Package ‘metamedian’

June 19, 2022

Type Package
Title Meta-Analysis of Medians
Version 0.1.6
Maintainer Sean McGrath <sean.mcgrath@mail.mcgill.ca>
Description Implements several methods to meta-analyze studies that report the sample median of the outcome. When the primary studies are one-group studies, the methods of McGrath et al. (2019) <doi:10.1002/sim.8013> can be applied to estimate the pooled median. In the two-group context, the methods of McGrath et al. (2020) <doi:10.1002/bimj.201900036> can be applied to estimate the pooled raw difference of medians across groups.
Imports estmeansd, Hmisc, metafor, stats
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.2
URL https://github.com/stmcg/metamedian
BugReports https://github.com/stmcg/metamedian/issues
NeedsCompilation no
Author Sean McGrath [aut, cre] (<https://orcid.org/0000-0002-7281-3516>), XiaoFei Zhao [aut], Russell Steele [aut], Andrea Benedetti [aut] (<https://orcid.org/0000-0002-8314-9497>)
Repository CRAN
Date/Publication 2022-06-19 00:00:02 UTC

R topics documented:

- metamedian-defunct .. 2
- pool.med ... 2
- qe .. 4
- qe.study.level ... 7

Index

1
metamedian-defunct Defunct functions in package 'metamedian'

Description

These functions are defunct and no longer available.

Details

The following functions are defunct and no longer available:

- `qe.fit` calls should now be `qe.fit` (in the `estmeansd` package) calls. That is, this function has been moved to the `estmeansd` package.
- Similarly, `print.qe.fit` calls should now be `print.qe.fit` (in the `estmeansd` package) calls.

pool.med Meta-Analysis via median of (the difference of) medians method

Description

This function meta-analyzes the study-specific effect sizes by applying the (weighted) median of medians method (McGrath et al., 2019) in one-sample contexts and the (weighted) median of the difference of median method (McGrath et al., 2020) in two-sample contexts.

Usage

```r
pool.med(yi, wi, norm.approx = TRUE, coverage.prob = 0.95)
```

Arguments

- `yi`: vector of the study-specific effect sizes (e.g., the medians or the difference of medians)
- `wi`: optional vector of positive, study-specific weights (e.g., sample sizes)
- `norm.approx`: optional logical scalar indicating whether normality approximation of the binomial should be used to construct an approximate confidence interval (the default is `TRUE`).
- `coverage.prob`: optional numeric scalar indicating the desired coverage probability (the default is 0.95).
Details

For one-group studies, authors may report the sample median or mean. If these measures are supplied for \(y_i \) and weights are not provided for \(w_i \), the function implements the median of medians (MM) method (McGrath et al., 2019).

For two-group studies, authors may report the difference of medians or the difference of means across both groups. If these measures are supplied for \(y_i \) and weights are not provided for \(w_i \), the function implements the median of the difference of medians (MDM) method (McGrath et al., 2020).

Analogous weighted versions of the MM and MDM methods can be applied when study-specific sample sizes are provided for \(w_i \).

The confidence interval around the pooled estimate is constructed by inverting the sign test.

Value

A list with components

- `pooled.est`: Pooled estimate
- `ci.lb`: Lower bound of confidence interval
- `ci.ub`: Upper bound of confidence interval
- `cov.level`: Theoretical coverage of the confidence interval around the pooled estimate. When `norm.approx` is set to `TRUE`, the theoretical coverage is the same as the value specified by `coverage.prob`. When `norm.approx` is set to `FALSE`, the theoretical coverage is set to the smallest possible value greater than the value specified by `coverage.prob`.

References

Examples

```r
# Storing data (study-specific difference of medians)
yi <- c(5.23, 3.10, 0.50, 0.78, 3.48, 0.59, 2.20, 5.06, 4.00)

# Meta-analysis of the difference of medians
pool.med(yi)
```

```r
# Meta-analysis of the difference of medians
pool.med(yi)
```
Meta-Analysis via quantile estimation method

Description

The function applies the quantile estimation (QE) method (McGrath et al., 2020) to meta-analyze one-group or two-group studies where each study reports one of the following summary measures:

• S1: median, minimum and maximum values, and sample size
• S2: median, first and third quartiles, and sample size
• S3: median, minimum and maximum values, first and third quartiles, and sample size
• S4: mean, standard deviation, and sample size.

For one-group studies, the function estimates the pooled median. For two-group studies, the function estimates the pooled raw difference of medians across groups. The convention used for calculating differences in two-group studies is: value in group 1 minus value in group 2.

Usage

```r
qe(
  min.g1,
  q1.g1,
  med.g1,
  q3.g1,
  max.g1,
  n.g1,
  mean.g1,
  sd.g1,
  min.g2,
  q1.g2,
  med.g2,
  q3.g2,
  max.g2,
  n.g2,
  mean.g2,
  sd.g2,
  single.family = FALSE,
  loc.shift = FALSE,
  ...
)
```

Arguments

- `min.g1` vector of study-specific sample minimum values (first group for two-group studies). See 'Details'.
- `q1.g1` vector of study-specific sample first quartile values (first group for two-group studies). See 'Details'.
med.g1 vector of study-specific sample median values (first group for two-group studies). See 'Details'.
q3.g1 vector of study-specific sample third quartile values (first group for two-group studies). See 'Details'.
max.g1 vector of study-specific sample maximum values (first group for two-group studies). See 'Details'.
n.g1 vector of study-specific sample sizes (first group for two-group studies). See 'Details'.
mean.g1 vector of study-specific sample mean values (first group for two-group studies). See 'Details'.
sd.g1 vector of study-specific sample standard deviation values (first group for two-group studies). See 'Details'.
min.g2 vector of study-specific sample minimum values of the second group for two-group studies. See 'Details'.
q1.g2 vector of study-specific sample first quartile values of the second group for two-group studies. See 'Details'.
med.g2 vector of study-specific sample median values of the second group for two-group studies. See 'Details'.
q3.g2 vector of study-specific sample third quartile values of the second group for two-group studies. See 'Details'.
max.g2 vector of study-specific sample maximum values of the second group for two-group studies. See 'Details'.
n.g2 vector of study-specific sample sizes of the second group for two-group studies. See 'Details'.
mean.g2 vector of study-specific sample mean values of the second group for two-group studies. See 'Details'.
sd.g2 vector of study-specific sample standard deviation values of the second group for two-group studies. See 'Details'.
single.family logical scalar indicating that for two-group studies, the parametric family of distributions is assumed to be the same across both groups (the default is FALSE). See 'Details' of qe.study.level.
loc.shift logical scalar indicating that for two-group studies, distributions are assumed to only differ by a location shift (the default is FALSE). See 'Details' of qe.study.level.

Details

Letting \(k \) denote the number of studies, provide study-specific summary data as vectors of length \(k \). If a study does not report a given summary measure (e.g., the minimum value), give a value of NA for the position in the relevant vector. If no studies report a given summary measure, a vector of only NA values need not be provided. See 'Examples' for appropriate use.

The sampling variance of the effect size for each study is estimated via the QE method. The default starting values and box constraints of the parameters in the minimization algorithm (qe.fit) are used. After estimating the sampling variances for all studies, studies are meta-analyzed using the rma.uni function.
Value

An object of class "rma.uni". See documentation of rma.uni.

References

Examples

Example 1: Meta-analysis of one-group studies

Storing data
Note: All 6 studies report S2
med.vals <- c(6.1, 5.2, 3.1, 2.8, 4.5)
q1.vals <- c(2.0, 1.6, 2.6, 0.9, 3.2)
q3.vals <- c(10.2, 13.0, 8.3, 8.2, 9.9)
n.vals <- c(100, 92, 221, 81, 42)

Meta-analyze studies via QE method
qe(q1.g1 = q1.vals, med.g1 = med.vals, q3.g1 = q3.vals, n.g1 = n.vals)

Example 2: Meta-analysis of one-group studies

Storing data
Note: Studies 1, 2, 3, and 4 report S1, S2, S3, and S4, respectively
min.vals <- c(0.7, NA, 1.1, NA)
q1.vals <- c(NA, 5.2, 5.3, NA)
med.vals <- c(8.7, 10.7, 11.0, NA)
q3.vals <- c(NA, 15.2, 15.3, NA)
max.vals <- c(22.2, NA, 24.7, NA)
n.vals <- c(52, 34, 57, 90)
sd.vals <- c(NA, NA, NA, 4.2)
mean.vals <- c(NA, NA, NA, 12.2)

Meta-analyze studies via QE method
qe(min.g1 = min.vals, q1.g1 = q1.vals, med.g1 = med.vals, q3.g1 = q3.vals,
max.g1 = max.vals, n.g1 = n.vals, mean.g1 = mean.vals, sd.g1 = sd.vals)

Example 3: Meta-analysis of two-group studies

Storing data
Note: All 4 studies report S3
min.g1 <- c(2.3, 3.2, 1.9, 1.7)
q1.g1 <- c(6.0, 7.1, 3.5, 3.8)
med.g1 <- c(8.7, 9.5, 5.9, 6.0)
q3.g1 <- c(11.3, 13.1, 10.8, 11.0)
max.g1 <- c(20.6, 25.3, 17.0, 18.6)
n.g1 <- c(53, 49, 66, 75)
min.g2 <- c(0.4, 0.9, 0.5, 0.3)
```r
q1.g2 <- c(2.5, 3.1, 2.7, 2.3)
med.g2 <- c(5.1, 6.2, 4.9, 4.7)
q3.g2 <- c(9.6, 10.1, 8.8, 9.2)
max.g2 <- c(20.2, 21.4, 18.8, 19.2)
n.g2 <- c(50, 45, 60, 73)

## Meta-analyze studies via QE method
qe(min.g1 = min.g1, q1.g1 = q1.g1, med.g1 = med.g1, q3.g1 = q3.g1,
    max.g1 = max.g1, n.g1 = n.g1, min.g2 = min.g2, q1.g2 = q1.g2,
    med.g2 = med.g2, q3.g2 = q3.g2, max.g2 = max.g2, n.g2 = n.g2)
```

qe.study.level
Study-Level application of quantile estimation method

Description

This function estimates the asymptotic sampling variance of either the (estimated) median or the (estimated) difference of medians for a primary study that reports one of the following summary measures:

- **S1**: median, minimum and maximum values, and sample size
- **S2**: median, first and third quartiles, and sample size
- **S3**: median, minimum and maximum values, first and third quartiles, and sample size
- **S4**: mean, standard deviation, and sample size.

Usage

```r
qe.study.level(
    min.g1,
    q1.g1,
    med.g1,
    q3.g1,
    max.g1,
    n.g1,
    mean.g1,
    sd.g1,
    min.g2,
    q1.g2,
    med.g2,
    q3.g2,
    max.g2,
    n.g2,
    mean.g2,
    sd.g2,
)```

single.family = FALSE,
loc.shift = FALSE,
qe.fit.control.g1 = list(),
qe.fit.control.g2 = list()
)

**Arguments**

- `min.g1`: numeric value giving the sample minimum (first group for two-group studies).
- `q1.g1`: numeric value giving the first quartile (first group for two-group studies).
- `med.g1`: numeric value giving the sample median (first group for two-group studies).
- `q3.g1`: numeric value giving the sample third quartile (first group for two-group studies).
- `max.g1`: numeric value giving the sample maximum (first group for two-group studies).
- `n.g1`: numeric value giving the sample size (first group for two-group studies).
- `mean.g1`: numeric value giving the sample mean (first group for two-group studies).
- `sd.g1`: numeric value giving the sample standard deviation (first group for two-group studies).
- `min.g2`: numeric value giving the sample minimum of the second group for two-group studies.
- `q1.g2`: numeric value giving the sample first quartile of the second group for two-group studies.
- `med.g2`: numeric value giving the sample median of the second group for two-group studies.
- `q3.g2`: numeric value giving the sample third quartile of the second group for two-group studies.
- `max.g2`: numeric value giving the sample maximum of the second group for two-group studies.
- `n.g2`: numeric value giving the sample size of the second group for two-group studies.
- `mean.g2`: numeric value giving the sample mean of the second group for two-group studies.
- `sd.g2`: numeric value giving the sample standard deviation of the second group for two-group studies.
- `single.family`: logical scalar indicating that for two-group studies, the parametric family of distributions is assumed to be the same across both groups (the default is `FALSE`). See 'Details'.
- `loc.shift`: logical scalar indicating that for two-group studies, distributions are assumed to only differ by a location shift (the default is `FALSE`). See 'Details'.
- `qe.fit.control.g1`: optional list of control parameters for `qe.fit` (first group for two-group studies).
- `qe.fit.control.g2`: optional list of control parameters for `qe.fit` of the second group for two-group studies.
Details

In order to estimate the asymptotic sampling variance of the median (in S1, S2, or S3), one must have an estimate of the probability density function of the outcome evaluated at the population median. The `qe.fit` function is applied to estimate the outcome distribution.

For two-group studies studies, one may assume that the outcome in both groups follows the same parametric family of distributions. In this case, distribution selection for the QE method is applied as follows. The `qe.fit` function is applied to fit the candidate distributions of each group separately. However, for each candidate distribution, the objective function evaluated at the fitting parameters are summed over the two groups. The parametric family of distributions with the smallest sum is used as the underlying distribution of the both groups. If `single.family` is `TRUE`, then `selected.dist` is a character string indicating the selected parametric family. If `single.family` is `FALSE`, then `selected.dist` is a vector of length 2 where elements 1 and 2 are character strings of the selected parametric families in groups 1 and 2, respectively.

One may also assume for two-group studies that the outcome distributions in the two groups only differ by a location shift. In this case, a weighted mean (weighted by sample size) of the estimated probability density functions evaluated at the population medians is used to estimate the asymptotic sampling variance of the difference of medians. See McGrath et al. (2020) for further details.

When a study provides S4 summary measures, the outcome distribution is assumed to be normal. The sample median is estimated by the sample mean, and its variance is estimated by the sample variance divided by the sample size. In this case, the `single.family` and `loc.shift` arguments are not used.

Value

A list with the following components:

- `var`: Estimated sampling variance of the effect size.
- `effect.size`: Effect size of study.
- `selected.dist`: Selected outcome distribution(s). See 'Details'.
- `study.type`: Character string specifying whether one-group or two-group summary data was provided.

References


Examples

```r
Generate S2 summary data
set.seed(1)
n <- 100
x <- stats::rlnorm(n, 2.5, 1)
quants <- stats::quantile(x, probs = c(0.25, 0.5, 0.75))

Estimate sampling variance of the median
eqe.study.level(q1.g1 = quants[1], med.g1 = quants[2], q3.g1 = quants[3],
n.g1 = n)
```
Index

metamedian-defunct, 2
pool.med, 2
print.qe.fit, 2
qe, 4
qe.fit, 2, 5, 8, 9
qe.study.level, 5, 7
rma.uni, 5, 6