Package ‘metasens’

October 15, 2016

Title Advanced Statistical Methods to Model and Adjust for Bias in Meta-Analysis

Version 0.3-1

Depends meta (>= 4.0-0)

Date 2016-10-15

URL https://github.com/guido-s/metasens
http://meta-analysis-with-r.org

Description The following methods are implemented to evaluate how sensitive the results of a meta-analysis are to potential bias in meta-analysis and to support Schwarzer et al. (2015) <DOI:10.1007/978-3-319-21416-0>, Chapter 5 “Small-Study Effects in Meta-Analysis”:
- limit meta-analysis by Rücker et al. (2011) <DOI:10.1093/biostatistics/kxq046>;

License GPL (>= 2)

Encoding UTF-8

NeedsCompilation no

Author Guido Schwarzer [aut, cre],
James Carpenter [aut],
Gerta Rücker [aut]

Maintainer Guido Schwarzer <sc@imbi.uni-freiburg.de>

Repository CRAN

Date/Publication 2016-10-15 18:52:03

R topics documented:

- metasens-package .. 2
- copas ... 3
- Crowther2003 .. 9
- forest.orrbound .. 10
Description

Details

R package **metasens** is an add-on package for **meta** providing the following meta-analysis methods:

- Copas selection model (function `copas`) described in Copas & Shi (2001) and evaluated in Schwarzer et al., 2010);
- limit meta-analysis (`limitmeta`) by Rücker et al. (2011);
- upper bound for outcome reporting bias (`orbbound`) described in Copas & Jackson (2004).

Furthermore, functions and datasets from **metasens** are utilised in Schwarzer et al. (2015), Chapter 5 "Small-Study Effects in Meta-Analysis", http://meta-analysis-with-r.org/.

Type `help(package = "metasens")` for a listing of R functions available in **metasens**.

Type `citation("metasens")` on how to cite **metasens** in publications.

To report problems and bugs

- type `bug.report(package = "metasens")` if you do not use RStudio,
- send an email to Guido Schwarzer <sc@imbi.uni-freiburg.de> if you use RStudio.

The development version of **metasens** is available on GitHub https://github.com/guido-s/metasens.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>
References

copas

Copas selection model analysis

Description

Perform a Copas selection model analysis for selection bias in meta-analysis.

The program takes an object of class `meta`, which is most easily created by an analysis using one of the functions `metabin`, `metacont` and `metagen` in the package meta, performs a ‘Copas selection model analysis’ and presents a graphical and tabular summary of the results. An object of class `copas` is created and this can be used to recreate the results table and graphs subsequently, without re-running the analysis, using the `print`, `summary` and `plot` function.

Usage

copas(x,
 gamma0.range=NULL, gamma1.range=NULL,
 ngrid=20, nlevels=10, levels=NULL,
 slope=NULL, left=NULL, rho.bound=0.9999,
 sign.rsb=0.1,
 backtransf = x$backtransf, silent=TRUE, warn=options()$warn)

Arguments

x An object of class `meta`, obtained from one of the functions `metabin`, `metacont` and `metagen` in the package `meta`.

gamma0.range (Advanced users only) A numerical vector of length two specifying the range of gamma0 values the program will explore.

The parameter gamma0 is the constant in the probit selection model for study publication. Thus, the cumulative normal of gamma0 is approximately the probability that a small study is published (in non-technical terms gamma0 relates to the probability of publishing a small study, although its values are not restricted
to the range [0,1]; larger values correspond to higher probabilities of publishing a small study). Most users will not need to specify a range for this parameter. When no argument is specified, the program uses an algorithm to determine a suitable range. This is based on the range of treatment effect standard errors in the meta-analysis, and is described in more detail below.

gamma1.range
(Advanced users only) A numerical vector of length two specifying the range of gamma1 values the program will explore.

The parameter gamma1 is the coefficient of study precision (1/standard error) in the probit selection model for study publication (in non-technical terms gamma1 relates to the rate at which the probability of publishing a study increases as the standard error of the treatment effect it reports decreases; larger values correspond to higher probabilities of publishing a small study). Most users will not need to specify a range for this parameter. When no argument is specified, the program uses an algorithm to determine a suitable range. This is based on the range of treatment effect standard errors in the meta-analysis, and is described in more detail below.

ngrid
The program fits the Copas selection model over a grid defined by the range of values of gamma0 and gamma1 specified in the previous two arguments. This parameter fixes the square-root of the number of points in the grid.

nlevels
(Advanced users only). Fitting the Copas model over the grid specified by the previous three arguments results in a treatment estimate at every point in the grid. These can then be displayed on a contour plot where contours of treatment effect (z-axis) are shown by gamma0 (x-axis) and gamma1 (y-axis). This argument specifies the number of contour lines that will be drawn.

levels
A numerical vector of treatment values for which contour lines will be drawn. In more detail, fitting the Copas model over the grid specified by the arguments gamma0.range, gamma1.range and ngrid results in a treatment estimate at every point in the grid. These are then displayed on a contour plot where contours of treatment effect (z-axis) are shown by gamma0 (x-axis) and gamma1 (y-axis). This argument is a numerical vector which specifies the treatment effects for which contour lines will be drawn.

It is usually not a good idea to set this argument for initial runs, as one does not know the range of treatment values that the contour plot will cover, and treatment values which do not correspond to values in the contour plot (defined by the range of gamma0 and gamma1) will not be plotted.

Note
(i) Calculations for the contour plot are performed by the function copas, so this argument has no effect in the plot function.
(ii) If a large number of contour lines are desired, then you may wish to consider increasing the grid size (argument ngrid above).

Leave this option unspecified if you are using the option levels above.
slope
A numeric providing the slope of the line approximately orthogonal to contours in the contour plot. If the argument `slope` is `NULL` (default) the program seeks to estimate the slope of the contours in the region of the maximum, which are usually approximately parallel. Most users will leave the argument `slope` unspecified, at least for the first analysis of a data set, but in certain cases setting it manually can improve the results.

left
A logical indicating whether the cause of any selection bias is due to missing studies on the left or right of the funnel plot: left hand side if `left=TRUE`, right hand side if `left=FALSE`. This information is needed in order to be sure the test for presence of residual selection bias is calculated correctly. If not set, the linear regression test for funnel plot asymmetry (i.e., function `metabias(..., meth="linreg")`) is used to determine whether studies are missing on the left or right hand side. In the majority of cases this will work correctly.

rho.bound
(Advanced users only) A number giving the upper bound for the correlation parameter `rho` (see details below). This must be < 1, and usually > 0.95. The lower bound is calculated as -(the upper bound).

sign.rsb
The significance level for the test of residual selection bias (between 0 and 1).

backtransf
A logical indicating whether results should be back transformed in printouts and plots. If `backtransf=TRUE` (default), results for `sm="OR"` are printed as odds ratios rather than log odds ratio, for example.

silent
A logical indicating whether information on progress in fitting the Copas selection model should be printed: `silent=TRUE`, do not print information (the default); `silent=FALSE`, print information.

warn
A number setting the handling of warning messages. It is not uncommon for numerical problems to be encountered during estimation over the grid of `(gamma0, gamma1)` values. Usually this does not indicate a serious problem. This option specifies what to do with warning messages. `warn=-1`: ignore all warnings; `warn=0` (the default): store warnings till function finishes; if there are less than 10, print them, otherwise print a message saying warning messages were generated; `warn=1`: print warnings as they occur; `warn=2`: stop the function when the first warning is generated. For further details see `help(options)`.

Details

Conduct a Copas selection model analysis to investigate, and attempt to correct for, selection/publication bias in a meta-analysis.

The Copas selection model consists of two models, which are fitted jointly. The first is the usual random effects meta-analysis model, and the second is a selection model, where study `i` is selected for publication if

\[
Z = \gamma_0 + \gamma_1/(SE(i)) + \delta(i)
\]

The error `delta(i)` is correlated with the error in the random effects meta-analysis, with correlation `rho`. If `rho=0`, the model corresponds to the usual random effects meta-analysis. As `rho` moves from 0 to 1, studies with larger treatment estimates are more likely to be selected/published.

The software chooses a grid of `gamma0` and `gamma1` values, corresponding to a range of selection/publication probabilities for the study with the largest treatment effect standard error (often
the smallest study). For each value in this grid, the treatment effect is estimated using the function `optim`. This information is used to produce the contour plot (top right panel of output from `plot.copas`).

Contours of constant treatment effect are usually locally parallel. The software estimates the slope of these contours, and combines this information with other parameter estimates from the model to explore (i) how the treatment estimate, and its standard error, change with increasing selection (bottom left panel, `plot.copas`) and (ii) how much selection needs to be accounted for before any remaining asymmetry in the funnel plot is likely to have occurred by chance (bottom right panel, `plot.copas`).

A table of results can be produced by the function `summary.copas`. A more detail output is provided by the function `print.copas`.

For a fuller description of the model, our implementation and specifically our approach to estimating the locally parallel contours, see Carpenter et al. (2009) and Schwarzer et al. (2010).

Value

An object of class `copas` with corresponding `print`, `summary`, `plot` function. The object is a list containing the following components:

- **TE** Vector of treatment effects plotted in treatment effect plot
- **seTE** Vector of standard error of TE
- **TE.random** Usual random effects estimate of treatment effect
- **seTE.random** Usual standard error of TE.random
- **left** Whether selection bias expected on left or right
- **rho.bound** Bound on rho
- **gamma0.range** Range of gamma0 (see help on copas arguments above)
- **gamma1.range** Range of gamma1 (see help on copas arguments above)
- **slope** Slope of line approximately orthogonal to contours in contour plot
- **regr** A list containing information on regression lines fitted to contours in contour plot
- **ngrid** Square root of grid size
- **nlevels** Number of contour lines
- **gamma0** Vector of gamma0 values at which model fitted (determined by gamma0.range and grid). x-axis values for contour plot
- **gamma1** vector of gamma1 values at which model fitted (determined by gamma1.range and grid). y-axis values for contour plot
- **TE.contour** Treatment values (ie z-axis values) used to draw contour plot.
- **x.slope** x coordinates for 'orthogonal line' in contour plot
- **y.slope** y coordinates for 'orthogonal line' in contour plot
- **TE.slope** Vector of treatment values plotted in treatment effect plot
- **seTE.slope** Standard error of TE.slope
- **rho.slope** Vector of estimated rho values corresponding to treatment estimates in TE.slope
Vector of estimated heterogeneity values corresponding to treatment estimates in TE.slope
Vector of log-likelihood values corresponding to treatment estimates in TE.slope
Numerical vector indicating convergence status for each treatment estimate in TE.slope - see parameter convergence in function optim
Character vector - translation of conv1
Vector of log-likelihoods from fitting model to evaluate presence of residual selection bias
Numerical vector indicating convergence status for models to evaluate presence of residual selection bias - see parameter convergence in function optim
Character vector - translation of conv2
Vector of probabilities of publishing the smallest study, used in x-axis of bottom two panels in function plot.copas
P-values for tests on presence of residual selection bias, plotted in bottom right panel in plot.copas
The significance level for the test of residual selection bias
Approximate number of studies the model suggests remain unpublished
Effect measure (OR - odds ratio, RR - risk ratio, RD - risk difference, AS - arcsin difference)
Title of meta-analysis / systematic review.
Comparison label.
Outcome label.
Call to copas function
Version of R package metasens used to create object.
Details of meta-analysis input into copas function

Author(s)
James Carpenter <James.Carpenter@lshtm.ac.uk>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

References
See Also

- plot.copas
- summary.copas
- metabias
- metagen
- funnel

Examples

```r
##
## Basic example
##
## Load data
##
data(Fleiss93)
##
## Perform meta-analysis
## (Note event.e indicates events, n.e total in exposed arm;
##  event.c indicates events, n.c total in control arm)
##
meta1 <- metabin(event.e, n.e, event.c, n.c, data=Fleiss93, sm="OR")
summary(meta1)
##
## To perform a basic Copas-selection model analysis
##
copi <- copas(meta1)
plot(copi)
summary(copi)
##
## Interpretation:
##
## a. The initial meta-analysis shows the fixed and random effects pooled
## ORs differ; consistent with asymmetry in the funnel plot and
## possible selection bias. Both fixed effect and random effects model
## show a significant treatment effect in this dataset.
##
## b. Plotting the copas analysis shows
##
## (i) funnel plot: asymmetry indicates possible selection bias.
##
## (ii) contour plot treatment effect declines steadily as selection
## increases (no selection, top right, log OR < -0.12; increasing
## selection as move to left of plot, log OR rises to -0.03.
##
## (iii) Treatment effect plot suggests that even with no selection,
## p-value for treatment effect is larger than 0.05 which is
## different from the result of the usual random effects model
## (see output of summary(copi)). This difference is due to the
## use of different methods to estimate the between-study
## variance: maximum-likelihood in Copas analysis compared to
## method-of-moments in usual random effects model.
## The p-value for treatment effect is increasing with
## increasing selection.
##
## (iv) P-value for residual selection bias plot: this shows that even
## Description

Meta-analysis on phenobarbital prior to preterm birth for preventing neonatal periventricular haemorrhage

## Usage

data(Crowther2003)

## Format

A data frame with the following columns:

- **study**: study label
- **event.e**: number of periventricular haemorrhages in experimental group
- **total.e**: number of observations in experimental group
- **event.c**: number of periventricular haemorrhages in control group
- **total.c**: number of observations in control group
Source
Crowther CA, Henderson-Smart DJ (2003), Phenobarbital prior to preterm birth for preventing neonatal periventricular haemorrhage. *Cochrane Database of Systematic Reviews*, Issue 3. Art. No.: CD000164. DOI: 10.1002/14651858.CD000164

Examples
```
data(Crowther2003)
metabin(event.e, total.e, event.c, total.c,
data=Crowther2003,
studlab=study)
```

```
forest.orrbound Forest plot for orrbound object (bound for outcome reporting bias)
```

Description
Draws a forest plot in the active graphics window (using grid graphics system).

Usage
```
S3 method for class 'orrbound'
forest(x,
comb.fixed=x$comb.fixed,
comb.random=x$comb.random,
text.fixed="FE model",
text.random="RE model",
smlab=NULL,
leftcols=c("studlab", "maxbias"),
leftlabs=c("Missing\nstudies", "Maximum\nbias"),
backtransf=x$backtransf,
digits=max(3, .Options$digits - 3),
...)
```

Arguments
```
x An object of class orrbound.
comb.fixed A logical indicating whether sensitivity analysis for fixed effect model should be plotted.
comb.random A logical indicating whether sensitivity analysis for random effects model should be plotted.
text.fixed A character string used in the plot to label subgroup with results for fixed effect model.
text.random A character string used in the plot to label subgroup with results for random effects model.
```

smalb A label printed at top of figure. If only results for either fixed effect or random effects model is plotted, text indicates which model was used.

leftcols A character vector specifying (additional) columns to be plotted on the left side of the forest plot or a logical value (see forest.meta help page for details).

leftlabs A character vector specifying labels for (additional) columns on left side of the forest plot (see forest.meta help page for details).

backtransf A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE (default), results for sm="OR" are printed as odds ratios rather than log odds ratio, for example.

digits Minimal number of significant digits, see print.default.

... Additional arguments for forest.meta function.

Details

A forest plot, also called confidence interval plot, is drawn in the active graphics window.

For summary measures 'RR', 'OR', and 'HR' column labeled "Maximum bias" contains the relative bias, e.g. a value of 1.10 means a maximum overestimation by 10 percent. If backtransf=FALSE for these summary measures, maximum bias is instead printed as absolute bias.

For more information see help page of forest.meta function.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

orbbound, print.orbbound

Examples

data(Fleiss93, package="meta")

meta1 <- metabin(event.e, n.e, event.c, n.c,  
                 data=Fleiss93, sm="OR")

orb1 <- orbbound(meta1, k.suspect=1:5)

print(orb1, digits=2)

forest(orb1, xlim=c(0.7, 1.5))

forest(orb1, backtransf=FALSE)
funnel.limitmeta  

Funnel plot for limit meta-analysis

Description

Draws a funnel plot in the active graphics window.

Usage

```r
S3 method for class 'limitmeta'
funnel(x,
 pch=21, cex=1, col="black", bg="darkgray",
 lwd=1,
 pch.adjust=18, cex.adjust=1.5, col.adjust="gray", bg.adjust="gray",
 line=TRUE, xmin.line, xmax.line,
 lty.line=1, lwd.line=lwd, col.line="gray",
 shrunken=FALSE, pch.shrunken=22, cex.shrunken=1,
 col.shrunken="black", bg.shrunken="white",
 lty.connect=1, lwd.connect=0.8, col.connect="black",
 backtransf=x$backtransf, ...)
```

Arguments

- `x` An object of class `limitmeta`.
- `pch` The plotting symbol used for individual studies.
- `cex` The magnification to be used for plotting symbol.
- `col` A vector with colour of plotting symbols.
- `bg` A vector with background colour of plotting symbols (only used if `pch` in 21:25).
- `lwd` The line width for confidence intervals (see `funnel.meta`).
- `pch.adjust` The plotting symbol used for the adjusted effect estimate.
- `cex.adjust` The magnification to be used for the plotting symbol of the adjusted effect estimate.
- `col.adjust` Colour of plotting symbol for adjusted effect estimate.
- `bg.adjust` Background colour of plotting symbol for adjusted effect estimate.
- `line` A logical indicating whether adjusted regression line should be plotted.
- `xmin.line` Minimal value for the adjusted regression line (on x-axis).
- `xmax.line` Maximum value for the adjusted regression line (on x-axis).
- `lty.line` Line type of the adjusted regression line.
- `col.line` Color of the adjusted regression line.
- `lwd.line` The line width of the adjusted regression line.
- `shrunken` A logical indicating whether shrunken treatment estimates should be plotted.
- `pch.shrunken` The plotting symbol used for shrunken effect estimates.
funnel.limitmeta

- **cex.shrunk** The magnification to be used for the plotting symbol of the shrunk effect estimates.
- **col.shrunk** Colour of plotting symbol for shrunk effect estimates.
- **bg.shrunk** Background colour of plotting symbol for shrunk effect estimates.
- **lty.connect** Line type for line connecting original and shrunk treatment estimates.
- **lwd.connect** The line width of the connecting lines.
- **col.connect** Color of the connecting lines.
- **backtransf** A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE (default), results for sm="OR" are printed as odds ratios rather than log odds ratio, for example.

... Additional arguments for funnel.meta function.

Details

A funnel plot is drawn in the active graphics window. In addition this function adds the adjusted effect estimate as well as a nonlinear regression line (also called adjusted regression line) if argument line is TRUE. The adjusted regression line is representing the dependence of the treatment effect estimate on the standard error across studies. The adjusted regression line is only plotted in addition to the adjusted treatment effect if argument method.adjust="beta0" (default) has been used in the limitmeta function.

If argument shrunk is TRUE the shrunk effect estimates are also plotted. Lines are connecting original and shrunk effect estimates.

Internally, R function funnel.meta is called to create a funnel plot. For more information see help page of the funnel.meta function.

Author(s)

Guido Schwarzer<sc@imbi.uni-freiburg.de>, Gerta Rücker<ruecker@imbi.uni-freiburg.de>

See Also

limitmeta, funnel.meta

Examples

data(nsaids)
m1 <- metabin(Ee, Ne, Ec, Nc,
data=nsaids, sm="OR", method="Inverse")

print(summary(limitmeta(m1)), digits=2)

funnel(limitmeta(m1))

# # Print results on log scale #

print(summary(limitmeta(m1)), digits=2, backtransf=FALSE)
funnel(limitmeta(m1), backtransf=FALSE)
Description

Implementation of the limit meta-analysis method by Rücker et al. (2011) to adjust for bias in meta-analysis.

Usage

```
limitmeta(x, method.adjust="beta0", level=x$level, level.comb=x$level.comb,
backtransf=x$backtransf, title=x$title, complab=x$complab, outclab=x$outclab)
```

Arguments

- `x`: An object of class `meta`.
- `method.adjust`: A character string indicating which adjustment method is to be used. One of "beta0", "betalim", or "mulim", can be abbreviated.
- `level`: The level used to calculate confidence intervals for individual studies.
- `level.comb`: The level used to calculate confidence intervals for pooled estimates.
- `backtransf`: A logical indicating whether results should be back transformed in printouts and plots. If `backtransf=FALSE`, results for the odds ratio are printed as log odds ratios rather than odds ratio, for example.
- `title`: Title of meta-analysis / systematic review.
- `complab`: Comparison label.
- `outclab`: Outcome label.

Details

This function provides the method by Rücker et al. (2011) to estimate an effect estimate adjusted for bias in meta-analysis. The underlying model is an extended random effects model that takes account of possible small study effects by allowing the treatment effect to depend on the standard error:

```
theta(i) = beta + sqrt(SE(i)^2 + tau^2)(epsilon(i) + alpha),
```

where `epsilon(i)` follows a standard normal distribution. Here `theta(i)` is the observed effect in study `i`, `beta` the global mean, `SE(i)` the within-study standard error, and `tau^2` the between-study variance. The parameter `alpha` represents the bias introduced by small-study effects. On the one hand, `alpha` can be interpreted as the expected shift in the standardized treatment effect if precision is very small. On the other hand, `theta(adj) = beta + tau*alpha` is interpreted as the limit treatment effect for a study with infinite precision (corresponding to `SE(i) = 0`).

Note that as `alpha` is included in the model equation, `beta` has a different interpretation as in the usual random effects model. The two models agree only if `alpha=0`. If there are genuine small-study effects, the model includes a component making the treatment effect depend on the standard error.
error. The expected treatment effect of a study of infinite precision, \( \beta + \tau \alpha \), is used as an adjusted treatment effect estimate.

The maximum likelihood estimates for \( \alpha \) and \( \beta \) can be interpreted as intercept and slope in linear regression on a so-called generalised radial plot, where the \( x \)-axis represents the inverse of \( \sqrt{SE(i)^2 + \tau^2} \) and the \( y \)-axis represents the treatment effect estimates, divided by \( \sqrt{SE(i)^2 + \tau^2} \).

Two further adjustments are available that use a shrinkage procedure. Based on the extended random effects model, a limit meta-analysis is defined by inflating the precision of each study with a common factor. The limit meta-analysis yields shrunken estimates of the study-specific effects, comparable to empirical Bayes estimates. Based on the extended random effects model, we obtain three different treatment effect estimates that are adjusted for small-study effects:

- an estimate based on the expectation of the extended random effects model, \( \beta_0 = \beta + \tau \alpha \), \( \text{method.adjust} = \text{"beta0"} \)
- the extended random effects model estimate of the limit meta-analysis, including bias parameter \( \text{method.adjust} = \text{"betalim"} \)
- the usual random effects model estimate of the limit meta-analysis, excluding bias parameter \( \text{method.adjust} = \text{"mulim"} \)

See Rücker, Schwarzer et al. (2011), Section 7, for the definition of \( G^2 \) and the three heterogeneity statistics \( Q, Q_{\text{small}}, \text{and } Q_{\text{resid}} \).

For comparison, the original random effects meta-analysis is always printed in the sensitivity analysis.

**Value**

An object of class "limitmeta" with corresponding print, summary and funnel function. The object is a list containing the following components:

- \( x, \text{level, level.com} \)
- \( \text{method.adjust} \)
- \( \text{title, complab, outclab} \)
  - As defined above.
- \( \text{TE, TE.se} \) Estimated treatment effect and standard error of individual studies.
- \( \text{TE.limit, TE.se.limit} \)
  - Shrunken estimates and standard error of individual studies.
- \( \text{studlab} \) Study labels.
- \( \text{TE.random, TE.se.random} \)
  - Unadjusted overall treatment effect and standard error (random effects model).
- \( \text{lower.random, upper.random} \)
  - Lower and upper confidence interval limits (random effects model).
- \( \text{zval.random, pval.random} \)
  - \( z \)-value and corresponding \( p \)-value for test of overall treatment effect (random effects model).
- \( \text{w.random} \)
  - Weight of individual studies (in random effects model).
tau        Square-root of between-study variance.
TE.adjust, seTE.adjust
            Adjusted overall effect and standard error (random effects model).
lower.adjust, upper.adjust
            Lower and upper confidence interval limits for adjusted effect estimate (random
            effects model).
zval.adjust, pval.adjust
            Z-value and corresponding p-value for test of overall treatment effect for ad-
            justed estimate (random effects model).
alpha.r   Intercept of the linear regression line on the generalised radial plot, here inter-
            preted as bias parameter in an extended random effects model. Represents the
            expected shift in the standardized treatment effect if precision is very small.
beta.r    Slope of the linear regression line on the generalised radial plot.
Q          Heterogeneity statistic.
Q.small   Heterogeneity statistic for small study effects.
Q.resid   Heterogeneity statistic for residual heterogeneity beyond small study effects.
G.squared Heterogeneity statistic G^2 (ranges from 0 to 100%).
k         Number of studies combined in meta-analysis.
call      Function call.
version   Version of R package metasens used to create object.

Author(s)

Gerta Rücker <ruecker@imbi.uni-freiburg.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

Rücker G, Carpenter JR, Schwarzer G (2011), Detecting and adjusting for small-study effects in
adjusted for small-study effects via a limit meta-analysis. Biostatistics, 12, 122–42.

See Also

funnel.limitmeta, print.limitmeta

Examples

data(nsaids)
ml <- metabin(Ee, Ne, Ec, Nc,
                data=nsaids, sm="OR", method="Inverse")

print(summary(limitmeta(ml)), digits=2)
Description

Meta-analysis on the effectiveness of topical non-steroidal anti-inflammatory drugs (NSAIDS) in acute pain

Usage

data(nsaids)

Format

A data frame with the following columns:

- **study**: study number
- **Ee**: number of treatment successes (reduction in pain of at least 50%) in NSAIDS group
- **Ne**: number of patients in NSAIDS group
- **Ec**: number of treatment successes in control group
- **Nc**: number of patients in control group

Source


Examples

data(nsaids)
ml <- metabin(Ee, Ne, Ec, Nc, data=nsaids, sm="OR", method="Inverse")
print(limitmeta(ml), digits=2)

Sensitivity Analysis for Outcome Reporting Bias (ORB)

Description

Implementation of the method by Copas & Jackson (2004) to evaluate outcome reporting bias in meta-analysis. An upper bound for outcome reporting bias is estimated for a given number of studies suspected with outcome reporting bias.
Usage

orbbound(x, k.suspect=1, tau=x$tau, left=NULL, backtransf=x$backtransf)

Arguments

x An object of class meta.

k.suspect Number of studies with suspected outcome reporting bias.

tau Square-root of between-study variance tau-squared.

left A logical indicating whether the cause of any selection bias is due to missing studies on the left or right of the funnel plot: left hand side if left=TRUE, right hand side if left=FALSE. If not set, the linear regression test for funnel plot asymmetry (i.e., function metabias(..., meth="linreg")) is used to determine whether studies are missing on the left or right hand side.

backtransf A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE (default), results for sm="OR" are printed as odds ratios rather than log odds ratio, for example.

Details

This function provides the method by Copas and Jackson (2004) to estimate an upper bound for bias for a given number of studies with suspected outcome reporting bias.

Based on the upper bound of outcome reporting bias, treatment estimates and confidence limits adjusted for bias are calculated.

For comparison, the original meta-analysis is always considered in the sensitivity analysis (i.e. value 0 is always added to k.suspect).

Value

An object of class c("orbbound") with corresponding print and forest function. The object is a list containing the following components:

k.suspect, tau As defined above.

maxbias Maximum bias for given values of k.suspect.

fixed Adjusted treatment estimates and corresponding quantities for fixed effect model (a list with elements TE, seTE, lower, upper, z, p, level, df).

random Adjusted treatment estimates and corresponding quantities for random effects model (a list with elements TE, seTE, lower, upper, z, p, level, df).

left Whether selection bias expected on left or right

x Meta-analysis object (i.e. argument x from function call).

call Function call.

version Version of R package metasens used to create object.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>
plot.copas

Display results of Copas selection modelling

Description

Four plots (selectable by 'which') are currently available: (1) funnel plot, (2) contour plot, (3) treatment effect plot, (4) p-value for residual publication bias plot. By default, all plots are provided.

Usage

```r
S3 method for class 'copas'
plot(x,
which=1:4,
caption=c("Funnel plot", "Contour plot", "Treatment effect plot", "P-value for residual selection bias"),
xlim.pp=NULL, level=0.95,
orthogonal.line=TRUE, lines=FALSE,
sign.rsb=x$sign.rsb, warn=-1, ...)
```
Arguments

x
An object of class copas, generated by the copas function

which
Specify plots required: 1:4 produces all plots (default); 3 produces plot 3 etc; c(1,3) produces plots 1 and 3, and so on.

caption
Specify plot captions. Note that four captions must be specified even if fewer graphs are displayed (which is the case if the predefined captions are utilised). This must be considered if user-defined captions are provided. Captions corresponding to plots that are not displayed can be left empty. For example, if only plot 3 is selected, we might specify caption=c("","","Plot 3",""").

xlim.pp
A vector of x-axis limits for plots 3 and 4, i.e. for the probability of publishing the study with largest standard deviation. E.g. to specify limits between 0.3 and 0.1 set xlim.pp=c(0.3,0.1).

level
The level used to calculate confidence intervals for plot 3 (treatment effect plot) (between 0 and 1).

orthogonal.line
A logical indicating whether the orthogonal line should be displayed in plot 2 (contour plot).

lines
(Diagnostic use only) A logical indicating whether regression lines should be plotted in contour plot. These regression lines attempt to summarise each contour of constant treatment effect by a straight line, prior to calculating the orthogonal line. Regression lines with a positive adjusted $R^2$ will be printed in green color, others will be printed in red color.

sign.rsb
The significance level for the test of residual selection bias (between 0 and 1).

warn
A number setting the handling of warning messages. It is not uncommon for numerical problems to be encountered during estimation over the grid of (gamma0, gamma1) values. Usually this does not indicate a serious problem. This option specifies what to do with warning messages. warn=-1: ignore all warnings; warn=0 (the default): store warnings till function finishes; if there are less than 10, print them, otherwise print a message saying warning messages were generated; warn=1: print warnings as they occur; warn=2: stop the function when the first warning is generated. For further details see help(options).

Details

Takes an object created by the copas function and draws up to four plots to display the results of the Copas selection modelling.

The argument which specifies the plots to be drawn; plot numbers below will be produced by setting which=1, etc.

Plot 1: Funnel plot of studies in meta-analysis. Vertical grey line is usual random effects estimate (DerSimonian-Laird method); vertical broken line is fixed effects estimate.

Plot 2: Plot of contours of treatment effect (estimated by the Copas model) as the selection probability varies (the selection probability is a function of gamma0 and gamma1 - see help(copas) or the reference below).
Plot 3: Assuming the contours of treatment effect in Plot 2 are locally parallel, the results can be summarised in terms of the probability of publishing the study with the largest standard error. This plot displays the results of doing this, showing how the estimated treatment effect (and 100*level% confidence interval) vary as the probability of publishing the study with the largest standard error decreases.

The three horizontal grey lines are the usual random effects treatment estimate (centre) +/- the 100*level% confidence interval (upper/lower grey lines).

Plot 4: For any degree of selection (i.e. probability of the study with largest SE being published), we can calculate a p-value for the hypothesis that no further selection remains unexplained in the data. These plot displays these p-values against the probability that the study with the largest SE is published.

Under the copas selection model, probabilities of the smallest study being published which correspond to p-values for residual selection bias that are larger than 0.1 are more plausible. The corresponding treatment effect in plot 3 is thus the most plausible under the copas selection model.

Note

In the current version, fine control of the graphics parameters for the individual panels is not possible. However, all the data used to create the plots can be extracted manually from the object created by the copas function (see attributes list for copas) and used to create tailor-made plots.

Author(s)

James Carpenter<James.Carpenter@lshtm.ac.uk>, Guido Schwarzer<sc@imbi.uni-freiburg.de>

References


See Also

copas, summary.copas, metabias, metagen

Examples

```r
Simple example:
##
Load data
##
data(Fleiss93)
##
Perform meta-analysis (outcome measure is OR = odds ratio)
##
metal <- metabin(event.e, n.e, event.c, n.c,
```
print.copas

Print and summary method for Copas selection model

Description
Print and summary method for objects of class copas.

Usage

## S3 method for class 'copas'
print(x, sign.rsb=x$sign.rsb, backtransf=x$backtransf,
      digits=max(3, .Options$digits - 3), ...)

## S3 method for class 'copas'
summary(object, level=0.95, sign.rsb=object$sign.rsb, ...)

## S3 method for class 'summary.copas'
print(x, digits = max(3, .Options$digits - 3),
       backtransf=x$backtransf, header=TRUE, ...)

Arguments

x An object of class copas or summary.copas.
object An object of class copas.
level The level used to calculate confidence intervals (between 0 and 1).

sign.rsb The significance level for the test of residual selection bias (between 0 and 1).

backtransf A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE (default), results for sm="OR" are printed as odds ratios rather than log odds ratio, for example.

digits Minimal number of significant digits, see print.default.

header A logical indicating whether information on title of meta-analysis, comparison and outcome should be printed at the beginning of the printout.

... other arguments to the function will be ignored (this option included only to conform with R standards)

Details

The summary.copas function prints a summary of a Copas analysis, performed using the function copas. It complements the graphical summary of the results, generated using plot.copas.

Specifically it prints a table where the:
- first column corresponds to the x-axis in plots 3 & 4 from plot.copas;
- second column corresponds to the treatment effect displayed in plot 3 from plot.copas;
- third and fourth columns give the confidence intervals for this treatment effect,
- fifth column gives the p-value for an overall treatment effect,
- sixth column gives the p-value for residual publication bias (the y-axis of plot 4 from plot.copas (see help(plot.copas) under plot 4 for a further explanation of this p-value))
- seventh column gives an approximate estimate of the number of studies the model suggests remain unpublished if the probability of publishing the study with the largest SE is as in column 1.

Below this is displayed the results of the Copas analysis for the smallest degree of selection for which the p-value for evidence of residual selection bias exceeds sign.rsb (default: 0.1). This is simply extracted from the corresponding row in the table above.

Lastly, the usual random effects estimate (based on the DerSimonian-Laird method) and 95% confidence interval is printed.

The function print.copas prints the summary information above together with the following information:
- Range of gamma0 values used (see help(copas));
- Range of gamma1 values used (see help(copas));
- Largest SE of all studies in meta-analysis;
- Range of probability publishing trial with largest SE;

The next table gives details relating to the summary of the contour plot. Specifically, it gives details from fitting a straight line to each treatment-contour in the contour plot. Column 1 (headed level) shows the treatment-contours; column 2 (nobs) shows the number of observations used by the contour plot command within the copas function to plot this contour line; column 3 (adj.r.square) shows the adjusted r-square from fitting a straight line to this contour; columns 4 & 5 show the slope and its standard error from fitting a straight line to this contour.
Value

A list is returned by the function `summary.copas` with the following elements:

- `slope` Results for points on orthogonal line (a list with elements `TE, seTE, lower, upper, z, p, level`).
- `publprob` Vector of probabilities of publishing the smallest study.
- `pval.rsb` P-values for tests on presence of residual selection bias.
- `N.unpubl` Approximate number of studies the model suggests remain unpublished.
- `adjust` Result of Copas selection model adjusted for selection bias (a list with elements `TE, seTE, lower, upper, z, p, level`).
- `sign.rsb` The significance level for the test of residual selection bias.
- `pval.rsb.adj` P-value for test on presence of residual selection bias for adjusted effect given in `adjust`.
- `N.unpubl.adj` Approximate number of studies the model suggests remain unpublished for adjusted effect given in `adjust`.
- `random` Results for usual random effects model (a list with elements `TE, seTE, lower, upper, z, p, level`).
- `sm` A character string indicating underlying summary measure.
- `ci.lab` Label for confidence interval.
- `title` Title of meta-analysis / systematic review.
- `complab` Comparison label.
- `outclab` Outcome label.
- `version` Version of R package `metasens` used to create object.

Author(s)

James Carpenter <James.Carpenter@lshtm.ac.uk>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

`copas, plot.copas, metabias, metagen`

Examples

```r
##
Load data
##
data(fleiss93)
##
Perform meta analysis, effect measure is odds ratio (OR)
##
meta <- metabin(event.e, n.e, event.c, n.c,
 data=Fleiss93, sm="OR")
##
Perform Copas analysis
##
```
print.limitmeta

Description

Print and summary method for objects of class limitmeta.

Usage

## S3 method for class 'limitmeta'
print(x, sortvar, backtransf=x$backtransf, digits=max(3, .Options$digits - 3), header=TRUE, ...)

## S3 method for class 'limitmeta'
summary(object, ...)

## S3 method for class 'summary.limitmeta'
print(x, backtransf=x$backtransf, digits = max(3, .Options$digits - 3), header=TRUE, ...)

Arguments

- **x**: An object of class limitmeta or summary.limitmeta.
- **object**: An object of class limitmeta.
- **sortvar**: An optional vector used to sort the individual studies (must be of same length as x$TE).
- **backtransf**: A logical indicating whether results should be back transformed in printouts and plots. If backtransf=TRUE (default), results for sm="OR" are printed as odds ratios rather than log odds ratio, for example.
- **digits**: Minimal number of significant digits, see print.default.
- **header**: A logical indicating whether information on title of meta-analysis, comparison and outcome should be printed at the beginning of the printout.
- **...**: other arguments to the function will be ignored (this option included only to conform with R standards)

Details

The summary.limitmeta function prints a summary of a limit meta-analysis (Rücker et al., 2011); unadjusted as well as adjusted effect estimates in a random effects model are printed.

The function print.limitmeta prints the summary information above together with the following study information:

- Effect estimate with confidence interval
- Shrunken effect estimates with confidence interval
Value

The function \texttt{summary.limitmeta} returns the same list as the function \texttt{limitmeta}, however class "\texttt{summary.limitmeta}" is added to the object in order to print a short summary of the limit meta-analysis object.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

\texttt{limitmeta, funnel.limitmeta, metabias, metagen}

Examples

data(nsaids)
ml <- metabin(EE, Ne, Ec, Nc,
    data=nsaids, sm="OR", method="Inverse")

print(limitmeta(ml), digits=2)

\begin{verbatim}
print.orbound  \hspace{1cm} Print method for objects of class orbound
\end{verbatim}

Description

Print method for objects of class orbound.

Usage

## S3 method for class 'orbound'
print(x, 
    comb.fixed=x$\texttt{comb\_fixed}, comb.random=x$\texttt{comb\_random},
    header=TRUE, backtransf=x$\texttt{backtransf},
    digits=max(3, .Options$\texttt{digits} - 3),
    ...)

Arguments

\begin{description}
\item[x] An object of class orbound.
\item[comb.fixed] A logical indicating whether sensitivity analysis for fixed effect model should be printed.
\item[comb.random] A logical indicating whether sensitivity analysis for random effects model should be printed.
\item[header] A logical indicating whether information on meta-analysis should be printed at top of printout.
\end{description}
A logical indicating whether printed results should be back transformed. If `backtransf=TRUE`, results for sm="OR" are printed as odds ratios rather than log odds ratios and results for sm="ZCOR" are printed as correlations rather than Fisher’s z transformed correlations, for example.

digits Minimal number of significant digits, see `print.default`.

Details

For summary measures 'RR', 'OR', and 'HR' column labeled maxbias contains the relative bias, e.g. a value of 1.10 means a maximum overestimation by 10 percent. If logscale=TRUE for these summary measures, maximum bias is instead printed as absolute bias.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

`orbbound, forest.orbbound`

Examples

data(Fleiss93, package="meta")

meta1 <- metabin(event.e, n.e, event.c, n.c,
  data=Fleiss93, sm="OR")

orbl <- orbbound(meta1, k.suspect=1:5)

print(orbl, digits=2)

# # Print log odds ratios instead of odds ratios
# print(orbl, digits=2, backtransf=FALSE)

# # Assuming that studies are missing on the left side
# orbl_missleft <- orbbound(meta1, k.suspect=1:5, left=TRUE)

orbl_missleft

meta2 <- metabin(event.e, n.e, event.c, n.c,
  data=Fleiss93, sm="OR", method="Inverse")

orbl2 <- orbbound(meta2, k.suspect=1:5)

print(orbl2, digits=2)
Index

*Topic **datasets**
  Crowther2003, 9
  nsaids, 17

*Topic **hplot**
  forest.orrbound, 10
  funnel.limitmeta, 12
  plot.copas, 19

*Topic **htest**
  copas, 3

*Topic **print**
  print.copas, 22
  print.limitmeta, 25
  print.orrbound, 26

copas, 2, 3, 21, 24
Crowther2003, 9

forest.meta, 11
forest.orrbound, 10, 19, 27
funnel, 8
funnel.limitmeta, 12, 16, 26
funnel.meta, 12, 13

limitmeta, 2, 13, 14, 26

metabias, 8, 21, 24, 26
metagen, 8, 21, 24, 26
metasens.package, 2

nsaids, 17

orrbound, 2, 11, 17, 27

plot.copas, 8, 19, 24
print.copas, 22
print.limitmeta, 16, 25
print.orrbound, 11, 19, 26
print.summary.copas (print.copas), 22
print.summary.limitmeta
  (print.limitmeta), 25

summarycopas, 8, 21
summary.copas (print.copas), 22
summary.limitmeta (print.limitmeta), 25