Package ‘metamer’

October 13, 2022

Title Create Data with Identical Statistics
Version 0.3.0

URL https://eliocamp.github.io/metamer/
BugReports https://github.com/eliocamp/metamer/issues
License GPL-3
Encoding UTF-8
ByteCompile yes
Language en-US
Depends R (>= 2.10)
Imports FNN, progress (>= 1.2.0), methods
Suggests shiny, miniUI, testthat (>= 2.1.0), data.table, covr, sf
RoxygenNote 7.2.0
NeedsCompilation no
Author Elio Campitelli [cre, aut] (<https://orcid.org/0000-0002-7742-9230>)
Maintainer Elio Campitelli <elio.campitelli@cima.fcen.uba.ar>
Repository CRAN
Date/Publication 2022-06-23 20:10:01 UTC

R topics documented:
clear_minimize ... 2
delayed_with .. 3
densify ... 4
draw_data ... 4
mean_dist_to ... 5
mean_dist_to_sf ... 6
mean_self_proximity .. 6
clear_minimize

Description

Set metamer parameters

Usage

clear_minimize(metamer_list)
clear_minimise(metamer_list)
set_minimise(metamer_list, minimize)
set_minimize(metamer_list, minimize)
get_last_metamer(metamer_list)
set_annealing(metamer_list, annealing)
set_perturbation(metamer_list, perturbation)
set_perturbation(metamer_list, perturbation)
set_start_probability(metamer_list, start_probability)
set_K(metamer_list, K)
set_change(metamer_list, change)

Arguments

metamer_list A metamer_list object.
minimize An optional function to minimize in the process. Must take the data as argument
 and return a single numeric.
annealing Logical indicating whether to perform annealing.
perturbation Numeric with the magnitude of the random perturbations. Can be of length 1 or
 length(change).
delayed_with

start_probability
 initial probability of rejecting bad solutions.
K
 speed/quality tradeoff parameter.
change
 A character vector with the names of the columns that need to be changed.

Description
Creats a function that evaluates expressions in a future data.frame. Is like with(), but the data argument is passed at a later step.

Usage
delayed_with(...)

Arguments
...
Expressions that will be evaluated.

Details
Each expression in ... must return a single numeric value. They can be named or return named vectors.

Value
A function that takes a data.frame and returns the expressions in ... evaluated in an environment constructed from it.

See Also
Other helper functions: densify(), draw_data(), mean_dist_to_sf(), mean_dist_to(), mean_self_proximity(), moments_n(), truncate_to()

Examples
some_stats <- delayed_with(mean_x = mean(x), mean(y), sd(x), coef(lm(x ~ y)))
data <- data.frame(x = rnorm(20), y = rnorm(20))
some_stats(data)
densify

Increase resolution of data

Description

Interpolates between the output of `draw_data()` and increases the point density of each stroke. Useful for avoiding sparse targets that result in clumping of points when metamerizing. It only has an effect on strokes (made by double clicking).

Usage

`densify(data, res = 2)`

Arguments

- **data**: A data.frame with columns `x`, `y`, and `.group`.
- **res**: A numeric indicating the multiplicative resolution (i.e. 2 = double resolution).

Value

A data.frame with the `x` and `y` values of your data and a `.group` column that identifies each stroke.

See Also

Other helper functions: `delayed_with()`, `draw_data()`, `mean_dist_to_sf()`, `mean_dist_to()`, `mean_self_proximity()`, `moments_n()`, `truncate_to()`

draw_data

Freehand drawing

Description

Opens up a dialogue that lets you draw your data.

Usage

`draw_data(data = NULL)`

Arguments

- **data**: Optional data.frame with `x` and `y` values that can used as background to guide your drawing.

Value

A data.frame with the `x` and `y` values of your data and a `.group` column that identifies each stroke.
mean_dist_to

See Also

Other helper functions: `delayed_with()`, `densify()`, `mean_dist_to_sf()`, `mean_dist_to()`, `mean_self_proximity()`, `moments_n()`, `truncate_to()`

mean_dist_to
Mean minimum distance

Description

Creates a function to get the mean minimum distance between two sets of points.

Usage

```r
mean_dist_to(target, squared = TRUE)
```

Arguments

- `target`: A `data.frame` with all numeric columns.
- `squared`: Logical indicating whether to compute the mean squared distance (if `TRUE`) or the mean distance.

Value

A function that takes a `data.frame` with the same number of columns as `target` and then returns the mean minimum distance between them.

See Also

Other helper functions: `delayed_with()`, `densify()`, `draw_data()`, `mean_dist_to_sf()`, `mean_self_proximity()`, `moments_n()`, `truncate_to()`

Examples

```r
target <- data.frame(x = rnorm(100), y = rnorm(100))
data <- data.frame(x = rnorm(100), y = rnorm(100))
distance <- mean_dist_to(target)
distance(data)
```
mean_dist_to_sf

Mean distance to an sf object

Description
Mean distance to an sf object

Usage
mean_dist_to_sf(target, coords = c("x", "y"), buffer = 0, squared = TRUE)

Arguments
- **target**: An sf object.
- **coords**: Character vector with the columns of the data object that define the coordinates.
- **buffer**: Buffer around the sf object. Distances smaller than buffer are replaced with 0.
- **squared**: Logical indicating whether to compute the mean squared distance (if TRUE) or the mean distance.

See Also
Other helper functions: delayed_with(), densify(), draw_data(), mean_dist_to(), mean_self_proximity(), moments_n(), truncate_to()

mean_self_proximity

Inverse of the mean self distance

Description
Returns the inverse of the mean minimum distance between different pairs of points. It’s intended to be used as a minimizing function to, then, maximize the distance between points.

Usage
mean_self_proximity(data)

Arguments
- **data**: a data.frame

See Also
Other helper functions: delayed_with(), densify(), draw_data(), mean_dist_to_sf(), mean_dist_to(), moments_n(), truncate_to()
metamerise

Create metams

Description

Produces very dissimilar datasets with the same statistical properties.

Usage

metamerise(
 data,
 preserve,
 minimize = NULL,
 change = colnames(data),
 round = truncate_to(2),
 stop_if = n_tries(100),
 keep = NULL,
 annealing = TRUE,
 K = 0.02,
 start_probability = 0.5,
 perturbation = 0.08,
 name = "",
 verbose = interactive()
)

metamerize(
 data,
 preserve,
 minimize = NULL,
 change = colnames(data),
 round = truncate_to(2),
 stop_if = n_tries(100),
 keep = NULL,
 annealing = TRUE,
 K = 0.02,
 start_probability = 0.5,
 perturbation = 0.08,
 name = "",
 verbose = interactive()
)

new_metamer(data, preserve, round = truncate_to(2))

Arguments

data A data.frame with the starting data or a metamer_list object returned by a previous call to the function.
metamerise

preserve A function whose result must be kept exactly the same. Must take the data as argument and return a numeric vector.
minimize An optional function to minimize in the process. Must take the data as argument and return a single numeric.
change A character vector with the names of the columns that need to be changed.
round A function to apply to the result of preserve to round numbers. See truncate_to.
stop_if A stopping criterium. See n_tries.
keep Max number of metamers to return.
annealing Logical indicating whether to perform annealing.
K speed/quality tradeoff parameter.
start_probability initial probability of rejecting bad solutions.
perturbation Numeric with the magnitude of the random perturbations. Can be of length 1 or length(change).
name Character for naming the metamers.
verbose Logical indicating whether to show a progress bar.

Details

It follows Matejka & Fitzmaurice (2017) method of constructing metamers. Beginning from a starting dataset, it iteratively adds a small perturbation, checks if preserve returns the same value (up to signif significant digits) and if minimize has been lowered, and accepts the solution for the next round. If annealing is TRUE, it also accepts solutions with bigger minimize with an ever decreasing probability to help the algorithm avoid local minimums.

The annealing scheme is adapted from de Vicente et al. (2003).

If data is a metamer_list, the function will start the algorithm from the last metamer of the list. Furthermore, if preserve and/or minimize are missing, the previous functions will be carried over from the previous call.

minimize can be also a vector of functions. In that case, the process minimizes the product of the functions applied to the data.

Value

A metamer_list object (a list of data.frames).

References

See Also
delayed_with() for a convenient way of making functions suitable for preserve, mean_dist_to() for a convenient way of minimizing the distance to a known target in minimize, mean_self_proximity() for maximizing the “self distance” to prevent data clumping.
Examples

```r
data(cars)
# Metamers of `cars` with the same mean speed and dist, and correlation
# between the two.
means_and_cor <- delayed_with(mean_speed = mean(speed),
                              mean_dist = mean(dist),
                              cor = cor(speed, dist))
set.seed(42) # for reproducibility.
metamers <- metamerize(cars,
                        preserve = means_and_cor,
                        round = truncate_to(2),
                        stop_if = n_tries(1000))
print(metamers)
last <- tail(metamers)

# Confirm that the statistics are the same
cbind(original = means_and_cor(cars),
       metamer = means_and_cor(last))

# Visualize
plot(tail(metamers))
points(cars, col = "red")
```

`moments_n`
Compute moments

Description

Returns a function that will return uncentered moments

Usage

`moments_n(orders, cols = NULL)`

Arguments

- `orders`: Numeric with the order of the uncentered moments that will be computed.
- `cols`: Character vector with the name of the columns of the data for which moments will be computed. If NULL, will use all columns.

Value

A function that takes a data.frame and return a named numeric vector of the uncentered moments of the columns.
See Also

Other helper functions: `delayed_with()`, `densify()`, `draw_data()`, `mean_dist_to_sf()`, `mean_dist_to()`, `mean_self_proximity()`, `truncate_to()`

Examples

data <- data.frame(x = rnorm(100), y = rnorm(100))
moments_3 <- moments_n(1:3)
moments_3(data)
moments_3 <- moments_n(1:3, "x")
moments_3(data)

<table>
<thead>
<tr>
<th>n_tries</th>
<th>Stop conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Stop conditions

Usage

n_tries(n)
n_metamers(n)
minimize_ratio(r)

Arguments

n integer number of tries or metamers.
r Ratio of minimize value to shoot for. If 0.5, the stop condition is that the iteration will stop if the value to minimize gets to one-half of the starting value.

truncate_to

Description

Rounding functions
truncate_to

Usage

\[
\text{truncate_to(digits)}
\]

\[
\text{round_to(digits)}
\]

Arguments

- **digits**
 - Number of significant digits.

See Also

Other helper functions: `delayed_with()`, `densify()`, `draw_data()`, `mean_dist_to_sf()`, `mean_dist_to()`, `mean_self_proximity()`, `moments_n()`
Index

* helper functions
 delayed_with, 3
densify, 4
draw_data, 4
mean_dist_to, 5
mean_dist_to_sf, 6
mean_self_proximity, 6
moments_n, 9
truncate_to, 10
clear_minimise (clear_minimize), 2
clear_minimize, 2
delayed_with, 3, 4–6, 10, 11
delayed_with(), 8
densify, 3, 4, 5, 6, 10, 11
draw_data, 3, 4, 4, 5, 6, 10, 11
draw_data(), 4
get_last_metamer (clear_minimize), 2
mean_dist_to, 3–5, 5, 6, 10, 11
mean_dist_to(), 8
mean_dist_to_sf, 3–6, 6, 10, 11
mean_self_proximity, 3–6, 6, 10, 11
mean_self_proximity(), 8
metamerise, 7
metamerize (metamerise), 7
minimize_ratio (n_tries), 10
moments_n, 3–6, 9, 11
n_metamers (n_tries), 10
n_tries, 8, 10
new_metamer (metamerise), 7
round_to (truncate_to), 10
set_annealing (clear_minimize), 2
set_change (clear_minimize), 2
set_K (clear_minimize), 2
set_minimise (clear_minimize), 2
set_perturbation (clear_minimize), 2
set_start_probability (clear_minimize), 2
truncate_to, 3–6, 8, 10, 10