Package ‘metevalue’

May 26, 2023

Type Package
Title E-Value in the Omics Data Association Studies
Version 0.2.4
Date 2023-05-26
Maintainer Yifan Yang <yfyang.86@hotmail.com>

Description
In the omics data association studies, it is common to conduct the p-value corrections to control the false significance. Beyond the P-value corrections, E-value is recently studied to facilitate multiple testing correction based on V. Vovk and R. Wang (2021) <doi:10.1214/20-AOS2020>. This package provides E-value calculation for DNA methylation data and RNA-seq data. Currently, five data formats are supported: DNA methylation levels using DMR detection tools (BiSeq, DMRfinder, MethylKit, Metilene and other DNA methylation tools) and RNA-seq data. The relevant references are listed below: Katja Hebestreit and Hans-Ulrich Klein (2022) <doi:10.18129/B9.bioc.BiSeq>; Altuna Akalin et.al (2012) <doi:10.18129/B9.bioc.methylKit>.

License Apache License (>= 2)
RoxygenNote 7.2.1
Depends sqldf, psych, dplyr, R (>= 3.5.0)
Encoding UTF-8
Suggests rmarkdown, prettydoc, knitr, ggplot2, tidyr, testthat (>= 3.0.0)
VignetteBuilder knitr
LazyData true
Config/testthat/edition 3
NeedsCompilation no
Author Yifan Yang [aut, cre, cph],
Xiaoqing Pan [aut],
Haoyuan Liu [aut]
Repository CRAN
Date/Publication 2023-05-26 15:20:06 UTC
Description

The dummy output for BiSeq illustrating purpose. It is dummy.

Details

- `seqnames`: Chromosome
- `start`: The positions of the start sites of the corresponding region
- `end`: The positions of the end sites of the corresponding region
- `width`
- `strand`: Strand
- `median.p`
- `median.meth.group1`
- `median.meth.group2`
- `median.meth.diff`
demo_biseq_methyrate

Notice that there are "NaN" within the feature columns.
Please check the vignette "metevalue" for details.

demo_biseq_methyrate BiSeq Methyrate Demo Dataset

Description

The methyrate for BiSeq illustrating purpose. It is dummy.

Details

The data includes 12 columns.
- chr: string Chromosome
- pos: int Position
- g1-g2: methylation rate data in groups, repeat 5 times. Notice that there are "NaN" within the feature columns.
Please check the vignette "metevalue" for details.

demo_desq_out DESeq Output Dataset

Description

The output dummy data for "RNA" method illustrating purpose.

Details

The data includes 10 columns.
- treated1fb:
- treated2fb:
- treated3fb:
- untreated1fb:
- untreated2fb:
- untreated3fb:
- untreated4fb:
This data contains 8166 rows and 7 columns.
Please check the vignette "metevalue" for details.
Examples

```r
# library("pasilla")
# pasCts <- system.file("extdata", 
#   "pasilla_gene_counts.tsv", 
#   package="pasilla", mustWork=TRUE)
# pasAnno <- system.file("extdata", 
#   "pasilla_sample_annotation.csv", 
#   package="pasilla", mustWork=TRUE)
# cts <- as.matrix(read.csv(pasCts,sep="\t",row.names="gene_id"))
# coldata <- read.csv(pasAnno, row.names=1)
# coldata <- coldata[,c("condition","type")]
# coldata$condition <- factor(coldata$condition)
# coldata$type <- factor(coldata$type)
# library("DESeq2")
# colnames(cts)=paste0(colnames(cts),’fb’)
# cts = cts[,rownames(coldata)]
# dds <- DESeqDataSetFromMatrix(countData = cts,
#    colData = coldata,
#    design = ~ condition)
# dds <- DESeq(dds)
# dat <- t(t(cts)/(dds$sizeFactor))
# dat.out <- dat[rowSums(dat >5)]>=0.8*ncol(dat),]
# # demo_desq_out <- log(dat.out)
```

DMRfinder Output Demo Dataset

Description

The output dummy dataset for DMRfinder illustrating purpose.

Details

The data includes 6 columns.
- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups, repeat 2 times. Notice that there are "NaN" within the feature columns.

Please check the vignette "metevalue" for details.
DMRfinder Methyrate Demo Dataset

Description
The methyrate for BiSeq illustrating purpose. It is dummy.

Details
The data includes 6 columns.
- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups, repeat 2 times. Notice that there are "NaN" within the feature columns.
Please check the vignette "metevalue" for details.

Methyrate Dataset

Description
The methyrate dataset samples "myCpG" data from the methylKit (a bioconductor package) for illustrating purpose.

Details
The data includes 6 columns.
- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups (4 columns)
Please check the vignette "metevalue" for details.

References
Description

The methyrate dataset samples "myCpG" data from the methylKit (a bioconductor package) for illustrating purpose.

Details

The data includes 7 columns:
- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- strand: Strand
- pvalue: The adjusted p-value based on BH method in MWU-test
- qvalue: cutoff for qvalue of differential methylation statistic
- methyl.diff: The difference between the group means of methylation level

Please check the vignette "metevalue" for details.

References

Description

The methyrate for metilene illustrating purpose. It is dummy.

Details

The data includes 18 columns.
- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups.

Notice that there are "NaN" within the feature columns.
Please check the vignette "metevalue" for details.
demo_metilene_out

Metilene Demo Output Dataset

Description

The output dummy data for "metilene" method illustrating purpose.

Details

The data includes 10 columns.
- V1: string Chromosome
- V2: The positions of the start sites of the corresponding region
- V3: The positions of the end sites of the corresponding region
- V4-V10: data value.

Please check the vignette "metevalue" for details.

evalue_buildin_sql

Build-in data process function

Description

Build-in data process function

Usage

`evalue_buildin_sql(a, b, method = "metilene")`

Arguments

- `a`: data frame of the methylation rate
- `b`: data frame of output data corresponding to the "method" option
- `method`: "metilene" or "biseq", "DMRfinder" or "methylKit"

Value

A data frame combines data frame `a` and `b` corresponding to the "method" option

Examples

```r
data("demo_metilene_out")
data("demo_metilene_input")
result = evalue_buildin_var_fmt_nm(demo_metilene_input, 
                                   demo_metilene_out, method="metilene")
result_sql = evalue_buildin_sql(result$a, result$b, method="metilene")
```
evaluate_buildin_var_fmt_nm

Build-in check file format function Perform the format check and data clean for the "metilene" or "biseq", "DMRfinder" or "methylKit" method correspondingly.

Description

Build-in check file format function Perform the format check and data clean for the "metilene" or "biseq", "DMRfinder" or "methylKit" method correspondingly.

Usage

evaluate_buildin_var_fmt_nm(a, b, method = "metilene")

Arguments

- **a**: data frame of the methylation rate
- **b**: data frame of output data corresponding to the "method" option
- **method**: "metilene" or "biseq", "DMRfinder" or "methylKit"

Value

list(a, b) which contains the cleaned data correspondingly

Examples

data("demo_metilene_out")
data("demo_metilene_input")
evaluate_buildin_var_fmt_nm(demo_metilene_input,
 demo_metilene_out, method="metilene")

metevalue.biseq

Calculate E-value of the BiSeq data format

Description

Please check vignette "metevalue" for details.
Usage

```r
metevalue.biseq(
  methyrate,
  BiSeq.output,
  adjust.methods = "BH",
  sep = "\t",
  bheader = FALSE
)
```

Arguments

- `methyrate` is the methyrate file. For example:
  ```
  chr  pos  g1  ...  g1  g2  ...  g2
  chr1 1  0.1  ...  0.1  0.2  ...  0.2
  ```
 The columns are (in order):
 - `chr`: Chromosome
 - `pos`: int Position
 - `g1`~`g2`: methylation rate data in groups

- `BiSeq.output` is the output file of BiSeq. The columns are (in order):
 - `seqnames`: Chromosome
 - `start`: The positions of the start sites of the corresponding region
 - `end`: The positions of the end sites of the corresponding region
 - `width`: The number of CpG sites within the corresponding region
 - `strand`: Strand
 - `median.p`: The median p-value among CpG sites within the corresponding region
 - `median.meth.group1`: The median methylation rate in the first group among CpG sites within the corresponding region
 - `median.meth.group2`: The median methylation rate in the second group among CpG sites within the corresponding region
 - `median.meth.diff`: The median methylation difference between groups among CpG sites within the corresponding region

- `adjust.methods` is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'

- `sep` seperator, default is the TAB key.

- `bheader` a logical value indicating whether the BiSeq.output file contains the names of the variables as its first line. By default, `bheader = FALSE`.

Value

- a dataframe, the columns are (in order):
 - `chr`: Chromosome
- `start`: The positions of the start sites of the corresponding region
- `end`: The positions of the end sites of the corresponding region
- `q-value`: The adjusted p-value based on BH method in MWU-test
- `methyl.diff`: The difference between the group means of methylation level
- `CpGs`: The number of CpG sites within the corresponding region
- `p`: p-value based on MWU-test
- `p2`: p-value based on 2D KS-test
- `m1`: The absolute mean methylation level for the corresponding segment of group 1
- `m2`: The absolute mean methylation level for the corresponding segment of group 2
- `e_value`: The e-value of the corresponding region

Examples

```r
#\donttest{
#data("demo_biseq_methyrate")
data("demo_biseq_DMR")
#example_tempfiles = tempfile(c("demo_biseq_methyrate", "demo_biseq_DMR"))
tempdir()
#### write to temp file ####
#write.table(demo_biseq_methyrate, file=example_tempfiles[1],row.names=FALSE,
# col.names=TRUE, quote=FALSE, sep="\t")
#write.table(demo_biseq_DMR, file=example_tempfiles[2],
# sep="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#### compute e-value and its adjustment ####
#result = metevalue.biseq(example_tempfiles[1],
# example_tempfiles[2], bheader = TRUE)
#
}
```

metevalue.biseq.chk
Check the BiSeq data format

Description

Check the BiSeq data format

Usage

```r
metevalue.biseq.chk(
   input_filename_a,
   input_filename_b,
   sep = "\t",
   bheader = FALSE
)
```
Arguments

input_filename_a
metilene input file path. This file is a sep (e.g. TAB) separated file with two key columns and several value columns: For example:

```
chr  pos  g1  ...  g1  g2  ...  g2
chr1  1  0.1  ...  0.1  0.2  ...  0.2
```

- chr and pos are keys;
- g1-g2: methylation rate data in groups.

input_filename_b
metilene input file path. This file should stored as a sep(e.g. TAB) separated file with two key columns and several value columns: The columns are (in order):
- chr: Chromosome
- start: The position of the start site of the corresponding region
- end: The position of the end site of the corresponding region
- range: The range of the corresponding region
- strand: Strand
- median.p: The median of p-values in the corresponding region
- median.meth.group1 : The median of methylation level for the corresponding segment of group 1
- median.meth.group2 : The median of methylation level for the corresponding segment of group 2
- median.meth.diff: The median of the difference between the methylation level

sep
separator, default is the TAB key.

bheader
a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

Examples

```r
#data("demo_biseq_methyrate")
#data("demo_biseq_DMR")
#example_tempfiles = tempfile(c("demo_biseq_methyrate", "demo_biseq_DMR"))
#tempdir()
#write.table(demo_biseq_methyrate, file=example_tempfiles[1],row.names=FALSE,
# col.names=TRUE, quote=FALSE, sep="\t")
#write.table(demo_biseq_DMR, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#### compute e-value and its adjustment ####
#result = metevalue.biseq.chk(example_tempfiles[1],
# example_tempfiles[2], bheader = TRUE)
```
Calculate E-value of the DMRfinder data format

Usage

```r
metevalue.DMRfinder(
  methyrate,
  DMRfinder.output,
  adjust.methods = "BH",
  sep = "\t",
  bheader = FALSE
)
```

Arguments

- `methyrate` is the methyrate file. For example:

  ```
  chr  pos  g1  ...  g1  g2  ...  g2  
  chr1 1  0.1  ...  0.1  0.2  ...  0.2  
  ```

 The columns are (in order):
 - `chr`: Chromosome
 - `pos`: int Position
 - `g1`~`g2`: methylation rate data in groups

- `DMRfinder.output` is the output file of DMRfinder.
 - `chr`: Chromosome
 - `start`: The positions of the start sites of the corresponding region
 - `end`: The positions of the end sites of the corresponding region
 - `CpG`: The number of CpG sites within the corresponding region
 - `Control.mu`: The average methylation rate in control group
 - `Expt1.mu`: The average methylation rate in experiment group
 - `Control.Expt1.diff`: The methylation difference between control and experiment groups
 - `Control.Expt1.pval`: P-value based on Wald-test.

- `adjust.methods` is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'

- `sep` separator, default is the TAB key.

- `bheader` a logical value indicating whether the DMRfinder.output file contains the names of the variables as its first line. By default, `bheader = FALSE`.
Value

a dataframe, the columns are (in order):
- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p: p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

Examples

data(demo_DMRfinder_rate_combine)
data(demo_DMRfinder_DMRs)
#example_tempfiles = tempfile(c("rate_combine", "DMRfinder_out"))
#tempdir()
#write.table(demo_DMRfinder_rate_combine, file=example_tempfiles[1],
row.names=FALSE, col.names=TRUE, quote=FALSE, sep="\t")
#write.table(demo_DMRfinder_DMRs, file=example_tempfiles[2],
sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.DMRfinder(example_tempfiles[1], example_tempfiles[2],
bheader = TRUE)
#head(result)

metevalue.DMRfinder.chk

Check the DMRfinder data format

Description

Check the DMRfinder data format

Usage

metevalue.DMRfinder.chk(
 input_filename_a,
 input_filename_b,
 sep = "\t",
 bheader = FALSE
)
Arguments

input_filename_a
the combined data of methylation rate file. This file is a sep (e.g. TAB) separated file with two key columns and several value columns. For example:

```
chr  pos  g1  ...  g1  g2  ...  g2
chr1 1  0.1  ...  0.1  0.2  ...  0.2
```

The columns are (in order):
- chr and pos are keys;
- g1~g2: methylation rate data in groups.

input_filename_b
the output file of DMRfinder. The columns are (in order):
- chr: Chromosome
- start: The position of the start sites of the corresponding region
- end: The position of the end sites of the corresponding region
- CpG: The number of CpG sites within the corresponding region
- ‘Control:mu’: The absolute mean methylation level for the corresponding segment of the control group
- ‘Exptl:mu’: The absolute mean methylation level for the corresponding segment of the experimental group
- ‘Control->Exptl:diff’: The difference between the group means of methylation level
- p: p-value

sep
separator, default is the TAB key.

bheader
a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

Examples

data(demo_DMRfinder_rate_combine)
data(demo_DMRfinder_DMRs)
#example_tempfiles = tempfile(c("rate_combine", "DMRfinder_out"))
#tempdir()
#write.table(demo_DMRfinder_rate_combine, file=example_tempfiles[1],
row.names=FALSE, col.names=TRUE, quote=FALSE, sep="\t")
#write.table(demo_DMRfinder_DMRs, file=example_tempfiles[2],
sep="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.DMRfinder.chk(example_tempfiles[1], example_tempfiles[2],
bheader = TRUE)
metevalue.methylKit

Calculate E-value of the methylKit data format

Description

Calculate E-value of the methylKit data format

Usage

```r
metevalue.methylKit(
  methyrate,
  methylKit.output,
  adjust.methods = "BH",
  sep = "\t",
  bheader = FALSE
)
```

Arguments

- `methyrate` is the data of methylation rates of each sites and group. For example:
  ```
  chr  pos  g1  ...  g1  g2  ...  g2
  chr1  1  0.1  ...  0.1  0.2  ...  0.2
  ```
 The columns are (in order):
 - `chr`: Chromosome
 - `pos`: int Position
 - `g1`-`g2`: methylation rate data in groups

- `methylKit.output` is the output data with e-value of each region
 - `chr`: Chromosome
 - `start`: The positions of the start sites of the corresponding region
 - `end`: The positions of the end sites of the corresponding region
 - `strand`: Strand
 - `pvalue`: The adjusted p-value based on BH method in MWU-test
 - `qvalue`: cutoff for qvalue of differential methylation statistic
 - `methyl.diff`: The difference between the group means of methylation level

- `adjust.methods` is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'

- `sep` seperator, default is the TAB key.

- `bheader` a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.
Value

a dataframe, the columns are (in order):
- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p: p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

Examples

data(demo_methylkit_methyrate)
data(demo_methylkit_met_all)
example_tempfiles = tempfile(c("rate_combine", "methylKit_DMR_raw"))
tempdir()
write.table(demo_methylkit_methyrate, file=example_tempfiles[1],
row.names=FALSE, col.names=TRUE, quote=FALSE, sep="\t")
write.table(demo_methylkit_met_all, file=example_tempfiles[2],
sep="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
result = metevalue.methylKit(example_tempfiles[1], example_tempfiles[2],
bheader = TRUE)
str(result)

metevalue.methylKit.chk

Check the methylKit data format

Description

Check the methylKit data format

Usage

metevalue.methylKit.chk(
 input_filename_a,
 input_filename_b,
 sep = "\t",
 bheader = FALSE
)
Arguments

input_filename_a
the combined data of methylation rate file. This file is a sep (e.g. TAB) separated file with two key columns and several value columns: For example:

<table>
<thead>
<tr>
<th>chr</th>
<th>pos</th>
<th>g1</th>
<th>...</th>
<th>g1</th>
<th>g2</th>
<th>...</th>
<th>g2</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr1</td>
<td>1</td>
<td>0.1</td>
<td>...</td>
<td>0.1</td>
<td>0.2</td>
<td>...</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- chr and pos are keys;
- g1-g2: methylation rate data in groups.

input_filename_b
the output file of methylKit. A methylDiff or methylDiffDB object containing the differential methylated locations satisfying the criteria. The columns are (in order):
- chr: Chromosome
- start: The position of the start sites of the corresponding region
- end: The position of the end sites of the corresponding region
- strand: Strand
- p: p-value
- qvalue: The adjusted p-value based on BH method
- meth.diff: The difference between the group means of methylation level

sep
separator, default is the TAB key.
bheader
a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

Examples

data(demo_methylkit_methyrate)
data(demo_methylkit_met_all)
example_tempfiles = tempfile(c("rate_combine", "methylKit_DMR_raw"))
tmpdir()
write.table(demo_methylkit_methyrate, file=example_tempfiles[1],
row.names=FALSE, col.names=TRUE, quote=FALSE, sep="\t")
write.table(demo_methylkit_met_all, file=example_tempfiles[2],
sep="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
result = metevalue.methylKit.chk(example_tempfiles[1], example_tempfiles[2],
bheader = TRUE)
Calculate E-value of the Metilene data format

Usage

```r
describe.mvely(methyrate, metilene.output, adjust.methods = "BH", sep = "\t", bheader = FALSE)
```

Arguments

- **methyrate**
 - metilene input file path. This file is a sep (e.g. TAB) separated file with two key columns and several value columns. For example:

chr	pos	g1	...	g1	g2	...	g2
chr1	1	0.1		0.1	0.2		0.2

 - The columns are (in order):
 - chr and pos are keys;
 - g1~g2: methylation rate data in groups.

- **metilene.output**
 - metilene input file path. This file should stored as a sep (e.g. TAB) separated file with two key columns and several value columns: The columns are (in order):
 - chr: Chromosome
 - start: The positions of the start sites of the corresponding region
 - end: The positions of the end sites of the corresponding region
 - q-value: The adjusted p-value based on BH method in MWU-test
 - methyl.diff: The difference between the group means of methylation level
 - CpGs: The number of CpG sites within the corresponding region
 - p: p-value based on MWU-test
 - p2: p-value based on 2D KS-test
 - m1: The absolute mean methylation level for the corresponding segment of group 1
 - m2: The absolute mean methylation level for the corresponding segment of group 2
adjust.methods is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'

sep separator, default is the TAB key.

bheader a logical value indicating whether the metilene.output file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

a dataframe, the columns are (in order):
- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p: p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

Examples

```r
#### metilene example ####
data(demo_metilene_input)
data(demo_metilene_out)
#example_tempfiles = tempfile(c("metilene_input", "metilene_out"))
#tempdir()
#write.table(demo_metilene_input, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep="\t")
#write.table(demo_metilene_out, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.metilene(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
#head(result)
```

Description

Check the Metilene data format
Usage

```r
metevalue.metilene.chk(
  input_filename_a,
  input_filename_b,
  sep = "\t",
  bheader = FALSE
)
```

Arguments

- `input_filename_a`: metilene input file path. This file is a sep (e.g. TAB) separated file with two key columns and several value columns. For exampe:

  ```
  chr  pos  g1 ... g1  g2 ... g2
  chr1 1  0.1 ... 0.1  0.2 ... 0.2
  ```

 The columns are (in order):
 - chr and pos are keys;
 - g1-g2: methylation rate data in groups.

- `input_filename_b`: metilene input file path. This file should stored as a sep(e.g. TAB) separated file with two key columns and several value columns: The columns are (in order):
 - chr: Chromosome
 - start: The position of the start sites of the corresponding region
 - end: The position of the end sites of the corresponding region
 - q-value: The adjusted p-value based on BH method in MWU-test
 - methyl.diff: The difference between the group means of methylation level
 - CpGs: The number of CpG sites within the corresponding region
 - p : p-value based on MWU-test
 - p2: p-value based on 2D KS-test
 - m1: The absolute mean methylation level for the corresponding segment of group 1
 - m2: The absolute mean methylation level for the corresponding segment of group 2

- `sep`: separator, default is the TAB key.

- `bheader`: a logical value indicating whether the `input_filename_b` file contains the names of the variables as its first line. By default, `bheader = FALSE`.

Value

`list(file_a, file_b, file_a_b)` returns a list with three pr-handled data.frames corresponding to the `input_filename_a`, `input_filename_b` file and a A JOIN B file.
Examples

```r
#data(demo_metilene_input)
data(demo_metilene_out)
example_tempfiles = tempfile(c("metilene_input", "metilene_out"))
#tempdir()
#write.table(demo_metilene_input, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep="	")
#write.table(demo_metilene_out, file=example_tempfiles[2],
# sep="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.metilene.chk(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
```

Description

A general method to calculate the e-value for RNA-seq data.

Usage

```r
metevalue.RNA_general(rna, group1_name, group2_name)
```

Arguments

- `rna` data.frame: A data.frame object of RNAseq data. For example:

```
  TAG  treated1fb  treated2fb  untreated1fb  untreated2fb
  TAG1  4.449648  4.750104  4.392285  4.497514
  TAG2  8.241116  8.302852  8.318125  8.488796
  ...  ...  ...  ...  ...
```

Row names (TAG1 and TAG2 in the above example) is also suggested.

- `group1_name` character: The name (pattern) of the first group. For example, "treated" in the above example. For example 'treated_abc' and 'treated' will be considered as the same group if 'group1_name = "treated"'. Use this with care in practice.

- `group2_name` character: The name (pattern) of the second group. For example, "untreated" in the above example. For example 'untreated_abc' and 'untreated' will be considered as the same group if 'group2_name = "untreated"'. Use this with care in practice.

Value

evalue
Examples

data("demo_desq_out")

evalue = metevalue.RNA_general(demo_desq_out, 'treated', 'untreated')

varevalue.metilene Calculate E-value of the Metilene data

Description

The data file could be pre-handled by the evalue.metilene.chk function.

Usage

varevalue.metilene(
 a,
 b,
 a_b,
 group1_name = "g1",
 group2_name = "g2",
 adjust.methods = "BH"
)

Arguments

a A data.frame object:

<table>
<thead>
<tr>
<th>chr</th>
<th>pos</th>
<th>g1</th>
<th>...</th>
<th>g2</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr1</td>
<td>1</td>
<td>0.1</td>
<td>...</td>
<td>0.2</td>
</tr>
</tbody>
</table>

i.e two key columns (chrom, pos) with several value columns in groups.

b A data.frame object stores the data, the columns are (in order):
- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p: p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
A general method to calculate the e-value for other DNA methylation tools not described above. The input data is the DNA methylation rates using the similar format with Metilene.

Description

The input data file is just the DNA methylation rates using the similar format above, with no need for another data file output by different tools. The Chromosome name, start and end sites should be specified in the function.
Usage

varevalue.single_general(
 methyrate,
 group1_name = "g1",
 group2_name = "g2",
 chr,
 start,
 end
)

Arguments

methyrate data.frame: A data.frame object of methylation rates, the columns should be
(name of groups can be self-defined)

<table>
<thead>
<tr>
<th>chr</th>
<th>pos</th>
<th>g1</th>
<th>...</th>
<th>g1</th>
<th>g2</th>
<th>...</th>
<th>g2</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr1</td>
<td>1</td>
<td>0.1</td>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td>0.2</td>
</tr>
</tbody>
</table>

group1_name character: The name (pattern) of the first group. For example, "g1" in the above example. For example ‘g1_abc’ and ‘g1’ will be considered as the same group if ‘group1_name = "g1"’. Use this with care in practice.

group2_name character: The name (pattern) of the second group. For example, "g2" in the above example. For example ‘g2_abc’ and ‘g2’ will be considered as the same group if ‘group2_name = "g2"’. Use this with care in practice.

chr character: The Chromosome name. Typically, it is a string like “chr21” and so on.

start integer: The position of the start site of the corresponding region

dend integer: The position of the end site of the corresponding region

Value

evalue

Examples

#data("demo_metilene_input")
#varevalue.single_general(demo_metilene_input, chr = "chr21", start = 9437432, end = 9437540)
[1] 2.626126e+43

Compare to `metevalue.metilene`
data(demo_metilene_out)
#example_tempfiles = tempfile(c("metilene_input", "metilene_out"))
#tempdir()
#write.table(demo_metilene_input, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep="	")
#write.table (demo_metilene_out, file=example_tempfiles[2],
sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.metilene(example_tempfiles[1], example_tempfiles[2],
bheader = TRUE)
result[with(result, chr == 'chr21' & start == '9437432' & end == '9437540'), ncol(result)]
[1] 2.626126e+43
Index

* The
demo_desq_out, 3

* a
demo_desq_out, 3

* data:
demo_desq_out, 3

* data
demo_desq_out, 3

* is
demo_desq_out, 3

* metevalue
demo_biseq_DMR, 2
demo_biseq_methyrate, 3
demo_desq_out, 3
demo_DMRfinder_DMRs, 4
demo_DMRfinder_rate_combine, 5
demo_methylkit_met_all, 6
demo_methylkit_methyrate, 5
demo_metilene_input, 6
demo_metilene_out, 7

* simulation
demo_desq_out, 3
demo_biseq_DMR, 2
demo_biseq_methyrate, 3
demo_desq_out, 3
demo_DMRfinder_DMRs, 4
demo_DMRfinder_rate_combine, 5
demo_methylkit_met_all, 6
demo_methylkit_methyrate, 5
demo_metilene_input, 6
demo_metilene_out, 7
evalue_buildin_sql, 7
evalue_buildin_var_fmt_nm, 8

metevalue.biseq, 8
metevalue.biseq.chk, 10
metevalue.DMRfinder, 12
metevalue.DMRfinder.chk, 13
metevalue.methylKit, 15
metevalue.methylKit.chk, 16
metevalue.metilene, 18
metevalue.metilene.chk, 19
metevalue.RNA_general, 21
varvalue.metilene, 22
varvalue.single_general, 23