Package ‘meteo’

September 24, 2015

Type Package
Title Spatio-Temporal Analysis and Mapping of Meteorological Observations
Version 0.1-5
Date 2015-09-22
Author Milan Kilibarda, Aleksandar Sekulic, Tomislav Hengl, Edzer Pebesma, Benedikt Graeler
Maintainer Milan Kilibarda <kili@grf.bg.ac.rs>
Description Spatio-temporal geostatistical mapping of meteorological data. Global spatio-temporal models calculated using publicly available data are stored in package.
License GPL (>= 2.0) | file LICENCE
URL http://meteo.r-forge.r-project.org/
LazyLoad yes
Depends R (>= 3.0.0)
Imports methods, utils, stats, sp, spacetime, rgdal, gstat, raster, snowfall, plyr
NeedsCompilation no
Repository CRAN
Date/Publication 2015-09-24 11:58:52

R topics documented:

dprec ... 2
dslp ... 3
dsndp ... 4
dtempe ... 5
dtemp_maxc ... 6
dtemp_minc ... 7
dwdsp .. 8
meteo2STFDF .. 9
nlmodis20110704 ... 10
nlmodis20110712 ... 11
daily precipitation amount in mm for July 2011

Description

Sample data set showing values of merged daily precipitation amount measurements from the Global Surface Summary of Day data (GSOD) with European Climate Assessment & Data set (ECA&D) for the month July 2011.

Usage

data(dpvec)

Format

The dpvec contains the following columns:

- staid character; station ID from GSOD or ECA&D data set
- time Date; day of the measurement
- prec numeric; daily precipitation amount in mm

Note

The data summaries provided here are based on data exchanged under the World Meteorological Organization (WMO) World Weather Watch Program. To prepare a point map, merge with the stations table containing stations’ coordinates.

Author(s)

Milan Kilibarda and Tomislav Hengl
References

- European Climate Assessment & Dataset (http://eca.knmi.nl/dailydata/predefinedseries.php)

Examples

```r
## load data
data(dprec)
str(dprec)
```

<table>
<thead>
<tr>
<th>dslp</th>
<th>Mean sea level pressure in hPa for July 2011</th>
</tr>
</thead>
</table>

Description

Sample data set showing values of merged mean sea level pressure measurements from the Global Surface Summary of Day data (GSOD) with European Climate Assessment & Data set (ECA&D) for the month July 2011.

Usage

data(dslp)

Format

The `dslp` contains the following columns:

- `staid` character; station ID from GSOD or ECA&D data set
- `time` Date; day of the measurement
- `slp` numeric; mean sea level pressure amount in hPa

Note

The data summaries provided here are based on data exchanged under the World Meteorological Organization (WMO) World Weather Watch Program. To prepare a point map, merge with the `stations` table containing stations' coordinates.

Author(s)

Milan Kilibarda and Tomislav Hengl

References

- European Climate Assessment & Dataset (http://eca.knmi.nl/dailydata/predefinedseries.php)
Examples

```r
## load data
data(dslp)
str(dslp)
```

dsndp | *Daily snow depth in cm for July 2011*

Description

Sample data set showing values of merged daily snow depth measurements from the Global Surface Summary of Day data (GSOD) with European Climate Assessment & Data set (ECA&D) for the month July 2011.

Usage

```r
data(dsndp)
```

Format

The `dsndp` contains the following columns:

- `staid` character; station ID from GSOD or ECA&D data set
- `time` Date; day of the measurement
- `sndp` numeric; daily snow depth in cm

Note

The data summaries provided here are based on data exchanged under the World Meteorological Organization (WMO) World Weather Watch Program. To prepare a point map, merge with the `stations` table containing stations’ coordinates.

Author(s)

Milan Kilibarda and Tomislav Hengl

References

- European Climate Assessment & Dataset (http://eca.knmi.nl/dailydata/predefinedseries.php)

Examples

```r
## load data
data(dsndp)
str(dsndp)
```
dtempc

Mean daily temperature in degrees Celsius for July 2011

Description

Sample data set showing values of merged mean daily temperature measurements from the Global Surface Summary of Day data (GSOD) with European Climate Assessment & Dataset (ECA&D) data for the month July 2011.

Usage

```r
data(dtempc)
```

Format

The `dtempc` contains the following columns:

- `staid` character; station ID from GSOD or ECA&D dataset
- `time` Date; day of the measurement
- `tempc` numeric; mean daily temperature in degrees Celsius

Note

The data summaries provided here are based on data exchanged under the World Meteorological Organization (WMO) World Weather Watch Program. To prepare a point map, merge with the `stations` table containing stations' coordinates.

Author(s)

Milan Kilibarda and Tomislav Hengl

References

- Global Surface Summary of the day data (ftp://ftp.ncdc.noaa.gov/pub/data/gsod/)
- European Climate Assessment & Dataset (http://eca.knmi.nl/dailydata/predefinedseries.php)

Examples

```r
## load data
data(dtempc)
str(dtempc)
```
dtemp_maxc

Maximum daily temperature in degrees Celsius for July 2011

Description
Sample data set showing values of merged maximum daily temperature measurements from the Global Surface Summary of Day data (GSOD) with European Climate Assessment & Dataset (ECA&D) data for the month July 2011.

Usage
data(dtemp_maxc)

Format
The dtemp_maxc contains the following columns:

- staid character; station ID from GSOD or ECA&D dataset
- time Date; day of the measurement
- temp_minc numeric; maximum daily temperature in degrees Celsius

Note
The data summaries provided here are based on data exchanged under the World Meteorological Organization (WMO) World Weather Watch Program. To prepare a point map, merge with the stations table containing stations’ coordinates.

Author(s)
Milan Kilibarda and Tomislav Hengl

References
- Global Surface Summary of the day data (ftp://ftp.ncdc.noaa.gov/pub/data/gsod/)
- European Climate Assessment & Dataset (http://eca.knmi.nl/dailydata/predefinedseries.php)

Examples
load data
data(dtemp_maxc)
str(dtemp_maxc)
Description

Sample data set showing values of merged minimum daily temperature measurements from the Global Surface Summary of Day data (GSOD) with European Climate Assessment & Data set (ECA&D) for the month July 2011.

Usage

```r
data(dtemp_minc)
```

Format

The `dtemp_minc` contains the following columns:

- `staid` character; station ID from GSOD or ECA&D data set
- `time` Date; day of the measurement
- `temp_minc` numeric; minimum daily temperature in degrees Celsius

Note

The data summaries provided here are based on data exchanged under the World Meteorological Organization (WMO) World Weather Watch Program. To prepare a point map, merge with the `stations` table containing stations’ coordinates.

Author(s)

Milan Kilibarda and Tomislav Hengl

References

- European Climate Assessment & Dataset (http://eca.knmi.nl/dailydata/predefinedseries.php)

Examples

```r
## load data
data(dtemp_minc)
str(dtemp_minc)
```
dwdsp

Daily mean wind speed in m/s for July 2011

Description

Sample data set showing values of merged daily mean wind speed measurements from the Global Surface Summary of Day data (GSOD) with European Climate Assessment & Data set (ECA&D) for the month July 2011.

Usage

```r
data(dwdsp)
```

Format

The `dwdsp` contains the following columns:

- **staid** character; station ID from GSOD or ECA&D data set
- **time** Date; day of the measurement
- **wdsp** numeric; daily mean wind speed in m/s

Note

The data summaries provided here are based on data exchanged under the World Meteorological Organization (WMO) World Weather Watch Program. To prepare a point map, merge with the `stations` table containing stations' coordinates.

Author(s)

Milan Kilibarda and Tomislav Hengl

References

- European Climate Assessment & Dataset (http://eca.knmi.nl/dailydata/predefinedseries.php)

Examples

```r
## load data
data(dwdsp)
str(dwdsp)
```
Create an object of STFDF class from two data frames (observation and stations)

Description

The function creates an object of STFDF class, spatio-temporal data with full space-time grid, from two data frames (observation and stations). Observations data frame minimum contains station ID column, time column (day of observation) and measured variable column. Stations data frame contains at least station ID column, longitude (or x) and latitude (or y) column.

Usage

meteo2STFDF(obs, stations, obs.staid.time = c(1, 2),
 stations.staid.lon.lat = c(1, 2, 3), crs=CRS(as.character(NA)), delta=NULL)

Arguments

obs data.frame; observations data frame minimum contains station ID column, time column (day of observation) and measured variable column. It can contain additional variables (columns).

stations data.frame; Stations data frame contains at least station ID column, longitude (or x) and latitude (or y) column. It can contain additional variables (columns).

obs.staid.time numeric; records the column positions where in obs (observation) data frame the station ID and time values are stored.

stations.staid.lon.lat numeric; records the column positions where in stations data frame the station ID, longitude (x) and latitude (y) values are stored.

crs CRS; coordinate reference system (see CRS) of stations coordinates

delta time; time interval to end points in seconds

Value

STFDF object

Note

The function is intended for conversion of meteorological data to STFDF object, but can be used for similar spatio temporal data stored in two separated tables.

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

See Also

tgeom2STFDF pred.strk
Examples

```r
# prepare data
# load observation - data.frame of mean temperatures
data(dtempc)
str(dtempc)
data(stations)
#
str(stations)
lonmin=18 ; lonmax=22.5 ; latmin=40 ; latmax=46
library(sp)
library(spacetime)
serbia = point.in.polygon(stations$lon, stations$lat, c(lonmin,lonmax,lonmax,lonmin),
                           c(latmin,latmin,latmax,latmax))
st= stations[ serbia!=0, ] # stations in Serbia approx.
# create STDF
 temp <- meteo2STDF(dtempc, st, crs= CRS('+proj=longlat +datum=WGS84'))
str(temp)
```

nlmodis20110704

MODIS LST 8 day images image for the Netherlands ('2011-07-04')

Description

The original 8 day MODIS LST images were also converted from Kelvin to degrees Celsius using the formula indicated in the MODIS user's manual. `SpatialGridDataFrame`.

Usage

```r
data(nlmodis20110704)
```

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

References

Examples

```r
data(nlmodis20110704)
# spplot(nlmodis20110704)
```
Description

The original 8 day MODIS LST images were also converted from Kelvin to degrees Celsius using the formula indicated in the MODIS user's manual.

Usage

data(nlmodis20110712)

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

References

Examples

data(nlmodis20110712)
spplot(nlmodis20110712)

Description

SpatialGridDataFrame from World Country Admin Boundary Shapefile

Usage

data(NLpol)

Examples

data(NLpol)
plot(NLpol) ...
Description

Function for spatio-temporal regression kriging prediction based on krigeST. The prediction is made for raster objects, i.e. for STFDF-class objects.

Usage

```r
pred.strk(temp, zcol = 1, newdata, pred.id = "tempPred", zero.tol = 0,
    dynamic.cov = c(1, 2), static.cov = c(1, 2),
    reg.coef = list(
        tmean = c(-0.126504415, 0.4051734447, 0.4943247727, 0.0001837527, -0.0189207588),
        tmin = c(-0.9825601517, 0.5672140021, 0.3344561638, 0.0003119777, -0.0243629638),
        tmax = c(1.7873573061, 0.350228076, 0.5569091092, 0.0002571338, -0.0012988123)
    )[['tmean']],
    vgm.model = list( tmean = vgmST("sumMetric",
        space = vgm(14.13, "Sph", 5903, 1.933),
        time = vgm(0, "Sph", 0.1, 0),
        joint = vgm(9.06, "Sph", 2054, 0.474),
        stAni = 497.9),
    tmin = vgmST("sumMetric",
        space = vgm(22.682, "Sph", 5725, 3.695),
        time = vgm(0, "Sph", 0.1, 0),
        joint = vgm(9.457, "Sph", 1888, 1.67),
        stAni = 485),
    tmax = vgmST("sumMetric",
        space = vgm(8.31, "Sph", 4930, 2.872),
        time = vgm(0, "Sph", 0.1, 0),
        joint = vgm(11.175, "Sph", 2117, 1.75),
        stAni = 527 )[['tmean']],
    tiling = FALSE, ntiles = 64, parallel.processing = FALSE, cpus = 3,
    sp.nmax = 18, time.nmax = 2, fast = FALSE, computeVar = FALSE,
    do.cv = FALSE, only.cv = FALSE, out.remove = FALSE, threshold.res = 15, progress = TRUE)
```

Arguments

- **temp**: object of STFDF-class containing dependent variable (observations) in space and time.
- **zcol**: variable column name or number showing position of dependent variable in temp@data
- **newdata**: dynamic and static covariates as STFDF-class object; spatial and temporal overlay with temp object must be possible
- **pred.id**: identifier of new variable
zero.tol distance values less than or equal to this threshold value locations are considered as duplicates, see rm.dupl, duplicates are removed to avoid singular covariance matrices in kriging.

dynamic.cov vector of variable column names or numbers showing position of dynamic covariates in newdat@data; dynamic covariates are spatio-temporal explanatory variables, changing in space and time domain

static.cov vector of variable column names or numbers showing position of static covariates in newdata@data@sp; static covariates are spatial explanatory variables changing just in space; static in time dimension

reg.coef linear regression coefficients; order is assumed as intercept, dynamic.cov, static.cov. Coefficients can be specified by user; depending on type, number and order of dynamic and static covariates. At the moment the function contains regression coefficient for mean, minimum and maximum temperature calculated globally for GSOD and ECA&D data set on geometrical temperature trend, MODIS LST-8 day, elevation and TWI, see regdata. Coefficients for mean temperature are defined by default.

vgm.model spatio-temporal variogram of regression residuals, see vgmST. At the moment the function contains spatio-temporal variogram model on residuals for mean, minimum and maximum temperature calculated globally for GSOD and ECA&D data set. Regression residuals on geometrical temperature trend, MODIS LST-8 day, elevation and TWI, see regdata. ranges are in km. Spatio-temporal variogram for mean temperatures is defined by default. User can specified own variogram model as vgmST object.

tiling for simplified local kriging. Area is divided in tiles and kriging calculation is done for each tile separately, number of observation used per tile is defined with sp.nmax and time.nmax. Default is TRUE. If FALSE just temporal local kriging will be applied defined with time.nmax, sp.nmax will be ignored.

ntiles number of tiles. Default is 64. Each tile at minimum should contain less observations than sp.nmax, ideally each tile should contain observations falling in neighboring tiles.

parallel.processing if TRUE parallel processing is performed via sfLapply

cpus number of processing units

sp.nmax number of nearest spatial observations that should be used for a kriging prediction for each tile

time.nmax number of nearest time observations that should be used for a kriging prediction

fast if TRUE tiling, tiling is done twice to avoid edge effect

computeVar if TRUE, just variance is computed

do.cv if TRUE, cross validation leave-one-station-out is performed

only.cv if TRUE, only cross validation leave-one-station-out is performed without prediction

out.remove if TRUE, potential outliers are removed. Removing procedure is iterative, all location with residual higher than defined threshold (threshold.res) are selected. Only location with highest cross validation residual is removed, than cross validation is done again, the procedure removing one by one location run until all locations have residuals under defined threshold.
threshold.res critical threshold for removing potential outliers
progress if FALSE remove progress bar

Value
An list object containing:

- pred an object of STFDF-class with column contains prediction or variance
- cv cross validation information for points used in prediction, as object of STFDF-class
- out potential outliers, returned as vector of row names of x$cv@sp, only returned if out.remove=FALSE
- remst removed locations as an object of Spatial-class, if out.remove=TRUE
- remobs removed locations with observations as an object of STFDF-class, if out.remove=TRUE

Author(s)
Milan Kilibarda <kili@grf.bg.ac.rs>

References

See Also
regdata meteo2STFDF tgeom2STFDF

Examples

```r
# prepare data
# load observation - data.frame of mean temperatures
data(dtempc)
# str(dtempc)
data(stations)
library(sp)
library(spacetime)
library(gstat)

# str(stations)
## lonmin,lonmax,lonmin, lonmin latmin, latnmin,latmax,latmax
serbia= point.in.polygon(stations$lon, stations$lat, c(18,22.5,22.5,18), c(40,40,46,46))
st= stations[ serbia!=0, ]
# create STFDF
temp <- meteo2STFDF(dtempc, st)
rm(dtempc)
# str(temp)
# Adding CRS
temp@sp@proj4string <- CRS('+proj=longlat +datum=WGS84')
```
load covariates for mean temperatures
data(regdata)
str(regdata)
regdata@sp@proj4string <- CRS('+proj=longlat +datum=WGS84')

Calculate prediction of mean temperatures for "2011-07-05"
global model is used for regression and variogram
load precalculated variograms
data(tvgms)
data(tregcoef)
res= pred.strk(temp,zcol=1, newdata= regdata[,1,drop=FALSE],
 reg.coef=tregcoef[[1]], vgm.model=tvgms[[1]], progress=FALSE)

plot prediction
stplot(res$pred, col.regions=bpy.colors())

t1= temp[regdata@sp,]
create fake observations
t1@data$tempc[seq(1,120,by=8)] =35
##
res= pred.strk(t1,zcol=1, newdata= regdata[,1:2],
reg.coef=tregcoef[[1]], vgm.model=tvgms[[1]],
threshold.res=5, do.cv=T, out.remove = T)
plot cross validation residuals
stplot(res[,,'resid.cv'], col.regions=bpy.colors())
##
plot locations of removed stations
spplot(res$remst, zcol='station_name', col.regions=bpy.colors())
plot removed stations as time-series
row.names(res$remobs@sp) = res$remst$station_name
res$remobs[1:2,c('tempc','pred.cv')]
stplot(res$remobs[1:2,c('tempc','pred.cv')], mode='tp')

Calculate prediction of mean temperature for "2011-07-05" "2011-07-06"
only MODIS is used as covariate
modisVGM =vgmST("sumMetric",space=vgm(18.27, "Sph", 6000, 3.22),
time =vgm(0, "Sph", 0.1, 0),
joint=vgm(8.34, "Sph", 2349, 1.80),
stAni=583)
attr(modisVGM,"temporal unit") = "days"

rkmod <- pred.strk(temp,zcol=1, newdata= STDFD(regdata@sp,
time=as.POSIXct("2011-07-05"), endTime=as.POSIXct("2011-07-06"),
data=regdata[,1]@data), threshold.res=10,
dynamic.cov='modis', static.cov=NULL,
reg.coef= c(-0.23,0.7303284),
vgm.model= modisVGM)

coefficients and variogram is calculated globally for G5OD and ECA&D obs. for 2011 year
stplot(rkmod$pred, col.regions=bpy.colors())

parallel processing
library(snowfall)
rkmod <- pred.strk1(temp,zcol=1,
newdata= STDFD(regdata@sp,
time=as.POSIXct("2011-07-05"), endTime=as.POSIXct("2011-07-06"),
data=regdata[,1]@data),
threshold.res=10,
dynamic.cov="modis", static.cov=NA,
reg.coef= c(-0.23,0.7303284),
vgm.model= modisVGM, parallel.processing=TRUE)

pred.strk1
Spatio-temporal regression kriging

Description

Function for spatio-temporal regression kriging prediction based on krigST. The prediction is made for points given in data.frame.

Usage

`pred.strk1(obs, stations, newdata, zero.tol=0,`
`reg.coef=list(`
` tmean=c(-0.126500915, 0.405134447, 0.4943247727, 0.007837527, -0.0189207588),`
` tmin = c(-0.9825601517, 0.5671240021, 0.3344561638, 0.0003119777, -0.0243629638),`
` tmax = c(1.7873573081, 0.350228076, 0.5569091092, 0.0002571338, -0.0012988123)`)`
`)[["tmean"]],`
`vgm.model=list(tmean=vgmST("sumMetric",`
` space=vgm(14.13, "Sph", 5903, 1.933),`
` time =vgm(0, "Sph", 0.1, 0),`
` joint=vgm(9.06, "Sph", 2054, 0.474),`
` stAni=497.9)),`
` tmin = vgmST("sumMetric",`
` space=vgm(22.682, "Sph", 5725, 3.695),`
` time =vgm(0, "Sph", 0.1, 0),`
` joint=vgm(9.457, "Sph",1888, 1.67),`
` stAni=485)),`
` tmax = vgmST("sumMetric",`
` space=vgm(8.31, "Sph", 4930, 2.872),`
` time =vgm(0, "Sph", 0.1, 0),`
` joint=vgm(11.175, "Sph", 2117, 1.75),`
` stAni=527))][["tmean"]],`
`computeVar=FALSE, out.remove=FALSE, threshold.res=15, returnList=FALSE)
Arguments

obs data frame; observations data frame contains station ID column, time column (day of observation), measured variable column and covariates columns (in exactly that order). It can contain additional variables (columns).

stations data frame; Stations data frame contains at least station ID column, longitude (or x) and latitude (or y) column (in exactly that order). It can contain additional variables (columns).

newdata data frame; predictions data frame contains longitude (or x) and latitude (or y) column, time column (day of prediction) and covariates columns (in exactly that order).

zero.tol distance values less than or equal to this threshold value locations are considered as duplicates, see rm.dupl, duplicates are removed to avoid singular covariance matrices in kriging.

reg.coef linear regression coefficients; order is assumed as intercept, dynamic.cov, static.cov. Coefficients can be specified by user; depending on type, number and order of dynamic and static covariates. At the moment the function contains regression coefficient for mean, minimum and maximum temperature calculated globally for GSOD and ECA&D data set on geometrical temperature trend, MODIS LST-8 day, elevation and TWI, see regdata. Coefficients for mean temperature are defined by default.

vgm.model spatio-temporal variogram of regression residuals, see vgmST. At the moment the function contains spatio-temporal variogram model on residuals for mean, minimum and maximum temperature calculated globally for GSOD and ECA&D data set. Regression residuals on geometrical temperature trend, MODIS LST-8 day, elevation and TWI, see regdata. Ranges are in km. Spatio-temporal variogram for mean temperatures is defined by default. User can specified own variogram model as vgmST object.

computeVar if TRUE, just variance is computed

out.remove if TRUE, potential outliers are removed. Removing procedure is iterative, all location with residual higher than defined threshold (threshold.res) are selected. Only location with highest cross validation residual is removed, than cross validation is done again, the procedure removing one by one location run until all locations have residuals under defined threshold.

threshold.res critical threshold for removing potential outliers

returnList if TRUE, result is list; if FALSE, result is data frame

Value

An list object containing:

pred an object of SpatialPointsDataFrame-class with column contains prediction or variance

cv cross validation information for points used in prediction, as object of STFDF-class

remst removed locations as an object of Spatial-class, if out.remove=TRUE
remobs removed locations with observations as an object of \texttt{STFDF-class}, if \texttt{out.remove=TRUE}

A data frame object contains longitude (or \texttt{x}) and latitude (or \texttt{y}) column, time column (day of prediction) and prediction value.

\textbf{Author(s)}

Aleksandar Sekulic \texttt{<asekulic@grf.bg.ac.rs>}, Milan Kilibarda \texttt{<kili@grf.bg.ac.rs>}

\textbf{References}

\textbf{See Also}

\texttt{regdata meteo2STDF tgeom2STDF}

\textbf{Examples}

```r
## prepare data
## load observation - data.frame of mean temperatures
data(dtempc)
str(dtempc)
data(stations)
library(sp)
library(spacetime)
library(gstat)

#str(stations)
## lonmin,lonmax,lonmin, latmin, latnmin, latmax
serbia= point.in.polygon(stations$lon, stations$lat, c(18,22.5,22.5,18), c(40,40,46,46))
st= stations[ serbia!=0 , ]
## create STDF
temp <- meteo2STDF(dtempc,st)
rm(dtempc)
#str(temp)
## Adding CRS
temp@sp@proj4string <- CRS('+proj=longlat +datum=WGS84')

## load covariates for mean temperatures
data(regdata)
# str(regdata)
regdata@sp@proj4string <- CRS('+proj=longlat +datum=WGS84')

#creating newdata
pred <- data.frame(regdata@sp@coords[1:5,1],regdata@sp@coords[1:5,2],
                  '2011-07-05', regdata@data$temp_geo[1:5], regdata@data$modis[1:5],
                  regdata@sp@data$dem[1:5], regdata@sp@data$twi[1:5])
## pred names
names(pred)=c("x", "y", "time", "temp_geo", "modis", "dem", "twi")
```
creating observation

gg <- regdata
time <- gg@time
gg@data$dem = rep(gg@sp@data[,1],length(time))
gg@data$twi = rep(gg@sp@data[,2],length(time))

temp_geo <- sapply(1:length(time),
 function(i) over(temp@sp,as(gg[i,'temp_geo'],'SpatialPixelsDataFrame')))
modis <- sapply(1:length(time),
 function(i) over(temp@sp,as(gg[i,'modis'],'SpatialPixelsDataFrame')))
dem <- sapply(1:length(time),
 function(i) over(temp@sp,as(gg[i,'dem'],'SpatialPixelsDataFrame')))
twi <- sapply(1:length(time),
 function(i) over(temp@sp,as(gg[i,'twi'],'SpatialPixelsDataFrame')))

temp_geo <- do.call('cbind',temp_geo)
temp_geo <- as.vector(temp_geo)
modis <- do.call('cbind',modis)
modis <- as.vector(modis)
dem <- do.call('cbind',dem)
dem <- as.vector(dem)
twi <- do.call('cbind',twi)
twi <- as.vector(twi)

t1 <- which(as.character(index(time[1])) == as.character(index(temp@time)))
t2 <- which(as.character(index(time[length(time)])) == as.character(index(temp@time)))

temp <- temp[,t1:t2, drop=FALSE]

temp$temp_geo = temp_geo
temp$modis = modis
temp$dem = dem
temp$twi = twi

obs = as.data.frame(temp)[,c(7,4,11,12,13,14,15)]

Calculate prediction of points in pred data frame
global model is used for regression and variogram
load precalculated variograms
data(tvgms)
data(tregcoef)
res= pred.strk1(obs, st, newdata= pred,
 reg.coef=tregcoef[[1]], vgm.model=tvgms[[1]], returnList=TRUE)

str(res)

res1= pred.strk1(obs, st, newdata= pred, reg.coef=tregcoef[[1]] , vgm.model=tvgms[[1]],
returnList=FALSE, out.remove=TRUE, threshold.res=15)

str(res1)
regdata

Dynamic and static covariates for spatio-temporal regression kriging

Description

Dynamic and static covariates for spatio-temporal regression kriging of STFDF-class. The regdata contains geometrical temperature trend, MODIS LST 8-day splined at daily resolution, elevation and topographic wetness index.

Usage

data(regdata)

Format

The regdata contains the following dynamic and static covariates:

- regdata$temp_geo numeric; geometrical temperature trend for mean temperature, calculated with tgeom2STFDF; from 2011-07-05 to 2011-07-09, in degree Celsius
- regdata$modis numeric; MODIS LST 8-day splined at daily resolution, missing pixels are filtered by spatial splines and 8-day values are splined at daily level; from 2011-07-05 to 2011-07-09, in degree Celsius
- regdata@sp$dem numeric; elevation data obtained from Worldgrids (http://worldgrids.org/)
- regdata@sp$twi numeric; SAGA Topographic Wetness Index (TWI) from Worldgrids (http://worldgrids.org/)

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

Examples

data(regdata)
str(regdata)
library(sp) # spplot
library(spacetime) # stplot

stplot(regdata[,,'modis']) # plot modis data

spplot(regdata@sp,zcol='twi', col.regions = bpy.colors()) # plot TWI
spplot(regdata@sp,zcol='dem', col.regions = bpy.colors()) # plot dem
rfillspgaps

Description

The function close gaps of a grid or raster Layer data by using IDW.

Usage

rfillspgaps(rasterLayer, maskPol=NULL, nmax = 50, zcol = 1, ...)

Arguments

- **rasterLayer**: raster Layer or SpatiaGrid(Pixels)DF containing NAs
- **maskPol**: SpatialPolygons or SpatialPolygonsDataFrame
- **nmax**: see idw
- **zcol**: variable column name or number showing position of variable in rasterLayer to be interpolated
- **...**: arguments passed to idw

Value

raster Layer or SpatiaGrid(Pixels)DF object with NA replaced using IDW

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

References

See Also

rfilltimegaps pred.strk
Examples

library(raster)
data(nlmodis20110712)
data(NLpol)

spplot(nlmodis20110712, col.regions=bp.colors())
fill spatial gaps
r=rfillspgaps(nlmodis20110712,NLpol)
spplot(r, col.regions=bp.colors())

rfilltimegaps Disaggregation in the time dimension through the use of splines for each pixel

Description

The function creates an object of STFDF class, spatio-temporal data with full space-time grid, from another STFDF and fills attribute data for missing dates using splines.

Usage

rfilltimegaps(stfdf,tunits="day",attrname=1, ...)

Arguments

stfdf STFDF object with time information of minimum length 2, and gap between
tunits increment of the sequence used to generate time information for temporal gap. See 'Details'
attrname variabe from STFDF to be splined
...

Details
tunits can be specified in several ways:

• A number, taken to be in seconds
• A object of class difftime
• A character string, containing one of "sec", "min", "hour", "day", "DSTday", "week", "month", "quarter" or "year". This can optionally be preceded by a (positive or negative) integer and a space, or followed by "s"

The difference between "day" and "DSTday" is that the former ignores changes to/from daylight savings time and the latter takes the same clock time each day. ("week" ignores DST (it is a period of 144 hours), but "7 DSTdays") can be used as an alternative. "month" and "year" allow for DST.)
Value

STFDF object

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

References

See Also

rfillspgaps pred.strk

Examples

data(nlmodis20110704)
data(nlmodis20110712)

fill spatial gaps
library(raster)
NLpol <- as(extent(5, 6, 51.5, 52), 'SpatialPolygons')
NLpol@proj4string <- nlmodis20110704@proj4string
nlmodis20110704 <- rfillspgaps(nlmodis20110704,NLpol)
nlmodis20110712 <- rfillspgaps(nlmodis20110712,NLpol)
nlmodis20110704 <- as(nlmodis20110704,"SpatialPixelsDataFrame")
names(nlmodis20110704)='m1'
nlmodis20110712 <- as(nlmodis20110712,"SpatialPixelsDataFrame")
names(nlmodis20110712)='m2'
nlmodis20110704$data <- cbind(nlmodis20110704$data, nlmodis20110712$data)
df<-reshape(nlmodis20110704$data, varying=list(1:2), v.names="modis", direction="long",
times=as.Date(c('2011-07-04','2011-07-12')), ids=1:dim(nlmodis20110704)[1])

library(spacetime)
stMODIS<- STFDF(as(nlmodis20110704, "SpatialPixels"),
 time= as.Date(c('2011-07-04','2011-07-12')),
data.frame(modis=df[,]\"modis\")

stplot(stMODIS, col.regions=bpy.colors())
stMODIS <- rfilltimegaps(stMODIS)
stplot(stMODIS, col.regions=bpy.colors())
rm.dupl

Find point pairs with equal spatial coordinates from STFDF object.

Description

This function finds point pairs with equal spatial coordinates from STFDF object and remove locations with less observations.

Usage

 rm.dupl(obj, zcol = 1, zero.tol = 0)

Arguments

obj STFDF object
zcol variable column name, or column number, from obj@data
zero.tol distance values less than or equal to this threshold value are considered as duplicates; units are those of the coordinates for projected data or unknown projection, or km if coordinates are defined to be longitude/latitude

Value

STFDF object with removed duplicate locations. Stations with less observation is removed, if number of observation is the same for two stations the first is removed.

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

See Also

tgeom2STFDF pred.strk

Examples

 # load observation data frame
data(dtempc)
 # load stations data frame
data(stations)

 str(dtempc)
 str(stations)
 # create STFDF
 temp <- meteo2STFDF(dtempc, stations) # create STFDF from 2 data frames

 nrow(temp@sp) # number of stations before removing dupl.

 temp2 <- rm.dupl(temp)
 nrow(temp2@sp) # number of stations after
stations

| stations | Data frame containing stations' information |

Description

Data frame containing stations’ information of merged daily observations from the Global Surface Summary of Day (GSOD) with European Climate Assessment & Data set (ECA&D) for the month July 2011.

Usage

data(stations)

Format

The stations contains the following columns:

- `staid` character; station ID from GSOD or ECA&D data set
- `lon` numeric; longitude coordinate
- `lat` numeric; longitude coordinate
- `elev_1m` numeric; elevation derived from station metadata in m
- `data_source` Factor; data source, GSOD or ECA&D
- `station_name` character; station name

Author(s)

Milan Kilibarda and Tomislav Hengl

References

- Global Surface Summary of the day data (ftp://ftp.ncdc.noaa.gov/pub/data/gsod/)
- European Climate Assessment & Dataset (http://eca.knmi.nl/dailydata/predefinedseries.php)

Examples

```r
# load data:
data(stations)
str(stations)
library(sp)
coordinates(stations) <- lon +lat
stations@proj4string <- CRS('+proj=longlat +datum=WGS84')
plot(stations)
```
tgeom2STFDF

Calculate geometrical temperature trend

Description

Calculate geometrical temperature trend for mean, minimum or maximum temperature.

Usage

tgeom2STFDF(grid, time, variable = "mean", ab=NULL)

Arguments

grid

object of Spatial-class (Points, Grid or Pixels) with associated coordinate reference systems (CRS-class). If CRS is not defined longitude latitude is assumed.

time

object holding time information, reasonably it is day (calendar date), or vector of days

variable

character; 'mean', 'min' or 'max'; geometrical temperature trend is calculated for mean, minimum or maximum; 'mean' is default.

ab

Predefined coefficients to be used instead of incorporated.

Value

STFDF object with calculated temp_geo geometrical temperature trend. The calculated values are stored in obj$data slot.

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

References

Examples

library(sp)
library(spacetime)
create one point from lon lat
pos <- SpatialPoints(coords = cbind(19.22, 45.33))
temp_geom for 1st Jan 2011
tg1 <- tgeom2STFDF(pos, as.POSIXct("2011-01-01"))
tg1

temp_geom for the 2011 at pos location
tg365<- tgeom2STFDF(pos,time = seq(as.POSIXct("2011-01-01"), as.POSIXct("2011-12-31"),
tiling

Tiling raster or Spatial-class Grid or Pixels object

Description

Tiling raster or Spatial-class Grid or Pixels (data frame) object to smaller parts with optional overlap.

Usage

tiling(filename, tilesize=500, overlapping=50, aspoints=FALSE, asfiles=FALSE, tilename="tile", format="GTiff", tiles_folder=paste(getwd(), 'tiles', sep='/'), parallel.processing=FALSE, cpus=6)

Arguments

filename raster object, SpatialPixels* object, SpatialGrid* object or file path of raster object stored on the disk (can be read via readGDAL), for more details see raster. The resolution of object should be the same in x and y direction.

tilesize tile size in cells in x direction. nx = ny is assumed, total number of tile cells is tilesize by tilesize.

overlapping overlapping cells in each direction

aspoints if TRUE tiles are in form of SpatialPointsDataFrame

asfiles if TRUE tiles are stored on local drive as raster objects

tilename prefix given to file names

format file format, see writeRaster

tiles_folder folder to be created for tiles storage

parallel.processing if TRUE parallel processing is performed via sfLapply

cpus number of processing units
tregcoef

Description

Multiple linear regression coefficients for mean, min., max. daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index. The models is computed from GSOD and ECA&D and GHCN-Daily data.

Usage

data(tregcoef)
Format

A list of 8 multiple linear regression coefficients for daily air temperatures.

tmeanGSODECAd Multiple linear regression coefficients of mean daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index, data used: GSOD and ECA&D
tmeanGSODECAd_noMODIS Multiple linear regression coefficients of mean daily temperature on geometric temperature trend, elevation, and topographic wetness index, data used: GSOD and ECA&D
tminGSODECAd Multiple linear regression coefficients of min. daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index, data used: GSOD and ECA&D
tminGHCN-D Multiple linear regression coefficients of min. daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index, data used: GHCN-Daily
tminGSODECAd_noMODIS Multiple linear regression coefficients of min. daily temperature on geometric temperature trend, elevation, and topographic wetness index, data used: GSOD and ECA&D
tmaxGSODECAd Multiple linear regression coefficients of max. daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index, data used: GSOD and ECA&D
tmaxGHCN-D Multiple linear regression coefficients of max. daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index, data used: GHCN-Daily
tmaxGSODECAd_noMODIS Multiple linear regression coefficients of max. daily temperature on geometric temperature trend, elevation, and topographic wetness index, data used: GSOD and ECA&D

Author(s)

Milan Kilibarda

References

Examples

data(tregcoef)
tregcoef[[1]] # model for mean daily temp.
Spatio-temporal variogram models for global daily air temperatures

Description

Variograms of residuals from multiple linear regression of mean, min., max. daily temperatures on geometric temperature trend, MODIS LST, elevation, and topographic wetness index. The models is computed from GSOD and ECA&D and GHCN-Daily data. The obtained global models for mean, minimum, and maximum temperature can be used to produce gridded images of daily temperatures at high spatial and temporal resolution.

Usage

data(tvgms)

Format

A list of 8 space-time sum-metric models for daily air temperatures, units: space km, time days.

tmean{GSODECAD} Variogram for residuals from multiple linear regression of mean daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index, data used: GSOD and ECA&D

tmean{GSODECAD_noMODIS} Variogram for residuals from multiple linear regression of mean daily temperature on geometric temperature trend, elevation, and topographic wetness index, data used: GSOD and ECA&D

tmin{GSODECAD} Variogram for residuals from multiple linear regression of min. daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index, data used: GSOD and ECA&D

tmin{GHCND} Variogram for residuals from multiple linear regression of min. daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index, data used: GHCN-Daily

tmin{GSODECAD_noMODIS} Variogram for residuals from multiple linear regression of min. daily temperature on geometric temperature trend, elevation, and topographic wetness index, data used: GSOD and ECA&D

tmax{GSODECAD} Variogram for residuals from multiple linear regression of max. daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index, data used: GSOD and ECA&D

tmax{GHCND} Variogram for residuals from multiple linear regression of max. daily temperature on geometric temperature trend, MODIS LST, elevation, and topographic wetness index, data used: GHCN-Daily

tmax{GSODECAD_noMODIS} Variogram for residuals from multiple linear regression of max. daily temperature on geometric temperature trend, elevation, and topographic wetness index, data used: GSOD and ECA&D
Author(s)

Milan Kilibarda

References

Examples

data(tvgms)
tvgms[[1]] # model for mean daily temp.
Index

*Topic datasets
 dprec, 2
dslp, 3
dsndp, 4
dtemp_maxc, 6
dtemp_minc, 7
dtempc, 5
dwdsp, 8
nlmodis20110704, 10
nlmodis20110712, 11
NLpol, 11
regdata, 20
stations, 25
tregcoef, 28
tvgms, 30

CRS, 9
CRS-class, 26

data.frame, 16
dftime, 22
dprec, 2
dslp, 3
dsndp, 4
dtemp_maxc, 6
dtemp_minc, 7
dtempc, 5
dwdsp, 8

idw, 21

krigeST, 12, 16

meteo2STFDF, 9, 14, 18

nlmodis20110704, 10
nlmodis20110712, 11
NLpol, 11

pred.strk, 9, 12, 21, 23, 24, 28
pred.strk1, 16

raster, 27
readGDAL, 27
regdata, 13, 14, 17, 18, 20
rfillspgaps, 21, 23
rfilltimegaps, 21, 22
rm.dupl, 13, 17, 24

sfLapply, 13, 27
Spatial-class, 14, 17, 26, 27
SpatialGridDataFrame, 10, 11
SpatialPointsDataFrame-class, 17
spline, 22
stations, 2–8, 25
STFDF, 9, 22–24, 26
STFDF-class, 12, 14, 17, 18, 20

tgeom2STFDF, 9, 14, 18, 20, 24, 26
tiling, 27
tregcoef, 28
tvgms, 30

vgmST, 13, 17

writeRaster, 27