Package ‘metap’

July 12, 2020

Type Package
Title Meta-Analysis of Significance Values
Version 1.4
Date 2020-07-12

Description The canonical way to perform meta-analysis involves using effect sizes. When they are not available this package provides a number of methods for meta-analysis of significance values including the methods of Edgington, Fisher, Lancaster, Stouffer, Tippett, and Wilkinson; a number of data-sets to replicate published results; and a routine for graphical display.

URL http://www.dewey.myzen.co.uk/meta/meta.html

Imports lattice, Rdpack (>= 0.7), T Fisher, mutoss, mathjaxr (>= 0.8-3)
RdMacros Rdpack, mathjaxr
License GPL-2
LazyLoad yes

R topics documented:

metap-package ... 2
allmetap ... 3
invchisq ... 4
invt ... 6
logitp ... 7
meanz ... 10
package-data ... 11
plotp ... 12
schweder ... 13
sumlog ... 15
sump ... 16
sumz ... 18
truncated ... 19
two2one ... 21
votep ... 22
wilkinsonp ... 23

Index 25
Description

The canonical way to perform meta-analysis involves using effect sizes. When they are not available this package provides a number of methods for meta-analysis of significance values including the methods of Edgington, Fisher, Lancaster, Stouffer, Tippett, and Wilkinson; a number of data-sets to replicate published results; and a routine for graphical display.

Details

Index of help topics:

- allmetap: Carry out all or some of the methods in the package
- beckerp: Example data
- invchisq: Combine p values using inverse chi squared method
- invt: Combine p values using inverse t method
- logitp: Combine p values using logit method
- meanp: Combine p values by the mean p method
- meanz: Combine p values using mean z method
- metap-package: Meta-Analysis of Significance Values
- plotp: Q-Q plot of p-values
- schweder: Schweder and Spjotvoll plot
- sumlog: Combine p-values by the sum of logs (Fisher's) method
- sump: Combine p-values using the sum of p (Edgington's) method
- sumz: Combine p-values using the sum of z (Stouffer's) method
- truncated: Truncated product method routine
- two2one: Convert two-sided p-values to one-sided
- votep: Combine p-values by the vote counting method
- wilkinsonp: Combine p-values using Wilkinson's method

Further information is available in the following vignettes:

- compare: Comparison of methods in the metap package (source)
- metap: Introduction to the metap package (source)

Provides a number of ways in which significance levels may be combined in a meta-analysis and includes most of the methods in Becker (1994). It includes a number of datasets taken from the literature. It also provides a display and an informal graphical test due to Schweder and Spjotvoll (Schweder and Spjotvoll 1982) and the lowest slope line of Benjamini and Hochberg (Benjamini and Hochberg 2000).
Some further documentation and, possibly, a development version may be seen at http://www.dewey.myzen.co.uk/meta/meta.html

References

See Also

The issue of meta-analysis of significance levels is not completely unconnected with the topic of adjustment for multiple comparisons as in for example p.adjust

allmetap

Carry out all or some of the methods in the package

Description

Enables all or a selected number of the package methods to be executed on the same dataset

Usage

allmetap(p, method = NULL)

S3 method for class 'allmetap'
print(x, digits = 5, ...)

Arguments

p
A vector of p-values

method
A vector of character containing names of methods or 'all'

x
An object of class 'allmetap'

digits
How many digits to print?

... Other arguments to be passed through

Details

The function uses each of the methods specified on the data-set in p. If method contains 'all' then this over-rides any specific method(s) named.
invchisq

Value

Returns an object of class ‘allmetap’ and ‘data.frame’ containing columns

- \(p \) The value of \(p \) returned
- valid The number of valid \(p \) values used for that method
- eponym The eponym, if any, for the method

The row names are the names of the methods used. If any of the methods cannot be applied to that data–set NA are returned for \(p \) and valid.

Author(s)

Michael Dewey

Examples

```r
data(beckerp)
allmetap(beckerp, method = "all")
allmetap(beckerp, method = c("sumz", "sumlog"))
```

 invchisq Combine \(p \) values using inverse chi squared method

Description

Combine \(p \)-values by the inverse chi-squared method, also known as Lancaster’s method

Usage

```r
invchisq(p, k, data = NULL, subset = NULL, na.action = na.fail)
## S3 method for class 'invchisq'
print(x, ...)
```

Arguments

- \(p \) A vector of significance values
- \(k \) A vector of degrees of freedom to use, see details
- data Optional data frame containing variables
- subset Optional vector of logicals to specify a subset of the \(p \)-values
- na.action A function indicating what should happen when data contains NAs
- x An object of class ‘invchisq’
- ... Other arguments to be passed through
invchisq

Details

Defined as
\[\sum_{i=1}^{n} \chi^2_{k_i}(p_i) > \chi^2_{\sum k_i(\alpha)} \]

If k is a single value it is used for all the p of which there are n. If any value of \(k_i \leq 0 \) then the corresponding \(p_i \) is not included.

The values of \(p_i \) should be such that \(0 < p_i \leq 1 \) and a warning is given if that is not true. A warning is given if, possibly as a result of removing illegal values, fewer than two values remain and the return values are set to NA.

The plot method for class ‘metap’ calls plotp on the valid \(p \)-values. Inspection of the distribution of \(p \)-values is highly recommended as extreme values in opposite directions do not cancel out. See last example. This may not be what you want.

Value

An object of class ‘invchisq’ and ‘metap’, a list with entries

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chisq</td>
<td>Value of chi-squared statistic</td>
</tr>
<tr>
<td>df</td>
<td>Associated degrees of freedom</td>
</tr>
<tr>
<td>p</td>
<td>Associated p-value</td>
</tr>
<tr>
<td>validp</td>
<td>The input vector with the illegal values removed</td>
</tr>
</tbody>
</table>

Author(s)

Michael Dewey

References

See Also

See also sumlog and plotp

Examples

data(beckerp)
invchisq(beckerp, 2) # same as sumlog
invchisq(c(0.999, 0.999, 0.001, 0.001), 4)
invt

Combine p values using inverse t method

Description

Combine p values using the inverse t method

Usage

```r
invt(p, k, data = NULL, subset = NULL, na.action = na.fail)
```  
```r
## S3 method for class 'invt'
print(x, ...)
```

Arguments

- **p**: A vector of significance values
- **k**: A vector of degrees of freedom to use, see details
- **data**: Optional data frame containing variables
- **subset**: Optional vector of logicals to specify a subset of the p-values
- **na.action**: A function indicating what should happen when data contains NAs
- **x**: An object of class ‘invt’
- **...**: Other arguments to be passed through

Details

Defined as

$$\frac{\sum_{i=1}^{n} t_{k_i}(p_i)}{\sqrt{\sum_{i=1}^{n} \frac{k_i}{k_i-2}}} \geq z(\alpha)$$

If k is a single value it is used for all the p of which there are n. If any value of $k_i \leq 2$ then the corresponding p_i is not included.

The values of p_i should be such that $0 < p_i \leq 1$ and a warning is given if that is not true. A warning is given if, possibly as a result of removing illegal values, fewer than two values remain and the return values are set to NA.

The plot method for class ‘metap’ calls `plotp` on the valid p-values.

Value

An object of class ‘invt’ and ‘metap’, a list with entries

- **z**: Value of z
- **p**: Associated p-value
- **validp**: The input vector with the illegal values removed

Author(s)

Michael Dewey
logtp

References

See Also
See also plotp

Examples
data(beckerp)
invt(beckerp, 50)

logtp

Combine p values using logit method

Description

Combine p values using logit method

Usage

logtp(p)
S3 method for class 'logtp'
print(x, ...)

Arguments

p A vector of significance values
x An object of class 'logtp'
... Other arguments to be passed through

Details

Defined as
\[t = - \sum_{i=1}^{k} \log \frac{p_i}{1-p_i} \]

where
\[C = \sqrt{\frac{k\pi^2(5k+2)}{3(5k+4)}} \]

and k is the number of studies.

The values of \(p_i \) should be such that \(0 < p_i < 1 \) and a warning is given if that is not true. A warning is given if, possibly as a result of removing illegal values, fewer than two values remain and the return values are set to NA.

The plot method for class ‘metap’ calls plotp on the valid p-values.
Value

An object of class ‘logitp’ and ‘metap’, a list with entries

- \(t \) Value of Student’s \(t \)
- \(df \) Associated degrees of freedom
- \(p \) Associated \(p \)-value
- \(\text{validp} \) The input vector with illegal values removed

Author(s)

Michael Dewey

References

See Also

See also plotp

Examples

data(teachexpect)
logitp(teachexpect) # \(t = 2.763, df = 99, p = 0.0034 \), from Becker
data(beckerp)
logitp(beckerp) # \(t = 1.62, df = 29, \text{NS} \), from Becker
data(validity)
logitp(validity) # \(t = 9.521, df = 104, p = 3.89 \times 10^{-16} \)

meanp

Combine \(p \) values by the mean \(p \) method

Description

Combine \(p \) values by the mean \(p \) method

Usage

meanp(p)

S3 method for class 'meanp'
print(x, ...)

Arguments

- \(p \) A vector of significance values
- \(x \) An object of class ‘meanp’
- \(\ldots \) Other arguments to be passed through
Details

Defined as

\[z = (0.5 - \bar{p}) \sqrt{\frac{12}{k}} \]

which is a standard normal and due to Edgington (1972)

The values of \(p_i \) should be such that \(0 \leq p_i \leq 1 \) and a warning is given if that is not true. A warning is given if, possibly as a result of removing illegal values, fewer than four values remain and the return values are set to NA.

The plot method for class ‘metap’ calls \texttt{plotp} on the valid \(p \)-values.

Value

An object of class ‘\texttt{meanp}’ and ‘\texttt{metap}’, a list with entries

- \texttt{z} Value of \(z \)
- \texttt{p} Associated \(p \)-value
- \texttt{validp} The input vector with illegal values removed

Author(s)

Michael Dewey

References

See Also

See also \texttt{plotp}

Examples

\begin{verbatim}
data(rosenthal)
meanp(rosenthal$p) # 2.17, p = 0.015 one tailed
\end{verbatim}
meanz Combine p values using mean z method

Description

Combines p values using the mean of z method

Usage

meanz(p)
S3 method for class 'meanz'
print(x, ...)

Arguments

- **p**: A vector of significance values
- **x**: An object of class 'meanz'
- **...**: Other arguments to be passed through

Details

Let

\[
\bar{z} = \frac{\sum_{i=1}^{k} z(p_i)}{k}
\]

and

\[
s_{\bar{z}} = \frac{s_z}{\sqrt{k}}
\]

Defined as

\[
\frac{\bar{z}}{s_{\bar{z}}} > t_{k-1}(\alpha)
\]

The values of \(p_i \) should be such that \(0 \leq p_i \leq 1 \) and a warning is given if that is not true. A warning is given if, possibly as a result of removing illegal values, fewer than two values remain and the return values are set to NA. As can be seen if all the \(p_i \) are equal or close to equal this gives a \(t = \pm \infty \) leading to a returned value of 0 or 1. A set of \(p \) values with small variance will necessarily give a small \(p \) value which may be smaller than that for another set all of whose primary values are less than any in the first set. See examples for a demonstration.

The plot method for class 'metap' calls `plotp` on the valid \(p \)-values.

Value

An object of class 'meanz' and 'metap', a list with entries

- **z**: The value of the mean \(z \) statistic
- **p**: The associated \(p \) value
- **validp**: The input vector with illegal values removed

Author(s)

Michael Dewey
References

See Also

See also `plotp`

Examples

```r
data(beckerp)
meanz(beckerp)
meanz(c(0.1, 0.2)) # greater than next example
meanz(c(0.3, 0.31)) # less than above
```

Description

The package contains the following datasets: beckerp, cholest, edgington, mourning, naep, roenthal, teachexpect, and validity.

Usage

```r
data(beckerp)
data(cholest)
data(edgington)
data(mourning)
data(naep)
data(roenthal)
data(teachexpect)
data(validity)
```

Format

beckerp A vector of length 5
cholest A vector of length 34
edgington A vector of length 7
naep A data frame with 34 observations on the following 2 variables.

- state a factor with levels AL, AR, AZ, CA, CO, CT, DE, FL, GA, HI, IA, ID, IN, KY, LA, MD, MI, MN, NC, ND, NE, NH, NJ, NM, NY, OH, OK, PA, RI, TX, VA, WI, WV, WY,
- p a numeric vector

mourning A data frame with 9 observations on the following 3 variables.

- stance a factor with levels No stand, Opponent, Supporter
- grade a factor with levels G11–12, G7–8, G9–10
- p a numeric vector

roenthal A data frame with 5 observations on the following 3 variables.
plotp

Description

Produces a Q–Q plot of the p-values supplied

Usage

plotp(pvals, ...)
Arguments

pvals A vector of \(p \)-values

... Other parameters to pass through to qqplot and qqline

Details

After eliminating out of range \(p \)-values and missing values produces a Q–Q plot and the line through the quantiles (by default the 0.25 and 0.75).

Value

Invisibly returns a list consisting of

validp The valid \(p \)-values

Author(s)

Michael Dewey

See Also

qqplot and qqline

Examples

data(cholest)
plotp(cholest)

schweder

Schweder and Spjotvoll plot

Description

Produces the plot suggested by Schweder and Spjotvoll to display a collection of \(p \)-values and also optionally draws the lowest slope line suggested by Benjamini and Hochberg

Usage

schweder(p, xlab = "Rank of \(p \)", ylab = "\(p \)", drawline = NULL, bh.lwd = 1, bh.lty = "solid", bh.col = "black", ls.control = list(frac = NULL), ls.lwd = 1, ls.lty = "dotted", ls.col = "black", ab.control = list(a = NULL, b = NULL), ab.lwd = 1, ab.lty = "dashed", ab.col = "black", ...)
Arguments

- **p**: A vector of *p*-values
- **xlab**: Label for plot *x*-axis
- **ylab**: Label for plot *y*-axis
- **drawline**: Which line, if any, to draw. See Details
- **bh.lwd**: Width of the lowest slope line
- **bh.lty**: Line type of the lowest slope line
- **bh.col**: Colour of the lowest slope line
- **ls.control**: A list containing a named element *frac*. See Details
- **ls.lwd**: Width of the least squares line
- **ls.lty**: Line type of the least squares line
- **ls.col**: Colour of the least squares line
- **ab.control**: A list containing two elements *a* and *b*. See Details
- **ab.lwd**: Width of the specified line
- **ab.lty**: Line type of the specified line
- **ab.col**: Colour of the specified line
- **...**: Further parameters to be passed through to plot

Details

After removing invalid *p*-values plots them. Any graphics parameters passed in ... affect this part of the plot only. Note that the axes are chosen according to the scheme of Benjamini and Hochberg. Schweder and Spjøtvoll used a different system.

By setting **drawline** appropriately up to three lines may be drawn.

If **drawline** includes the string "bh" the lowest slope line of Benjamini and Hochberg is drawn. No further parameters are needed here but the characteristics of the line may be set: width, line type, and colour.

If **drawline** includes the string "ls" a least squares line is drawn passing through the point $k + 1, 1$. The parameter *frac* specified what fraction of the values be used for this and may need experimentation to obtain a suitable line. The characteristics of the line may be set: width, line type, and colour.

If **drawline** includes the string "ab" a user specified line is drawn. The parameters *a* and *b* specify the intercept and slope. The characteristics of the line may be set: width, line type, and colour.

Value

- **A list containing**
 - **p**: The values of *p* plotted
 - **bh.params**: A list containing at least items *a* and *b* the intercept and slope of the line drawn. This is only included if the lowest slope line was drawn
 - **ls.params**: A list containing at least items *a* and *b* the intercept and slope of the line drawn. This is only included if the least squares line was drawn
 - **ab.params**: A list containing at least items *a* and *b* the intercept and slope of the line drawn. This is only included if the user specified line was drawn
Author(s)

Michael Dewey

References

Examples

```r
data(teachexpect)
schweder(teachexpect)
```

sumlog
Combine p-values by the sum of logs (Fisher’s method)

Description

Combine p-values by the sum of logs method, also known as Fisher’s method, and sometimes as the chi-square (2) method.

Usage

```r
sumlog(p)

## S3 method for class 'sumlog'
print(x, ...)
```

Arguments

- `p`
 A vector of significance values

- `x`
 An object of class `sumlog`

- `...`
 Other arguments to be passed through

Details

The method relies on the fact that

$$
\sum_{i=1}^{k} -2 \log p_i
$$

is a chi-squared with $2k$ df where k is the number of studies (Fisher 1925).

The values of p_i should be such that $0 < p_i \leq 1$ and a warning is given if that is not true. A warning is given if, possibly as a result of removing illegal values, fewer than two values remain and the return values are set to NA.

The plot method for class `metap` calls `plotp` on the valid p-values. Inspection of the distribution of p-values is highly recommended as extreme values in opposite directions do not cancel out. See last example. This may not be what you want.
Value

An object of class ‘sumlog’ and ‘metap’, a list with entries

- **chisq** Value of chi-squared statistic
- **df** Associated degrees of freedom
- **p** Associated p-value
- **validp** The input vector with the illegal values removed

Author(s)

Michael Dewey

References

See Also

See also `plotp`

Examples

data(teachexpect)
sumlog(teachexpect) # chisq = 69.473, df = 38, p = 0.0014, from Becker
data(beckerp)
sumlog(beckerp) # chisq = 18.533, df = 10, sig
data(rosenthal)
sumlog(rosenthal$p) # chisq = 22.97, df = 10, p = 0.006 one sided
data(cholest)
sumlog(cholest) # chisq = 58.62, df = 68, p = 0.78
data(validity)
sumlog(validity) # chisq = 159.82, df = 40, p = 2.91 * 10^(-16)
sumlog(c(0.0001, 0.0001, 0.9999, 0.9999)) # is significant

sump

Combine p-values using the sum of p (Edgington’s) method

Description

Combine p-values using the sum p method
Usage

```r
sump(p)
## S3 method for class 'sump'
print(x, ...)
```

Arguments

- `p`: A vector of significance values
- `x`: An object of class ‘sump’
- `...`: Other arguments to be passed through

Details

Defined as

\[
\frac{\left(\sum_{i=1}^{k} p_i\right)^k}{k!} - \binom{k}{1} \frac{\left(\sum_{i=1}^{k} p_i - 1\right)^k}{k!} + \binom{k}{2} \frac{\left(\sum_{i=1}^{k} p_i - 2\right)^k}{k!} + \cdots
\]

where there are \(k\) studies and the series continues until the numerator becomes negative (Edgington 1972).

Some authors use a simpler version

\[
\frac{\left(\sum_{i=1}^{k} p_i\right)^k}{k!}
\]

but this can be very conservative when \(\sum_{i=1}^{k} p_i > 1\). There seems no particular need to use this method but it is returned as the value of `conservativep` for use in checking published values.

The values of \(p_i\) should be such that \(0 \leq p_i \leq 1\) and a warning is given if that is not true. A warning is given if, possibly as a result of removing illegal values, fewer than two values remain and the return values are set to NA. A warning is given when the internal calculations are likely to have been subject to numerical error and an alternative method should be used to check the result.

The plot method for class ‘metap’ calls `plotp` on the valid p-values.

Value

An object of class ‘sump’ and ‘metap’, a list with entries

- `p`: The transformed sum of the p-values
- `conservativep`: See details
- `validp`: The input vector with illegal values removed

Author(s)

Michael Dewey

References

See Also

See also `plotp`
Examples

```r
data(edgington)
sump(edgington) # p = 0.097
```

Description

Combine p-values using the sum z method

Usage

```r
sumz(p, weights = NULL, data = NULL, subset = NULL, na.action = na.fail)
```

```r
## S3 method for class 'sumz'
print(x, ...)
```

Arguments

- `p` A vector of significance values
- `weights` A vector of weights
- `data` Optional data frame containing variables
- `subset` Optional vector of logicals to specify a subset of the p-values
- `na.action` A function indicating what should happen when data contains NAs
- `x` An object of class ‘sumz’
- `...` Other arguments to be passed through

Details

Defined as

\[
\frac{\sum_{i=1}^{k} w_i z(p_i)}{\sqrt{\sum_{i=1}^{k} w_i^2}}
\]

is a z where \(k \) is the number of studies and \(w \) are the weights (Stouffer et al. 1949). By default the weights are equal. In the absence of effect sizes (in which case a method for combining effect sizes would be more appropriate anyway) best results are believed to be obtained with weights proportional to the square root of the sample sizes (Zaykin 2011).

The values of \(p_i \) should be such that \(0 < p_i < 1 \) and a warning is given if that is not true. A warning is given if, possibly as a result of removing illegal values, fewer than two values remain and the return values are set to NA. If the omitted \(p \) values had supplied weights a further warning is issued.

The plot method for class ‘metap’ calls `plotp` on the valid p-values.

Value

An object of class ‘sumz’ and ‘metap’, a list with entries

- `z` Transformed sum of z values
- `p` Associated p-value
- `validp` The input vector with illegal values removed
- `weights` The weight vector corresponding to validp
Author(s)

Michael Dewey

References

See Also

See also plotp

Examples

data(teachexpect)
sumz(teachexpect) # z = 2.435, p = 0.0074, from Becker
data(beckerp)
sumz(beckerp) # z = 1.53, NS, from Beckerp
data(rosenthal)
sumz(rosenthal$p) # 2.39, p = 0.009
sumz(p, df, rosenthal) # 3.01, p = 0.0013
data(validity)
sumz(validity) # z = 8.191, p = 1.25 * 10^(-16)

truncated

Truncated product method routine

Description

Implements two procedures for truncated versions of Fisher’s method

Usage

truncated(p, ptrunc = NULL, rtrunc = NULL, ...)
S3 method for class 'truncated'
print(x, ...)
S3 method for class 'truncated'
summary(object, ...)
S3 method for class 'truncated'
plot(x, pparams = list(pchs = c(16, 1),
 pcols = c("black", "black")), ...)
Arguments

- `p`: A vector of significance values
- `ptrunc`: Value of p to truncate at. See Details
- `rtrunc`: Which rank p to truncate at. See Details
- `x`: An object of class ‘truncated’
- `object`: An object of class ‘truncated’
- `...`: Other arguments to be passed through
- `pparams`: A list containing a vector `pchs` of plotting symbols and a vector `pcols` of colours

Details

Uses routines from TFisher to implement truncated Fisher (Zaykin et al. 2007; Zhang et al. 2018) and from mutoss to implement rank-truncated Fisher (Dudbridge and Koeleman 2003).

The print method prints the statistic and its associated p-value. The summary method also prints how many of the input values were actually used. The plot method provides an index plot of the p-values. By default used p-values are plotted with a black filled circle and those not used with a black unfilled circle. The colours and plotting symbols can be changed in `pparams`. The first element of each vector is for the used p-values and the second for the unused ones.

Value

An object of class ‘truncated’ a list with entries

- `p`: The resultant overall p-value
- `stat`: The test statistic
- `validp`: The input vector with illegal values removed
- `ptrunc`: The p-value used for truncation
- `trunc`: The rank value used for truncation
- `n`: A vector containing `incl`, the number of valid values included, `excl`, the number of valid values not used
- `method`: The method used

Note

Only one of `ptrunc` or `rtrunc` is returned as appropriate. If the function encounters an error it returns NA for the value of `p` and gives a warning message. The effect of specifying both `ptrunc` and `rtrunc` is undefined.

Author(s)

Michael Dewey

References

two2one

See Also
ranktruncated, stat.tpm, and p.tpm

Examples

data(validity)
truncated(validity, ptrunc = 0.5)
truncated(validity, rtrunc = 5)

two2one(p, two = NULL, invert = NULL)

Arguments

p A vector of p-values
two A logical vector defining which p-values are two-sided and to be converted
invert A logical vector defining which p-values are to be inverted

Details
The p-values supplied to the other functions should be one-sided and all in the same direction. This convenience function will convert two-sided to one-sided and invert as necessary. By default it is assumed that all p-values are two-sided and the function converts them all to one-sided. Use invert to specify if some of the tests resulted in outcomes in the other direction. So for example a value of 0.05 will be converted to 0.025 unless invert is TRUE in which case it is converted to 0.975.

Value
A vector of one-sided p-values all in the correct direction

Author(s)
Michael Dewey

Examples

data(rosenthal)
twop <- with(rosenthal, (pt(t, df)))
two2one(twop, two = rep(FALSE, 5), invert = rep(TRUE, 5)) # restore to one-sided
votep

Combine p-values by the vote counting method

Description

Combine p-values by the vote counting method

Usage

votep(p, alpha = 0.5)
S3 method for class 'votep'
print(x, ...)

Arguments

p A vector of significance values
alpha A value defining the significance value limits, see Details
x An object of class 'votep'
... Other arguments to be passed through

Details

By default splits the p-values at 0.5 with those below counting as positive and those above counting as negative. However setting alpha allows specifying a neutral zone. In that case values between alpha and 1 - alpha will be assumed to be neutral and only those outside the zone counted as positive or negative. If the value of alpha is greater than unity it is assumed to be a percentage.

The values of \(p_i \) should be such that \(0 < p_i < 1 \) and a warning is given if that is not true. A warning is given if, possibly as a result of removing illegal values, fewer than two values remain and the return values are set to NA.

The plot method for class 'metap' calls plotp on the valid p-values.

Value

An object of class 'votep' and 'votep', a list with entries

p p value
pos Number of positives
neg Number of negatives
alpha The cut-off significance value lying in the range 0 to 1
validp The input vector with illegal values removed

Author(s)

Michael Dewey

References

wilkinsonp

See Also
See also plotp

Examples
data(beckerp)
vote(beckerp)

wilkinsonp Combine p-values using Wilkinson’s method

Description
Combine p-values using Wilkinson’s method

Usage
wilkinsonp(p, r = 1, alpha = 0.05)
maximump(p, alpha = 0.05)
minimump(p, alpha = 0.05)

Arguments

- p: A vector of significance values
- r: Use the rth smallest p value
- alpha: The significance level
- x: An object of class ‘wilkinsonp’ or of class ‘maximump’ or of class ‘minimump’
- ...: Other arguments to be passed through

Details
Wilkinson (Wilkinson 1951) originally proposed his method in the context of simultaneous statistical inference: the probability of obtaining r or more significant statistics by chance in a group of k. The values are obtained from the Beta distribution, see pbeta.

If alpha is greater than unity it is assumed to be a percentage. Either values greater than 0.5 (assumed to be confidence coefficient) or less than 0.5 are accepted.

The values of \(p_i \) should be such that \(0 \leq p_i \leq 1 \) and a warning is given if that is not true. A warning is given if, possibly as a result of removing illegal values, fewer than two values remain and the return values are set to NA.

maximump and minimump each provide a wrapper for wilkinsonp for the special case when \(r = \text{length}(p) \) or \(r = 1 \) respectively and each has its own print method. The method of minimum \(p \) is also known as Tippett’s method (Tippett 1931).

The plot method for class ‘metap’ calls plotp on the valid p-values. Inspection of the distribution of p-values is highly recommended as extreme values in opposite directions do not cancel out. See last example. This may not be what you want.
Value

An object of class ‘wilkinsonp’ and ‘metap’ or of class ‘minimump’ and ‘metap’ or of class ‘maximump’ and ‘metap’, a list with entries

- \(p \) The \(p \)-value resulting from the meta–analysis
- \(pr \) The \(r \)th smallest \(p \) value used
- \(r \) The value of \(r \)
- \(critp \) The critical value at which the \(r \)th value would have been significant for the chosen alpha
- \(validp \) The input vector with illegal values removed

Author(s)

Michael Dewey

References

See Also

See also plotp

Examples

data(beckerp)
minimump(beckerp) # signif = FALSE, critp = 0.0102, minp = 0.016
data(teachexpect)
minimump(teachexpect) # crit 0.0207, note Becker says minp = 0.0011
wilkinsonp(c(0.223, 0.223), r = 2) # Birnbaum, just signif
data(validity)
minimump(validity) # minp = 0.00001, critp = 1.99 \times 10^{-4}
minimump(c(0.0001, 0.0001, 0.9999, 0.9999)) # is significant
Index

* datasets
 package-data, 11
* hplot
 plotp, 12
 schweder, 13
* htest
 truncated, 19
* htest
 allmetap, 3
 invchisq, 4
 invt, 6
 logitp, 7
 meanp, 8
 meanz, 10
 sumlog, 15
 sump, 16
 sumz, 18
 votep, 22
 wilkinsonp, 23
* manip
 two2one, 21
* package
 metap-package, 2
 allmetap, 3
 beckerp (package-data), 11
 cholest (package-data), 11
 edgington (package-data), 11
 Edgington’s method (sumlog), 15
 Fisher’s method (sumlog), 15
 invchisq, 4
 invt, 6
 Lancaster’s method (invchisq), 4
 logitp, 7
 maximump (wilkinsonp), 23
 meanp, 8
 meanz, 10
 metap (metap-package), 2
 metap-package, 2
 minnump (wilkinsonp), 23
 mourning (package-data), 11
 naep (package-data), 11
 p.adjust, 3
 p.tpm, 2
 package-data, 11
 pbeta, 23
 plot.truncated (truncated), 19
 plotp, 5–11, 12, 15–19, 22–24
 print.allmetap (allmetap), 3
 print.invchisq (invchisq), 4
 print.invt (invt), 6
 print.logitp (logitp), 7
 print.maximump (wilkinsonp), 23
 print.meanp (meanp), 8
 print.meanz (meanz), 10
 print.minimump (wilkinsonp), 23
 print.undbraktruncmeanp (sumlog), 15
 print.undbraktrunclusmp (sumlog), 15
 print.undbraktruncz (sumz), 18
 print.truncated (truncated), 19
 print.votep (votep), 22
 print.wilkinsonp (wilkinsonp), 23
 qqline, 13
 qqplot, 13
 ranktruncated, 21
 rosenthal (package-data), 11
 schweder, 13
 stat.tpm, 21
 Stouffer’s method (sumz), 18
 Sum of normals method (sumz), 18
 sumlog, 5, 15
 sumtruncated (truncated), 19
 sump, 16
 sumz, 18
 teachexpect (package-data), 11
 Tippett’s method (wilkinsonp), 23
 truncated, 19
twozone, 21

validity (package-data), 11

votep, 22

wilkinsonp, 23