a list of 100 elements, one
per general knowledge statement with difficulty level 4. The \(j \)th element is a vector of the judges’ estimates of the probability that the \(j \)th statement is true.

\(E_{GK_5} \) holds judges’ estimates of the outcome. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 5. The \(j \)th element is a vector of the judges’ estimates of the probability that the \(j \)th statement is true.

\(P_{GK_1} \) holds judges’ predictions of other judges’ average estimate of the outcome. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 1. The \(j \)th element is a vector of the judges’ predictions of others’ average estimate of the probability that the \(j \)th statement is true.

\(P_{GK_2} \) holds judges’ predictions of other judges’ average estimate of the outcome. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 2. The \(j \)th element is a vector of the judges’ predictions of others’ average estimate of the probability that the \(j \)th statement is true.

\(P_{GK_3} \) holds judges’ predictions of other judges’ average estimate of the outcome. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 3. The \(j \)th element is a vector of the judges’ predictions of others’ average estimate of the probability that the \(j \)th statement is true.

\(P_{GK_4} \) holds judges’ predictions of other judges’ average estimate of the outcome. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 4. The \(j \)th element is a vector of the judges’ predictions of others’ average estimate of the probability that the \(j \)th statement is true.

\(P_{GK_5} \) holds judges’ predictions of other judges’ average estimate of the outcome. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 5. The \(j \)th element is a vector of the judges’ predictions of others’ average estimate of the probability that the \(j \)th statement is true.

\(THETA_{GK_1} \) is a vector of 100 elements, one per general knowledge statement with difficulty level 1. The \(j \)th element shows whether the \(j \)th general statement is true (1) or false (0).

\(THETA_{GK_2} \) is a vector of 100 elements, one per general knowledge statement with difficulty level 2. The \(j \)th element shows whether the \(j \)th general statement is true (1) or false (0).

\(THETA_{GK_3} \) is a vector of 100 elements, one per general knowledge statement with difficulty level 3. The \(j \)th element shows whether the \(j \)th general statement is true (1) or false (0).

\(THETA_{GK_4} \) is a vector of 100 elements, one per general knowledge statement with difficulty level 4. The \(j \)th element shows whether the \(j \)th general statement is true (1) or false (0).

\(THETA_{GK_5} \) is a vector of 100 elements, one per general knowledge statement with difficulty level 5. The \(j \)th element shows whether the \(j \)th general statement is true (1) or false (0).

\(ID_{GK_1} \) holds judges’ identification numbers. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 1. The \(j \)th element is a vector of numbers identifying the judges who provides responses for the \(j \)th statement. These values make it possible to track a judge across questions.
get_influence_scores

ID_GK_2 holds judges’ identification numbers. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 2. The \(j \)th element is a vector of numbers identifying the judges who provides responses for the \(j \)th statement. These values make it possible to track a judge across questions.

ID_GK_3 holds judges’ identification numbers. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 3. The \(j \)th element is a vector of numbers identifying the judges who provides responses for the \(j \)th statement. These values make it possible to track a judge across questions.

ID_GK_4 holds judges’ identification numbers. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 4. The \(j \)th element is a vector of numbers identifying the judges who provides responses for the \(j \)th statement. These values make it possible to track a judge across questions.

ID_GK_5 holds judges’ identification numbers. Specifically, it holds a list of 100 elements, one per general knowledge statement with difficulty level 5. The \(j \)th element is a vector of numbers identifying the judges who provides responses for the \(j \)th statement. These values make it possible to track a judge across questions.

Source

Marcellin Martinie, Tom Wilkening, and Piers D. L. Howe. "Using meta-predictions to identify experts in the crowd when past performance is unknown" https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232058

get_influence_scores Calculate the Influence Scores

Description

This function computes and plots the influence scores described in Palley & Satopää (2021): Boosting the Wisdom of Crowds Within a Single Judgment Problem: Weighted Averaging Based on Peer Predictions. The current version of the paper is available at https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3504286

Usage

get_influence_scores(E, P, plotIt = FALSE, cutoff = 7/2)

Arguments

E Vector of \(J \geq 6 \) estimates of the outcome.

P Vector of \(J \geq 6 \) predictions of others. The values must be in the same order as the estimates in \(E \). Specifically, for all \(j = 1, ..., J \), \(E[j] \) and \(P[j] \) give the \(j \)th judge’s estimate and prediction of others, respectively.

plotIt A boolean value. If TRUE, then the function call produces two side-by-side plots:
1. Left plot: This is a scatter plot of the judges’ estimates against the judges’ implied predictions of others. This plot includes regression lines both with (solid black) and without (dashed red) the exceptionally influential judges. All exceptionally influential judges are shown in red. The knowledge-weighted estimate is shown both with (black square) and without (red circle) exceptionally influential judges.

2. Right plot: This shows the judges’ influence scores. All exceptionally influential judges are shown in red. The dashed horizontal line represents the threshold, defined as the user-defined cutoff value x the interquartile range of all influence scores.

cutoff
A positive scalar describing the cutoff value for the outlier-robust knowledge-weighted estimate. The outlier-robust version calculates the influence scores for all judges. Each influence score is then compared against cutoff x the interquartile range of all influence scores. If a judge’s influence score is above this quantity, then that judge is deemed exceptionally influential. This parameter only has an effect if plotIt has been set to TRUE.

Value
\(J \) vector of influence scores. Intuitively, the influence score of a judge represents the amount by which the knowledge-weighted estimate would change if that judge was removed from the crowd. Judges with an exceptionally high influence should be inspected. As a default cutoff value, the authors recommend \(7/2 \) times the interquartile range of the individual judges’ influence scores.

Examples
Illustration on the Three Gorges Dam Example in Palley & Satopää (2021):

The original example with 6 judges is augmented with a 7th judge with an extreme response.
Judges' estimates:
E2 = c(50, 134, 206, 290, 326, 374, 1000)
Judges' predictions of others
P2 = c(26, 92, 116, 218, 218, 206, 400)

The influence score of the 7th judge is much higher than the other judges' scores.
This judge's response should be inspected and potentially excluded from
the final knowledge-weighted estimate.
get_influence_scores(E2, P2)
Description

Palley and Soll (2019) recruited volunteers passing through the student union to estimate the total price of 10 different bundles of nonperishable grocery items. Examples of items include a bottle of 190 Lil Critters Gummy Vites Sour Complete multivitamins ($10.93), a 5-oz. can of Wild Planet wild albacore tuna in extra virgin olive oil ($4.19), and an 11 oz. bag of Stauffer’s Animal Crackers ($1.00).

Usage

E_GROCERIES
P_GROCERIES
THETA_GROCERIES
ID_GROCERIES

Format

E_GROCERIES is a list of the judges’ estimates of the prices in each of the 10 bundles of groceries. Specifically, the \(j \)th element is a vector of the judges’ estimates of the price of the \(j \)th bundle.

P_GROCERIES is a list of the judges’ predictions of others. Specifically, the \(j \)th element is a vector of the judges’ predictions of other judges’ average estimate of the price of the \(j \)th bundle.

THETA_GROCERIES is a vector of the prices of the 10 bundles of groceries. Specifically, the \(j \)th element is the actual price of the \(j \)th bundle.

ID_GROCERIES is a list of the judges’ identification numbers in the judgment tasks. Specifically, the \(j \)th element is a vector of identification numbers of judges’ who participated in estimating the price of the \(j \)th bundle. These values make it possible to track a judge across judgment tasks.

Remark. The elements of each list correspond to the same judgment task. Specifically, the \(j \)th elements of THETA_GROCERIES, E_GROCERIES, P_GROCERIES, and ID_GROCERIES represent the true price, estimates, the predictions of others, and identification numbers associated with the \(j \)th bundle.

Source

knowledge_gap

Calculate the Knowledge Gap

Description

Usage

```r
knowledge_gap(E, P, alpha)
```

Arguments

- `E`: Vector of $J \geq 5$ estimates of the outcome.
- `P`: Vector of $J \geq 5$ predictions of others. The values must be in the same order as the estimates in `E`. Specifically, for all $j = 1, \ldots, J$, $E[j]$ and $P[j]$ give the jth judge’s estimate and prediction of others, respectively.
- `alpha`: Vector of $J \geq 5$ weights. The `alpha[j]` element is the weight assigned to $E[j]$. The weights can be any values in the real line as long as they sum to 1.

Value

A singular value representing the knowledge gap. This represents the expected distance between the weighted combination of the judges’ estimates, where the weights have been given by `alpha`, and the optimal aggregate estimate called the Global Posterior Expectation (GPE).

Examples

```r
# Illustration on the Three Gorges Dam Example in Palley & Satopää (2021):

# Judges' estimates:
E = c(50, 134, 206, 290, 326, 374)
# Judges' predictions of others
P = c(26, 92, 116, 218, 218, 206)

# First find the knowledge-weights that minimize the knowledge gap:
alpha = knowledge_weights(E,P)
knowledge_gap(E,P, alpha)

# Small perturbations increase the knowledge gap:
alpha_per = alpha
alpha_per[1] = alpha_per[1] + 0.001
alpha_per[2] = alpha_per[2] - 0.001
knowledge_gap(E,P, alpha_per)
```
knowledge_weighted_estimate

Knowledge-Weighted Estimate

Description

Usage

knowledge_weighted_estimate(
 E,
 P,
 cutoff = 7/2,
 remove_inf = FALSE,
 no_inf_check = FALSE
)

Arguments

E Vector of J estimates of the outcome. If influence scores are calculated (i.e., no_inf_check is FALSE), then the function call requires J ≥ 6; else the knowledge-weighted estimated requires at least J ≥ 5 judges.

P Vector of J predictions of others. The values must be in the same order as the estimates in E. Specifically, for all j = 1,..., J, E[j] and P[j] give the jth judge’s estimate and prediction of others, respectively.

cutoff A positive scalar describing the cutoff value for the outlier-robust knowledge-weighted estimate. The outlier-robust version calculates the influence scores for all judges (see get_influence_scores function). Each influence score is then compared against cutoff x the interquartile range of all influence scores. If a judge’s influence score is above this quantity, then that judge is deemed exceptionally influential. By default, the influence scores are checked and a warning is given if an exceptionally influential judge is found. To turn off this feature, set no_inf_check to TRUE.

remove_inf A boolean value. If TRUE, then all exceptionally influential judges are removed before the knowledge-weighted estimate is calculated. If FALSE, then the knowledge-weighted estimate is calculated based on the responses of all J judges.

no_inf_check A boolean value. If TRUE, then the influence scores are not calculated at any point. This can be helpful to speed up calculations. However, the authors recommend checking for influential judges each time the knowledge weighted estimate is applied.
knowledge_weights

Calculate the Weights that Minimize the Knowledge Gap

Description

This function computes the weighted used in the knowledge-weighted estimate of Palley & Satopää (2021): Boosting the Wisdom of Crowds Within a Single Judgment Problem: Weighted Averaging Based on Peer Predictions. The current version of the paper is available at https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3504286
Usage

knowledge_weights(E, P)

Arguments

E Vector of \(J \geq 5 \) estimates of the outcome.
P Vector of \(J \geq 5 \) predictions of others. The values must be in the same order as the estimates in \(E \). Specifically, for all \(j = 1, \ldots, J \), \(E[j] \) and \(P[j] \) give the \(j \)th judge’s estimate and prediction of others, respectively.

Value

\(J \times 1 \) vector of weights that minimizes the knowledge gap and lead to the knowledge-weighted estimate.

Examples

Illustration on the Three Gorges Dam Example in Palley & Satopää (2021):

Judges' estimates:
E = c(50, 134, 206, 290, 326, 374)
Judges' predictions of others
P = c(26, 92, 116, 218, 218, 206)

Weights used in the knowledge-weighted estimate:
alpha = knowledge_weights(E, P)

Knowledge-weighted estimate is 329.326
t(alpha) %*% cbind(E) %>% rowSums()

Alternatively, the knowledge-weighted estimate can be calculated using
the knowledge_weighted_estimate() function. This returns 329.305, which
is slightly different from the above result. The difference arises because
knowledge_weighted_estimate() improves stability by standardizing the
judges’ responses before aggregating them.
knowledge_weighted_estimate(E, P)

NCAA_Basketball

Data: NCAA Basketball

Description

Palley and Soll (2019) recruited participants through ClearVoice Research and Amazon Mechanical Turk to estimate the probability that one team or the other would win various games in the 2014, 2015, and 2016 NCAA Division I Men’s Basketball Tournaments. The responses for the Round of 64 games and Round of 16 games are treated separately because the Round of 64 games happen at the start of the tournament and often involve heavily mismatched teams (e.g., a 1 seed versus a 16 seed) while Round of 16 games typically involve more evenly matched teams, with implied betting market probabilities closer to 50%.
Usage

E_NCAA_R64
E_NCAA_R16
P_NCAA_R64
P_NCAA_R16
THETA_NCAA_R64
THETA_NCAA_R16
ID_NCAA_R64
ID_NCAA_R16

Format

E_NCAA_R64 is a list of the judges’ estimates of the probability that the given team wins in Round of 64. Specifically, the jth element is a vector of the judges’ estimated probability in the jth game.

E_NCAA_R16 is a list of the judges’ estimates of the probability that the given team wins in Round of 16. Specifically, the jth element is a vector of the judges’ estimated probability in the jth game.

P_NCAA_R64 is a list of the judges’ predictions of other judges’ average probability that the given team wins in Round of 64. Specifically, the jth element is a vector of the judges’ predictions of the other judges’ average probabilities in the jth game.

P_NCAA_R16 is a list of the judges’ predictions of other judges’ average probability that the given team wins in Round of 16. Specifically, the jth element is a vector of the judges’ predictions of the other judges’ average probabilities in the jth game.

THETA_NCAA_R64 is a vector of the actual outcomes of the games in the Round of 64. Specifically, the jth element is the actual outcome of jth game in Round of 64.

THETA_NCAA_R16 is a vector of the actual outcomes of the games in the Round of 16. Specifically, the jth element is the actual outcome of jth game in Round of 16.

ID_NCAA_R64 is a list of the judges’ identification numbers in the judgment tasks associated with the Round of 64 games. Specifically, the jth element is a vector of identification numbers of judges’ who participated in estimating the probability of a given team winning the jth game of Round of 64. These values make it possible to track a judge across judgment tasks.

ID_NCAA_R16 is a list of the judges’ identification numbers in the judgment tasks associated with the Round of 16 games. Specifically, the jth element is a vector of identification numbers of judges’ who participated in estimating the probability of a given team winning the jth game of Round of 16. These values make it possible to track a judge across judgment tasks.
Remark. The elements of each list correspond to the same game. Specifically, the jth elements of THETA_NCAA_R16, E_NCAA_R16, P_NCAA_R16, and ID_NCAA_R16 represent the true outcome, estimates, the predictions of others, and identification numbers associated with the jth game in the Round of 16.

Source

Index

* datasets
 Calorie_Counts, 2
 Coin_Flips, 4
 General_Knowledge_Statements, 6
 Grocery_Prices, 10
 NCAA_Basketball, 15

Calorie_Counts, 2
Coin_Flips, 4
E_CALORIES_FINAL (Calorie_Counts), 2
E_CALORIES_INITIAL (Calorie_Counts), 2
E_COINS_NESTED (Coin_Flips), 4
E_COINS_NESTED_SYM (Coin_Flips), 4
E_GK_1 (General_Knowledge_Statements), 6
E_GK_2 (General_Knowledge_Statements), 6
E_GK_3 (General_Knowledge_Statements), 6
E_GK_4 (General_Knowledge_Statements), 6
E_GK_5 (General_Knowledge_Statements), 6
E_GROCESIES (Grocery_Prices), 10
E_NCAA_R16 (NCAA_Basketball), 15
E_NCAA_R64 (NCAA_Basketball), 15

General_Knowledge_Statements, 6
get_influence_scores, 9, 13
Grocery_Prices, 10

ID_CALORIES (Calorie_Counts), 2
ID_COINS_NESTED (Coin_Flips), 4
ID_COINS_NESTED_SYM (Coin_Flips), 4
ID_GK_1 (General_Knowledge_Statements), 6
ID_GK_2 (General_Knowledge_Statements), 6
ID_GK_3 (General_Knowledge_Statements), 6
ID_GK_4 (General_Knowledge_Statements), 6
ID_GK_5 (General_Knowledge_Statements), 6
ID_GROCERIES (Grocery_Prices), 10
ID_NCAA_R16 (NCAA_Basketball), 15
ID_NCAA_R64 (NCAA_Basketball), 15

knowledge_gap, 12
knowledge_weighted_estimate, 13
knowledge_weights, 14

NCAA_Basketball, 15

P_CALORIES (Calorie_Counts), 2
P_COINS_NESTED (Coin_Flips), 4
P_COINS_NESTED_SYM (Coin_Flips), 4
P_GK_1 (General_Knowledge_Statements), 6
P_GK_2 (General_Knowledge_Statements), 6
P_GK_3 (General_Knowledge_Statements), 6
P_GK_4 (General_Knowledge_Statements), 6
P_GK_5 (General_Knowledge_Statements), 6
P_GROCESIES (Grocery_Prices), 10
P_NCAA_R16 (NCAA_Basketball), 15
P_NCAA_R64 (NCAA_Basketball), 15

THETA_CALORIES (Calorie_Counts), 2
THETA_COINS_NESTED (Coin_Flips), 4
THETA_COINS_NESTED_SYM (Coin_Flips), 4
THETA_GK_1 (General_Knowledge_Statements), 6
THETA_GK_2 (General_Knowledge_Statements), 6
THETA_GK_3 (General_Knowledge_Statements), 6
<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THETA_GK_4</td>
<td>General Knowledge Statements</td>
<td>6</td>
</tr>
<tr>
<td>THETA_GK_5</td>
<td>General Knowledge Statements</td>
<td>6</td>
</tr>
<tr>
<td>THETA_GROCERIES</td>
<td>Grocery Prices</td>
<td>10</td>
</tr>
<tr>
<td>THETA_NCAA_R16</td>
<td>NCAA Basketball</td>
<td>15</td>
</tr>
<tr>
<td>THETA_NCAA_R64</td>
<td>NCAA Basketball</td>
<td>15</td>
</tr>
</tbody>
</table>