Package ‘mev’

February 22, 2018

Type Package
Title Multivariate Extreme Value Distributions
Version 1.11
Date 2018-02-07
Description Exact simulation from max-stable processes and multivariate extreme value distributions for various parametric models. Threshold selection methods.
License GPL-3

BugReports https://github.com/lbelzile/mev/issues

URL https://github.com/lbelzile/mev/

Imports boot, evd, gmm, ismev, methods, nleqslv, nloptr, numDeriv,
 Rcpp (>= 0.11.6), rootSolve, stats, revdbayes

Suggests cobs, knitr, fields

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 6.0.1

VignetteBuilder knitr

NeedsCompilation yes

Author Leo Belzile [aut, cre],
 Jennifer L. Wadsworth [aut],
 Paul J. Northrop [aut],
 Scott D. Grimshaw [aut],
 Jin Zhang [ctb],
 Michael A. Stephens [ctb],
 Art B. Owen [ctb],
 Raphael Huser [aut]

Maintainer Leo Belzile <leo.belzile@epfl.ch>

Repository CRAN

Date/Publication 2018-02-22 18:46:10 UTC
R topics documented:

- mev-package .. 3
- angextrapo .. 4
- angmeas ... 5
- angmeasdir .. 6
- chibar ... 7
- confint.extprof 8
- confint.fr .. 9
- egp ... 10
- egp.fit ... 11
- egp2 .. 12
- egp2.fit .. 13
- egp2.G .. 15
- emplik ... 16
- ext.index .. 17
- gev .. 18
- gev.abias .. 19
- gev.bcor .. 20
- gev.mle ... 21
- gev.Nyr ... 21
- gev.pll .. 22
- gev.tem .. 24
- gevN .. 26
- gevrs ... 27
- gp.fit ... 28
- gpd .. 30
- gpd.abias ... 31
- gpd.bcor .. 32
- gpd.mle ... 33
- gpd.pll .. 34
- gpd.tem .. 36
- gpde .. 38
- gpN .. 39
- gpdr .. 40
- ibvpot ... 41
- infomat.test 42
- lambdadep ... 44
- mvrnorm ... 45
- NC.diag .. 45
- plot.extprof 47
- plot.fr ... 47
- rdir .. 48
- rmev ... 49
- rmevspec .. 51
- rparp ... 53
- smith.penult 54
- smith.penult.fn 56
Description

Exact simulation from max-stable processes and multivariate extreme value distributions for various parametric models.

Details

The package allows exact generation of multivariate extreme value vectors or max-stable processes. For the latter, the user can provide a variogram function along with a set of locations that serve as input. Models implemented include the 1-parameter logistic and negative logistic as described in the article, the bilogistic and Coles and Tawn extremal Dirichlet model using the algorithm of Boldi (2009) and the Dirichlet mixture. The extremal Student and Husler-Reiss (Brown-Resnick) models are also implemented.

Other features of the package include threshold diagnostic tests, empirical likelihood estimation for the spectral measure, bias-correction and tangent exponential model approximations for the GP and GEV distributions, extended generalized Pareto distributions, information matrix test and penultimate approximations. Many of these are not found elsewhere. mev complements packages evd and ismev.

Author(s)

Leo Belzile

Maintainer: <leo.belzile@epfl.ch>

References

Description

The scale parameter $g(w)$ in the Ledford and Tawn approach is estimated empirically for x large as

$$\frac{\Pr(X_P > x w, Y_P > x(1 - w))}{\Pr(X_P > x, Y_P > x)}$$

where the sample (X_P, Y_P) are observations on a common unit Pareto scale. The coefficient η is estimated using maximum likelihood as the shape parameter of a generalized Pareto distribution on $\min(X_P, Y_P)$.

Usage

angextrapo(dat, qu = 0.95, w = seq(0.05, 0.95, length = 20))

Arguments

- **dat**: an n by 2 matrix of multivariate observations
- **qu**: quantile level on uniform scale at which to threshold data. Default to 0.95
- **w**: vector of unique angles between 0 and 1 at which to evaluate scale empirically.

Value

a list with elements

- **w**: angles between zero and one
- **g**: scale function at a given value of w
- **eta**: Ledford and Tawn coefficient

References

Examples

angextrapo(rmev(n = 1000, model = "log", d = 2, param = 0.5))
angmeas

Rank-based transformation to angular measure

Description

The method uses the pseudo-polar transformation for suitable norms, transforming the data to pseudo-observations, then marginally to unit Frechet or unit Pareto. Empirical or Euclidean weights are computed and returned alongside with the angular and radial sample for values above threshold(s) `th`, specified in terms of quantiles of the radial component `r` or marginal quantiles. Only complete tuples are kept.

Usage

```
angmeas(x, th, Rnorm = c("l1", "l2", "linf"), Anorm = c("l1", "l2", "linf", "arctan"), marg = c("Frechet", "Pareto"), wgt = c("Empirical", "Euclidean"), region = c("sum", "min", "max"), is.angle = FALSE)
```

Arguments

- `x` an n by d sample matrix
- `th` threshold of length 1 for "sum", or d marginal thresholds otherwise.
- `Rnorm` character string indicating the norm for the radial component.
- `Anorm` character string indicating the norm for the angular component. `arctan` is only implemented for `d = 2`.
- `marg` character string indicating choice of marginal transformation, either to Frechet or Pareto scale.
- `wgt` character string indicating weighting function for the equation. Can be based on Euclidean or empirical likelihood for the mean.
- `region` character string specifying which observations to consider (and weight). "sum" corresponds to a radial threshold $\sum x_i > th$, "min" to $\min x_i > th$ and "max" to $\max x_i > th$.
- `is.angle` logical indicating whether observations are already angle with respect to `region`. Default to FALSE.

Details

The empirical likelihood weighted mean problem is implemented for all thresholds, while the Euclidean likelihood is only supported for diagonal thresholds specified via `region=sum`.

Value

A list with arguments `ang` for the `d-1` pseudo-angular sample, `rad` with the radial component and possibly `wts` if `Rnorm=\"l1\"` and the empirical likelihood algorithm converged. The Euclidean algorithm always returns weights even if some of these are negative.

A list with components
angmeasdir

- ang matrix of pseudo-angular observations
- rad vector of radial contributions
- wts empirical or Euclidean likelihood weights for angular observations

Author(s)
Leo Belzile

References

Examples
```
x <- rmev(n=25, d=3, param=0.5, model="log")
wts <- angmeas(x=x, th=0, Rnorm="l1", Anorm="l1", marg="Frechet", wgt="Empirical")
wts2 <- angmeas(x=x, Rnorm="l2", Anorm="l2", marg="Pareto", th=0)
```

Description
This function computes the empirical or Euclidean likelihood estimates of the spectral measure and uses the points returned from a call to angmeas to compute the Dirichlet mixture smoothing of de Carvalho, Warchol and Segers (2012), placing a Dirichlet kernel at each observation.

Usage
```
angmeasdir(x, th, Rnorm = c("l1", "l2", "linf"), Anorm = c("l1", "l2", "linf", "arctan"), marg = c("Frechet", "Pareto"), wgt = c("Empirical", "Euclidean"), region = c("sum", "min", "max"), is.angle = FALSE)
```

Arguments
- x: an n by d sample matrix
- th: threshold of length 1 for "sum", or d marginal thresholds otherwise.
- Rnorm: character string indicating the norm for the radial component.
- Anorm: character string indicating the norm for the angular component. arctan is only implemented for \(d = 2 \)
- marg: character string indicating choice of marginal transformation, either to Frechet or Pareto scale
chibar

wgt character string indicating weighting function for the equation. Can be based on Euclidean or empirical likelihood for the mean
region character string specifying which observations to consider (and weight). "sum" corresponds to a radial threshold $\sum x_i > \text{th}$, "min" to $\min x_i > \text{th}$ and "max" to $\max x_i > \text{th}$.
is.angle logical indicating whether observations are already angle with respect to region. Default to FALSE.

Details

The cross-validation bandwidth is the solution of

$$\max_{\nu} \sum_{i=1}^{n} \log \left\{ \sum_{k=1, k \neq i}^{n} p_{k, -i} f(w_i; \nu w_k) \right\},$$

where f is the density of the Dirichlet distribution, $p_{k, -i}$ is the Euclidean weight obtained from estimating the Euclidean likelihood problem without observation i.

Value

an invisible list with components
- nu bandwidth parameter obtained by cross-validation;
- dirparmat n by d matrix of Dirichlet parameters for the mixtures;
- wts mixture weights.

Examples

```r
set.seed(123)
x <- rmev(n=250, d=2, param=0.5, model="log")
out <- angmeasdir(x=x, th=0, Rnorm="l1", Anorm="l1", marg="Frechet", wgt="Empirical")
```

chibar *Parametric estimates of $\bar{\chi}$*

Description

The function fits a generalized Pareto distribution to minima of Pareto variates, using the representation

$$\Pr(\min(X) > x) = \frac{L(x)}{x^{1/\eta}},$$

where $\bar{\chi} = 2\eta - 1$. The data is transformed to the unit Pareto scale and a generalized Pareto variable is fitted to the minimum. The parameter `eta` corresponds to the shape of the latter. The confidence intervals can be based either on the delta-method, a profile likelihood or a tangent exponential model approximation.
Usage

chibar(dat, confint = c("delta", "profile", "tem"), qu = 0, level = 0.95)

Arguments

dat an n by d matrix of multivariate observations
confint string indicating the type of confidence interval.
qu percentile level at which to threshold. Default to all observations.
level the confidence level required

Value

a named vector of length 3 containing the point estimate, the lower and the upper confidence intervals

See Also

chiplot for empirical estimates of chi and \bar{\chi}.

Examples

Not run:
set.seed(765)
Max-stable model, chibar = 1
dat <- evd::rbvevd(n = 1000, dep = 0.5)
chibar(dat, "profile", qu = 0.5)
s <- seq(0.05,1, length = 30)
chibar_est <- t(sapply(s, function(keep){chibar(dat, "delta", qu = keep)}))
matplot(s, chibar_est, type = "l", col = c(1, 2, 2), lty = c(1, 2, 2),
ylab = expression(bar(chi)), xlab = "p")
abline(h = 1, lty = 3, col = "grey")

Multivariate normal sample, chibar = 0 - strong asymptotic independence at penultimate level
dat <- mvnorm(n = 1000, mu = c(0, 0), Sigma = cbind(c(1, 0.75), c(0.75, 1)))
chibar(dat, "tem", q = 0.1)
chibar_est <- t(sapply(s, function(keep){chibar(dat, "profile", qu = keep)}))
matplot(s, chibar_est, type = "l", col = c(1, 2, 2), lty = c(1, 2, 2),
ylab = expression(bar(chi)), xlab = "p")
abline(h = 1, lty = 3, col = "grey")

End(Not run)

confint.extprof Confidence intervals for profile likelihood objects

Description

This function uses spline interpolation to derive level confidence intervals.
Usage

```r
## S3 method for class 'extprof'
confint(object, parm, level = 0.95, ...)
```

Arguments

- `object`:
 an object of class `extprof`, normally the output of `gpd.pll` or `gev.pll`.

- `parm`:
 a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.

- `level`:
 confidence level, with default 0.95

- `...`:
 additional arguments passed to functions. Providing a logical `warn = FALSE` turns off warning messages when the lower or upper confidence interval for `psi` are extrapolated beyond the provided calculations.

Value

A 2 by 3 matrix containing point estimates, lower and upper confidence intervals based on the likelihood root and modified version thereof.

Description

This function uses spline interpolation to derive level confidence intervals using the output of either `gev.tem` or `gpd.tem`.

Usage

```r
## S3 method for class 'fr'
confint(object, parm, level = 0.95, ...)
```

Arguments

- `object`:
 an object of class `fr`, normally the output of `gpd.tem` or `gev.tem`.

- `parm`:
 a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.

- `level`:
 confidence level, with default 0.95

- `...`:
 additional arguments passed to functions. Providing a logical `warn = FALSE` turns off warning messages when the lower or upper confidence interval for `psi` are extrapolated beyond the provided calculations.
Value

A 2 by 3 matrix containing point estimates, lower and upper confidence intervals based on \(r \) and \(r_{\text{star}} \).

Description

This function provides the log-likelihood and quantiles for the three different families presented in Papastathopoulos and Tawn (2013). The latter include an additional parameter, \(\kappa \). All three families share the same tail index than the GP model, while allowing for lower thresholds. In the case \(\kappa = 1 \), the models reduce to the generalised Pareto.

\texttt{egp_retlev} gives the return levels for the extended generalised Pareto distributions.

Arguments

- \texttt{xdat}: vector of observations, greater than the threshold
- \texttt{thresh}: threshold value
- \texttt{par}: parameter vector \((\kappa, \sigma, \xi)\).
- \texttt{model}: a string indicating which extended family to fit
- \texttt{p}: extreme event probability; \(p \) must be greater than the rate of exceedance for the calculation to make sense. See Details.
- \texttt{plot}: boolean indicating whether or not to plot the return levels

Details

For return levels, the \(p \) argument can be related to \(T \) year exceedances as follows: if there are \(n_y \) observations per year, then take \(p \) to equal \(1/(Tn_y) \) to obtain the \(T \)-years return level.

Value

\texttt{egp_ll} returns the log-likelihood value.
\texttt{egp_retlev} returns a plot of the return levels if \texttt{plot=TRUE} and a matrix of return levels.

Usage

\texttt{egp_ll(xdat, thresh, par, model=c("egp1","egp2","egp3"))}
\texttt{egp_retlev(xdat, thresh, par, model=c("egp1","egp2","egp3"), p, plot=TRUE)}

Author(s)

Leo Belzile
References

Examples

```r
set.seed(123)
xdat <- evd::rgpd(1000, loc=0, scale=1, shape=0.5)
par <- egp.fit(xdat, thresh=0, model="egp3")$par
p <- c(1/1000,1/1500,1/2000)
egp.relev(xdat, 0, par, "egp3", p)
#With multiple thresholds
th <- c(0,0.1,0.2,1)
opt <- egp.fitrange(xdat, th, model="egp1", plots=NA)
egp.relev(xdat, opt$thresh, opt$par, "egp1", p=p)
opt <- egp.fitrange(xdat, th, model="egp2", plots=NA)
egp.relev(xdat, opt$thresh, opt$par, "egp2", p=p)
opt <- egp.fitrange(xdat, th, model="egp3", plots=NA)
egp.relev(xdat, opt$thresh, opt$par, "egp3", p=p)
```

egp.fit
Fit of extended GP models and parameter stability plots

Description

The function `egp.fitrange` provides classical parameter stability plot for \((\kappa, \sigma, \xi)\). The fitted parameter values are displayed with pointwise normal 95% confidence intervals. The plot is for the modified scale (as in the generalised Pareto model) and as such it is possible that the modified scale be negative. `egp.fitrange` can also be used to fit the model to multiple thresholds.

Usage

```r
egp.fit(xdat, thresh, model = c("egp1", "egp2", "egp3"), init)
egp.fitrange(xdat, thresh, model = c("egp1", "egp2", "egp3"), plots = 1:3, umin, umax, nint)
```

Arguments

- **xdat**: vector of observations, greater than the threshold
- **thresh**: threshold value
- **model**: a string indicating which extended family to fit
- **init**: vector of initial values, with \(\log(\kappa)\) and \(\log(\sigma)\); can be omitted.
- **plots**: vector of integers specifying which parameter stability to plot (if any); passing NA results in no plots
- **umin**: optional minimum value considered for threshold (if `thresh` is not provided)
- **umax**: optional maximum value considered for threshold (if `thresh` is not provided)
- **nint**: optional integer number specifying the number of thresholds to test.
Details

egp. fit is a numerical optimization routine to fit the extended generalised Pareto models of Papastathopoulos and Tawn (2013), using maximum likelihood estimation.

Value

egp. fit outputs the list returned by optim, which contains the parameter values, the hessian and in addition the standard errors

egp.fitrange returns a plot(s) of the parameters fit over the range of provided thresholds, with pointwise normal confidence intervals; the function also returns an invisible list containing notably the matrix of point estimates (par) and standard errors (se).

Author(s)

Leo Belzile

References

Description

Density function, distribution function, quantile function and random generation for the extended generalized Pareto distribution (GPD) with scale and shape parameters.

Arguments

- q: vector of quantiles
- x: vector of observations
- p: vector of probabilities
- n: sample size
- prob: mixture probability for model type 4
- kappa: shape parameter for type 1, 3 and 4
- delta: additional parameter for type 2, 3 and 4
- sigma: scale parameter
- xi: shape parameter
- type: integer between 0 to 5 giving the model choice
- log: logical; should the log-density be returned (default to FALSE)?
- unifsamp: sample of uniform; if provided, the data will be used in place of new uniform random variates
- censoring: numeric vector of length 2 containing the lower and upper bound for censoring
Details

The extended generalized Pareto families proposed in Naveau et al. (2016) retain the tail index of the distribution while being compliant with the theoretical behavior of extreme low rainfall. There are five proposals, the first one being equivalent to the GP distribution.

- type 0 corresponds to uniform carrier, $G(u) = u$.
- type 1 corresponds to a three parameters family, with carrier $G(u) = u^\kappa$.
- type 2 corresponds to a three parameters family, with carrier $G(u) = 1 - V_\delta((1 - u)^\delta)$.
- type 3 corresponds to a four parameters family, with carrier $G(u) = 1 - V_\delta((1 - u)^\delta)^{\kappa/2}$.
- type 4 corresponds to a five parameter model (a mixture of type 2, with $G(u) = p u^\kappa + (1 - p) \times u^\delta$).

Usage

pegp2(q, prob=NA, kappa=NA, delta=NA, sigma=NA, xi=NA, type=1)
degp2(x, prob=NA, kappa=NA, delta=NA, sigma=NA, xi=NA, type=1, log=False)
qegp2(p, prob=NA, kappa=NA, delta=NA, sigma=NA, xi=NA, type=1)
regp2(n, prob=NA, kappa=NA, delta=NA, sigma=NA, xi=NA, type=1, unifsamp=NULL, censoring=c(0, Inf))

Author(s)

Raphael Huser and Philippe Naveau

References

Description

This is a wrapper function to obtain PWM or MLE estimates for the extended GP models of Naveau et al. (2016) for rainfall intensities. The function calculates confidence intervals by means of nonparametric percentile bootstrap and returns histograms and QQ plots of the fitted distributions. The function handles both censoring and rounding.

Usage

egp2.fit(data, model = 1, method = c("mle", "pwm"), init, censoring = c(0, Inf), rounded = 0, CI = FALSE, R = 1000, ncpus = 1, plots = TRUE)
Arguments

- **data**: data vector.
- **model**: integer ranging from 0 to 4 indicating the model to select (see `egp2`).
- **method**: string; either "mle" for maximum likelihood, or "pwm" for probability weighted moments, or both.
- **init**: vector of initial values, comprising of \(p, \kappa, \delta, \sigma, \xi\) (in that order) for the optimization. All parameters may not appear depending on `model`.
- **censoring**: numeric vector of length 2 containing the lower and upper bound for censoring; censoring=c(\(\theta\),Inf) is equivalent to no censoring.
- **rounded**: numeric giving the instrumental precision (and rounding of the data), with default of 0.
- **CI**: logical; should confidence interval be returned (percentile bootstrap).
- **R**: integer; number of bootstrap replications.
- **ncpus**: integer; number of CPUs for parallel calculations (default: 1).
- **plots**: logical; whether to produce histogram and density plots.

Details

The different models include the following transformations:

- **model 0** corresponds to uniform carrier, \(G(u) = u\).
- **model 1** corresponds to a three parameters family, with carrier \(G(u) = u^\kappa\).
- **model 2** corresponds to a three parameters family, with carrier \(G(u) = 1 - V_\delta((1 - u)^\delta)\).
- **model 3** corresponds to a four parameters family, with carrier

\[
G(u) = 1 - V_\delta((1 - u)^\delta))^{\kappa/2}
\]

- **model 4** corresponds to a five parameter model (a mixture of type 2, with \(G(u) = pu^\kappa + (1 - p)u^\delta\)).

Author(s)

Raphael Huser and Philippe Naveau

References

See Also

`egp.fit`, `egp`, `egp2`
egp2.G

Examples

library(ismev)
data(rain)
egp2.fit(rain[rain>0], model=1, method="mle", init=c(0.9, gp.fit(rain,0, show=FALSE)$est), rounded=0.1, CI=TRUE, R=20)

egp2.G

Carrier distribution for the extended GP distributions of Naveau et al.

Description

Density, distribution function, quantile function and random number generation for the carrier distributions of the extended Generalized Pareto distributions.

Arguments

- `u`: vector of observations (degp2.G), probabilities (qegp2.G) or quantiles (pegp2.G), in [0, 1]
- `prob`: mixture probability for model type 4
- `kappa`: shape parameter for type 1, 3 and 4
- `delta`: additional parameter for type 2, 3 and 4
- `type`: integer between 0 to 5 giving the model choice
- `log`: logical; should the log-density be returned (default to FALSE)?
- `n`: sample size
- `unifsamp`: sample of uniform; if provided, the data will be used in place of new uniform random variates
- `censoring`: numeric vector of length 2 containing the lower and upper bound for censoring
- `direct`: logical; which method to use for sampling in model of type 4?

Usage

- `pegp2.G(u, type=1, prob, kappa, delta)`
- `degp2.G(u, type=1, prob=NA, kappa=NA, delta=NA, log=FALSE)`
- `qegp2.G(u, type=1, prob=NA, kappa=NA, delta=NA)`
- `regp2.G(n, prob=NA, kappa=NA, delta=NA, type=1, unifsamp=NULL, direct=FALSE, censoring=c(0,1))`

Author(s)

Raphael Huser and Philippe Naveau

See Also

egp2
Self-concordant empirical likelihood for a vector mean

Usage
emplik(dat, mu = rep(0, ncol(dat)), lam = rep(0, ncol(dat)),
eps = 1/nrow(dat), M = 1e+30, thresh = 1e-30, itermax = 100)

Arguments

- `dat` n by d matrix of d-variate observations
- `mu` d vector of hypothesized mean of `dat`
- `lam` starting values for Lagrange multiplier vector, default to zero vector
- `eps` lower cutoff for $-\log$, with default $1/nrow(dat)$
- `M` upper cutoff for $-\log$.
- `thresh` convergence threshold for log likelihood (default of $1e-30$ is aggressive)
- `itermax` upper bound on number of Newton steps.

Value

a list with components

- `logelr` log empirical likelihood ratio.
- `lam` Lagrange multiplier (vector of length d).
- `wts` n vector of observation weights (probabilities).
- `conv` boolean indicating convergence.
- `niter` number of iteration until convergence.
- `ndec` Newton decrement.
- `gradnorm` norm of gradient of log empirical likelihood.

Author(s)

Art Owen, C++ port by Leo Belzile

References

Description

The function implements the maximum likelihood estimator and iteratively reweighted least square estimators of Suveges (2007) as well as the intervals estimator. The implementation differs from the presentation of the paper in that an iteration limit is enforced to make sure the iterative procedure terminates. Multiple thresholds can be supplied.

Usage

```r
ext.index(x, q = 0.95, method = c("wls", "mle", "intervals"), plot = FALSE)
```

Arguments

- `x`: a vector containing of data points
- `q`: a vector of quantile levels in (0,1). Defaults to 0.95
- `method`: a string specifying the chosen method. Must be either `wls` for weighted least squares, `mle` for maximum likelihood estimation or `intervals` for the intervals estimator of Ferro and Segers (2003). Partial match is allowed.
- `plot`: a boolean specifying whether to plot the extremal index as a function of `q`

Details

The iteratively reweighted least square is a procedure based on the gaps of exceedances $S_n = T_n - 1$. The model is first fitted to non-zero gaps, which are rescaled to have unit exponential scale. The slope between the theoretical quantiles and the normalized gap of exceedances is $b = 1/\theta$, with intercept $a = \log(\theta)/\theta$. As such, the estimate of the extremal index is based on $\hat{\theta} = \exp(\hat{a}/\hat{b})$. The weights are chosen in such a way as to reduce the influence of the smallest values. The estimator exploits the dual role of θ as the parameter of the mean for the interexceedance time as well as the mixture proportion for the non-zero component.

The maximum likelihood is based on an independence likelihood for the rescaled gap of exceedances, namely $\bar{F}(u_n)S(u_n)$. The score equation is equivalent to a quadratic equation in θ and the maximum likelihood estimate is available in closed form. Its validity requires however condition $D^{(2)}(u_n)$ to apply; this should be checked by the user beforehand.

A warning is emitted if the effective sample size is less than 50 observations.

Value

A vector or matrix of estimated extremal index of dimension `length(method)` by `length(q)`.

Author(s)

Leo Belzile
References

Examples

set.seed(234)
#Moving maxima model with theta=0.5
a <- 1; theta <- 1/(1+a)
sim <- rgev(10001, loc=1/(1+a), scale=1/(1+a), shape=1)
x <- pmax(sim[-length(sim)]*a,sim[-1])
q <- seq(0.9,0.99,by=0.01)
ext.index(x=x,q=q,method=c("wls","mle"))

gev

Generalized extreme value distribution

Description

Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized extreme value distribution

Arguments

par vector of loc, scale and shape
dat sample vector
method string indicating whether to use the expected ("exp") or the observed ("obs" - the default) information matrix.
v vector calculated by gev.Vfun
n sample size
p vector of probabilities

Usage

gev.ll(par, dat)
gev.ll.optim(par, dat)
gev.score(par, dat)
gev.informat(par, dat, method = c("obs","exp"))
gev.retlev(par, p)
gev.bias(par, n)
Functions

- `gev.ll`: log likelihood
- `gev.ll.optim`: negative log likelihood parametrized in terms of location, log(scale) and shape in order to perform unconstrained optimization
- `gev.score`: score vector
- `gev.infomat`: observed or expected information matrix
- `gev.retlev`: return level, corresponding to the \((1 - p)\)th quantile
- `gev.bias`: Cox-Snell first order bias
- `gev.Fscore`: Firth’s modified score equation
- `gev.Vfun`: vector implementing conditioning on approximate ancillary statistics for the TEM
- `gev.phi`: canonical parameter in the local exponential family approximation
- `gev.dphi`: derivative matrix of the canonical parameter in the local exponential family approximation

References

Description

Asymptotic bias of block maxima for fixed sample sizes

Usage

`gev.abias(shape, rho)`

Arguments

- `shape`: shape parameter
- `rho`: second-order parameter, non-positive
Value

- a vector of length three containing the bias for location, scale and shape (in this order)

References

Description

The routine uses the MLE (bias-corrected) as starting values and proceeds to find the solution using a root finding algorithm. Since the bias-correction is not valid for \(xi < -1/3 \), any solution that is unbounded will return a vector of NA - additionally, passing a par argument with shape less than -1/3 will return an error if method="subtract" is selected, as the bias correction does not exist then. For small samples, expected and observed information can return very different estimates.

Usage

gevNbcor(par, dat, corr = c("subtract", "firth"), method = c("obs", "exp"))

Arguments

- **par** parameter vector (scale, shape)
- **dat** sample of observations
- **corr** string indicating which correction to employ either subtract or firth
- **method** string indicating whether to use the expected ("exp") or the observed ("obs" — the default) information matrix. Used only if corr="firth"

Value

- vector of bias-corrected parameters

Examples

```r
set.seed(1)
dat <- evd::rgev(n=40, loc = 1, scale=1, shape=-0.2)
par <- evd::fgev(dat)$estimate
gev.bcor(par, dat, "subtract")
gev.bcor(par, dat, "firth") #observed information
gev.bcor(par, dat, "firth","exp")```
**gev.mle**

*Generalized extreme value maximum likelihood estimates for various quantities of interest*

### Description

This function calls the fgev routine on the sample of excesses and returns maximum likelihood estimates for all quantities of interest, including scale and shape parameters, quantiles and value-at-risk, expected shortfall and mean and quantiles of maxima of N threshold exceedances.

### Usage

```
gev.mle(dat, args = c("loc", "scale", "shape", "quant", "Nmean", "Nquant"), N, p, q)
```

### Arguments

- **dat**: sample vector of excesses
- **args**: vector of strings indicating which arguments to return the maximum likelihood values for.
- **N**: size of block over which to take maxima. Required only for args Nmean and Nquant.
- **p**: tail probability. Required only for arg quant.
- **q**: level of quantile for maxima of N exceedances. Required only for args Nquant.

### Value

named vector with maximum likelihood estimated parameter values for arguments args

### Examples

```
dat <- evd::rgev(n = 100, shape = 0.2)
gev.mle(dat = dat, N = 100, p = 0.01, q = 0.5)
```

---

**gev.Nyr**

*N-year return levels, median and mean estimate*

### Description

N-year return levels, median and mean estimate

### Usage

```
gev.Nyr(par, nobs, N, type = c("retlev", "median", "mean"), p = 1/N)
```
Arguments

par vector of location, scale and shape parameters for the GEV distribution
nobs integer number of observation on which the fit is based
N integer number of observations for return level. See Details

Details

If there are $n_y$ observations per year, the L-year return level is obtained by taking N equal to $n_y L$.

Value

a list with components

- est point estimate
- var variance estimate based on delta-method
- type statistic

Description

This function calculates the profile likelihood along with two small-sample corrections based on Severini’s (1999) empirical covariance and the Fraser and Reid tangent exponential model approximation.

Usage

gev.pll(psiL param = c("loc", "scale", "shape", "quant", "Nmean", "Nquant"),
mod = c("tem", "modif"), dat, N = NULL, p = NULL, q = NULL,
correction = TRUE, ...)

Arguments

psi parameter vector over which to profile (unidimensional)
param string indicating the parameter to profile over
mod string indicating the model. See Details.
dat sample vector
N size of block over which to take maxima. Required only for param Nmean and Nquant.
p tail probability. Required only for param quant.
gev.pll

q probability level of quantile. Required only for param nquant.

correction logical indicating whether to use spline.corr to smooth the tem approxima-
tion.

... additional arguments such as output from call to Vfun if mode="tem".

Details

The two mod available are tem, the tangent exponential model (TEM) approximation and modif for
the penalized profile likelihood based on \( p^* \) approximation proposed by Severini. For the latter, the
penalization is based on the TEM or an empirical covariance adjustment term.

Value

a list with components

- mle: maximum likelihood estimate
- psi.max: maximum profile likelihood estimate
- param: string indicating the parameter to profile over
- std.error: standard error of psi.max
- psi: vector of parameter psi given in psi
- pl1: values of the profile log likelihood at psi
- maxpl1: value of maximum profile log likelihood

In addition, if mod includes tem

- normal: maximum likelihood estimate and standard error of the interest parameter psi
- r: values of likelihood root corresponding to \( \psi \)
- q: vector of likelihood modifications
- rstar: modified likelihood root vector
- rstar.old: uncorrected modified likelihood root vector
- tem.psimax: maximum of the tangent exponential model likelihood

In addition, if mod includes modif

- tem.mle: maximum of tangent exponential modified profile log likelihood
- tem.prof11: values of the modified profile log likelihood at psi
- tem.maxpl1: value of maximum modified profile log likelihood
- emp cov.mle: maximum of Severini’s empirical covariance modified profile log likelihood
- emp cov.prof11: values of the modified profile log likelihood at psi
- emp cov.maxpl1: value of maximum modified profile log likelihood
References


Examples

```r
Not run:
dat <- evd::rgev(n = 100, loc = 0, scale = 2, shape = 0.3)
gev.pi1(psi = seq(-0.5, 1, by=0.01), param = "shape", dat = dat)
gev.pi1(psi = seq(-3, 3, length = 50), param = "loc", dat = dat)
gev.pi1(psi = seq(10, 30, by = 0.1), param = "quant", dat = dat, p = 0.01)
gev.pi1(psi = seq(12, 100, by=1), param = "Nmean", N = 100, dat = dat)
gev.pi1(psi = seq(12, 90, by=1), param = "Nquant", N = 100, dat = dat, q = 0.5)
End(Not run)
```

**gev.tem**

*Tangent exponential model approximation for the GEV distribution*

Description

The function `gev.tem` provides a tangent exponential model (TEM) approximation for higher order likelihood inference for a scalar parameter for the generalized extreme value distribution. Options include location scale and shape parameters as well as value-at-risk (or return levels). The function attempts to find good values for `psi` that will cover the range of options, but the fail may fit and return an error.

Usage

```r
gev.tem(param = c("loc", "scale", "shape", "quant", "Nmean", "Nquant"), dat,
psi = NULL, p = NULL, q = 0.5, N = NULL, n.psi = 50, plot = TRUE,
correction = TRUE)
```

Arguments

- **param**: parameter over which to profile
- **dat**: sample vector for the GEV distribution
- **psi**: scalar or ordered vector of values for the interest parameter. If `NULL` (default), a grid of values centered at the MLE is selected
- **p**: tail probability for the (1-p)th quantile (return levels). Required only if `param = "retlev"
- **q**: probability level of quantile. Required only for `param Nquant`
- **N**: size of block over which to take maxima. Required only for `param Nmean` and `Nquant`
n.psi

number of values of psi at which the likelihood is computed, if psi is not supplied (NULL). Odd values are more prone to give rise to numerical instabilities near the MLE. If psi is a vector of length 2 and n.psi is greater than 2, these are taken to be endpoints of the sequence.

plot

logical indicating whether plot.fr should be called upon exit

correction

logical indicating whether spline.cor should be called.

Value

an invisible object of class fr (see tem) with elements

- normal: maximum likelihood estimate and standard error of the interest parameter psi
- par.hat: maximum likelihood estimates
- par.hat.se: standard errors of maximum likelihood estimates
- th.rest: estimated maximum profile likelihood at (psi, \hat{\lambda})
- r: values of likelihood root corresponding to \psi
- psi: vector of interest parameter
- q: vector of likelihood modifications
- rstar: modified likelihood root vector
- rstar.old: uncorrected modified likelihood root vector
- param: parameter

Author(s)

Leo Belzile, from code by A. Davison extracted from the hoa package bundle.

Examples

```
Not run:
dat <- evd::rgev(n = 40, loc = 0, scale = 2, shape = -0.1)
gev.tem("shape", dat = dat, plot = TRUE)
gev.tem("quant", dat = dat, p = 0.01, plot = TRUE)
gev.tem("scale", psi = seq(1, 4, by = 0.1), dat = dat, plot = TRUE)
dat <- evd::rgev(n = 40, loc = 0, scale = 2, shape = 0.2)
gev.tem("loc", dat = dat, plot = TRUE)
gev.tem("Nmean", dat = dat, p = 0.01, N=100, plot = TRUE)
gev.tem("Nquant", dat = dat, q = 0.5, N=100, plot = TRUE)
End(Not run)
```
Description

Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized extreme value distribution parametrized in terms of the quantiles/mean of N-block maxima parametrization $z$, scale and shape.

Arguments

par vector of loc, quantile/mean of N-block maximum and shape
dat sample vector
V vector calculated by gevN.vfun
q probability, corresponding to $q$th quantile of the N-block maximum
qty string indicating whether to calculate the q quantile or the mean

Usage

gevN.ll(par, dat, N, q, qty = c("mean", "quantile"))
gevN.ll.optim(par, dat, N, q = 0.5, qty = c("mean", "quantile"))
gevN.score(par, dat, N, q = 0.5, qty = c("mean", "quantile"))
gevN.infomat(par, dat, qty = c("mean", "quantile"), method = c("obs", "exp"), N, q = 0.5, nobs = length(dat))
gevN.vfun(par, dat, N, q = 0.5, qty = c("mean", "quantile"))
gevN.phi(par, dat, N, q = 0.5, qty = c("mean", "quantile"), V)
gevN.dphi(par, dat, N, q = 0.5, qty = c("mean", "quantile"), V)

Functions

• gevN.ll: log likelihood
• gevN.score: score vector
• gevN.infomat: expected and observed information matrix
• gevN.vfun: vector implementing conditioning on approximate ancillary statistics for the TEM
• gevN.phi: canonical parameter in the local exponential family approximation
• gevN.dphi: derivative matrix of the canonical parameter in the local exponential family approximation

Author(s)

Leo Belzile
Description

Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized extreme value distribution parametrized in terms of the return level $z$, scale and shape.

Arguments

- **par**: vector of retlev, scale and shape
- **dat**: sample vector
- **p**: tail probability, corresponding to $(1 - p)$th quantile for $z$
- **method**: string indicating whether to use the expected ("exp") or the observed ("obs" - the default) information matrix.
- **nobs**: number of observations
- **V**: vector calculated by `gevr.Vfun`

Usage

- `gevr.ll(par, dat, p)`
- `gevr.ll.optim(par, dat, p)`
- `gevr.score(par, dat, p)`
- `gevr.infmot(par, dat, p, method = c("obs", "exp"), nobs = length(dat))`
- `gevr.Vfun(par, dat, p)`
- `gevr.phi(par, dat, p, V)`
- `gevr.dphi(par, dat, p, V)`

Functions

- `gevr.ll`: log likelihood
- `gevr.ll.optim`: negative log likelihood parametrized in terms of return levels, log(scale) and shape in order to perform unconstrained optimization
- `gevr.score`: score vector
- `gevr.infmot`: observed information matrix
- `gevr.Vfun`: vector implementing conditioning on approximate ancillary statistics for the TEM
- `gevr.phi`: canonical parameter in the local exponential family approximation
- `gevr.dphi`: derivative matrix of the canonical parameter in the local exponential family approximation

Author(s)

Leo Belzile
gp.fit

*Peaks-over-threshold modelling using the generalized Pareto distribution*

**Description**

Numerical optimization of the Generalized Pareto distribution over a high threshold.

**Usage**

```r
gp.fit(xdat, threshold, method = c("Grimshaw", "nlm", "optim", "ismev", "zs", "zhang"), show = FALSE, MCMC = NULL)
```

**Arguments**

- `xdat`: a numeric vector of data to be fitted.
- `threshold`: the chosen threshold.
- `method`: the method to be used. See **Details**. Can be abbreviated.
- `show`: logical; if `TRUE` (the default), print details of the fit.
- `MCMC`: `NULL` for frequentist estimates, otherwise a boolean or a list with parameters passed. If `TRUE`, runs a Metropolis-Hastings sampler to get posterior mean estimates. Can be used to pass arguments `niter, burnin and thin` to the sampler as a list.

**Details**

The default method is "Grimshaw", consisting in maximization of the profile likelihood for the scale. Other options for maximization of the profile likelihood are `nlm` and `optim`, which use respectively `nlm` and `optim`. Method "ismev" is the two-dimensional optimization routine `gpd.fit` from the `ismev` library, with in addition the algebraic gradient. The approximate Bayesian methods ("zs" and "zhang") are extracted respectively from Zhang and Stephens (2009) and Zhang (2010) and consists of a approximate posterior mean calculated via importance sampling assuming a GPD prior is placed on the parameter of the profile likelihood.

**Value**

If `method` is neither "zs" nor "zhang", a list containing the following components:

- `estimate`: a vector containing all parameters (optimized and fixed).
- `std.err`: a vector containing the standard errors.
- `var.cov`: the variance covariance matrix, obtained as the numerical inverse of the observed information matrix.
- `threshold`: the threshold.
- `method`: the method used to fit the parameter. See details.
- `deviance`: the deviance at the maximum likelihood estimates.
• nat number of points lying above the threshold.
• pat proportion of points lying above the threshold.
• convergence components taken from the list returned by \texttt{optim}. Values other than 0 indicate that the algorithm likely did not converge (in particular 1 and 50).
• counts components taken from the list returned by \texttt{optim}.

Otherwise, a list containing

• threshold the threshold.
• method the method used to fit the parameter. See \texttt{Details}.
• nat number of points lying above the threshold.
• pat proportion of points lying above the threshold.
• approx\_mean a vector containing containing the approximate posterior mean estimates.

and in addition if MCMC is neither \texttt{FALSE}, nor \texttt{NULL}

• post\_mean a vector containing the posterior mean estimates.
• post\_se a vector containing the posterior standard error estimates.
• accept\_rate proportion of points lying above the threshold.
• niter length of resulting Markov Chain
• burnin amount of discarded iterations at start, capped at 10000.
• thin thinning integer parameter describing

\textbf{Note}

Some of the internal functions (which are hidden from the user) allow for modelling of the parameters using covariates. This is not currently implemented within \texttt{gp.fit}, but users can call internal functions should they wish to use these features.

\textbf{Author(s)}


\textbf{References}


See Also

fpot and gpd.fit

Examples

library(ismev)
data(rain)
threshold <- quantile(rain, 0.9)
gp.fit(rain, threshold, method="Grimshaw")
gp.fit(rain, threshold, method="zs")

gpd

Generalized Pareto distribution

Description

Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized Pareto distribution

Arguments

par
  vector of scale and shape
dat
  sample vector
tol
  numerical tolerance for the exponential model
method
  string indicating whether to use the expected ("exp") or the observed ("obs" - the default) information matrix.
V
  vector calculated by gpd.Vfun
n
  sample size

Usage

gpd.ll(par, dat, tol=1e-5)
gpd.ll.optim(par, dat, tol=1e-5)
gpd.score(par, dat)
gpd.infomat(par, dat, method = c("obs","exp"))
gpd.bias(par, n)
gpd.Fscore(par, dat, method = c("obs","exp"))
gpd.Vfun(par, dat)
gpd.phi(par, dat, V)
gpd.dphi(par, dat, V)
Functions

- `gpdNll`: log likelihood
- `gpdNllNoptim`: negative log likelihood parametrized in terms of \( \log(\text{scale}) \) and shape in order to perform unconstrained optimization
- `gpd.score`: score vector
- `gpd.informat`: observed or expected information matrix
- `gpd.bias`: Cox-Snell first order bias
- `gpd.Fscore`: Firth’s modified score equation
- `gpd.Vfun`: vector implementing conditioning on approximate ancillary statistics for the TEM
- `gpd.phi`: canonical parameter in the local exponential family approximation
- `gpd.dphi`: derivative matrix of the canonical parameter in the local exponential family approximation

Author(s)

Leo Belzile

References


---

**gpd.abias**  
*Asymptotic bias of threshold exceedances for k order statistics*

Description

The formula given in de Haan and Ferreira, 2007 (Springer). Note that the latter differs from that found in Drees, Ferreira and de Haan.

Usage

`gpd.abias(\text{shape}, \text{rho})`
Arguments

shape  shape parameter
rho  second-order parameter, non-positive

Value

a vector of length containing the bias for scale and shape (in this order)

References


gpd.bcor  

Description

The routine uses the MLE (bias-corrected) as starting values and proceeds to find the solution using a root finding algorithm. Since the bias-correction is not valid for $x_i < -1/3$, any solution that is unbounded will return a vector of NA - additionally, passing a par argument with shape less than $-1/3$ will return an error if method="subtract" is selected, as the bias correction does not exist then. For small samples, expected and observed information can return very different estimates.

Usage

gpd.bcor(par, dat, corr = c("subtract", "firth"), method = c("obs", "exp"))

Arguments

par  parameter vector (scale, shape)
dat  sample of observations
corr  string indicating which correction to employ either subtract or firth
method  string indicating whether to use the expected ("exp") or the observed ("obs" — the default) information matrix. Used only if corr="firth"

Value

vector of bias-corrected parameters

Examples

set.seed(1)
dat <- evd::rgpd(n=40, scale=1, shape=-0.2)
par <- gp.fit(dat, threshold=0, show=FALSE)$estimate
gpd.bcor(par, dat, "subtract")
gpd.bcor(par, dat, "firth") # observed information
gpd.bcor(par, dat, "firth","exp")
**gpd.mle**

*Generalized Pareto maximum likelihood estimates for various quantities of interest*

**Description**

This function calls the `gp.fit` routine on the sample of excesses and returns maximum likelihood estimates for all quantities of interest, including scale and shape parameters, quantiles and value-at-risk, expected shortfall and mean and quantiles of maxima of threshold exceedances.

**Usage**

```r
gpd.mle(dat, args = c("scale", "shape", "quant", "VaR", "ES", "Nmean", "Nquant"), m, N, p, q)
```

**Arguments**

- `dat`: sample vector of excesses
- `args`: vector of strings indicating which arguments to return the maximum likelihood values for
- `m`: number of observations of interest for return levels. Required only for `args` values "VaR" or "ES"
- `N`: size of block over which to take maxima. Required only for `args Nmean` and `Nquant`.
- `p`: tail probability, equivalent to $1/m$. Required only for `args quant`.
- `q`: level of quantile for N-block maxima. Required only for `args Nquant`.

**Value**

named vector with maximum likelihood values for arguments `args`

**Examples**

```r
dat <- evd::rgpd(n = 30, shape = 0.2)
gpd.mle(dat = dat, N = 100, p = 0.01, q = 0.5, m = 100)
```
**Description**

This function calculates the (modified) profile likelihood based on the $p^*$ formula. There are two small-sample corrections that use a proxy for $\ell_{\lambda, \hat{\lambda}}$, which are based on Severini's (1999) empirical covariance and the Fraser and Reid tangent exponential model approximation.

**Usage**

```r
gpd pll(psiL param \] c(BscaleBL BshapeBL BquantBL BvarBL BesBL BnmeanBL BnquantBIL mod \] c(BtemBL BmodifBIL mle \] nullL datL m \] nullL p \] nullL q \] nullL correction \] trueL NNNI
```

**Arguments**

- **psi**: parameter vector over which to profile (unidimensional)
- **param**: string indicating the parameter to profile over
- **mod**: string indicating the model. See Details.
- **mle**: maximum likelihood estimate in $(\psi, \xi)$ parametrization if $\psi \neq \xi$ and $(\sigma, \xi)$ otherwise (optional).
- **dat**: sample vector of excesses
- **m**: number of observations of interest for return levels. Required only for args values "VaR" or "ES"
- **N**: size of block over which to take maxima. Required only for args Nmean and Nquant.
- **p**: tail probability, equivalent to $1/m$. Required only for args quant.
- **q**: level of quantile for N-block maxima. Required only for args Nquant.
- **correction**: logical indicating whether to use spline.corr to smooth the tem approximation.
- **...**: additional arguments such as output from call to Vfun if mode="tem".

**Details**

The two mod available are tem, the tangent exponential model (TEM) approximation and modif for the penalized profile likelihood based on $p^*$ approximation proposed by Severini. For the latter, the penalization is based on the TEM or an empirical covariance adjustment term.
Value

a list with components

- `mle`: maximum likelihood estimate
- `psi.max`: maximum profile likelihood estimate
- `param`: string indicating the parameter to profile over
- `std.error`: standard error of `psi.max`
- `psi`: vector of parameter `psi` given in `psi`
- `pll`: values of the profile log likelihood at `psi`
- `maxpll`: value of maximum profile log likelihood

In addition, if `mod` includes `tem`

- `normal`: maximum likelihood estimate and standard error of the interest parameter `psi`
- `r`: values of likelihood root corresponding to `ψ`
- `q`: vector of likelihood modifications
- `rstar`: modified likelihood root vector
- `rstar.old`: uncorrected modified likelihood root vector
- `tem.psimax`: maximum of the tangent exponential model likelihood

In addition, if `mod` includes `modif`

- `tem.mle`: maximum of tangent exponential modified profile log likelihood
- `tem.profll`: values of the modified profile log likelihood at `psi`
- `tem.maxpll`: value of maximum modified profile log likelihood
- `empcov.mle`: maximum of Severini’s empirical covariance modified profile log likelihood
- `empcov.profll`: values of the modified profile log likelihood at `psi`
- `empcov.maxpll`: value of maximum modified profile log likelihood

Examples

```r
Not run:
dat <- evd::rgpd(n = 100, scale = 2, shape = 0.3)
gpd.pll(psi = seq(-0.5, 1, by=0.01), param = "shape", dat = dat)
gpd.pll(psi = seq(0.1, 5, by=0.1), param = "scale", dat = dat)
gpd.pll(psi = seq(20, 35, by=0.1), param = "quant", dat = dat, p = 0.01)
gpd.pll(psi = seq(20, 80, by=0.1), param = "ES", dat = dat, m = 100)
gpd.pll(psi = seq(15, 100, by=1), param = "Nmean", N = 100, dat = dat)
gpd.pll(psi = seq(15, 90, by=1), param = "Nquant", N = 100, dat = dat, q = 0.5)
```

## End(Not run)
Tangent exponential model approximation for the GP distribution

Description

The function `gpd.tem` provides a tangent exponential model (TEM) approximation for higher order likelihood inference for a scalar parameter for the generalized Pareto distribution. Options include scale and shape parameters as well as value-at-risk (also referred to as quantiles, or return levels) and expected shortfall. The function attempts to find good values for `psi` that will cover the range of options, but the fit may fail and return an error. In such cases, the user can try to find good grid of starting values and provide them to the routine.

Usage

```r
gpd.tem(dat, param = c("scale", "shape", "quant", "VaR", "ES", "Nmean", "Nquant"), psi = NULL, m = NULL, threshold = 0, n.psi = 50, N = NULL, p = NULL, q = NULL, plot = FALSE, correction = TRUE)
```

Arguments

- `dat`: sample vector for the GP distribution
- `param`: parameter over which to profile
- `psi`: scalar or ordered vector of values for the interest parameter. If `NULL` (default), a grid of values centered at the MLE is selected. If `psi` is of length 2 and `n.psi>2`, it is assumed to be the minimal and maximal values at which to evaluate the profile log likelihood.
- `m`: number of observations of interest for return levels. See Details. Required only for `param = "VaR"` or `param = "ES"`.
- `threshold`: threshold value corresponding to the lower bound of the support or the location parameter of the generalized Pareto distribution.
- `n.psi`: number of values of `psi` at which the likelihood is computed, if `psi` is not supplied (`NULL`). Odd values are more prone to give rise to numerical instabilities near the MLE.
- `N`: size of block over which to take maxima. Required only for `args Nmean` and `Nquant`.
- `p`: tail probability, equivalent to `1/m`. Required only for `args quant`.
- `q`: level of quantile for N-block maxima. Required only for `args Nquant`.
- `plot`: logical indicating whether `plot.fr` should be called upon exit
- `correction`: logical indicating whether `spline.corr` should be called.

Details

As of version 1.11, this function is a wrapper around `gpd.pll`.

The interpretation for `m` is as follows: if there are on average `m_y` observations per year above the threshold, then `m = T m_y` corresponds to `T`-year return level.
**Value**

an invisible object of class fr (see tem) with elements

- normal: maximum likelihood estimate and standard error of the interest parameter $\psi$
- par.hat: maximum likelihood estimates
- par.hat.se: standard errors of maximum likelihood estimates
- th.rest: estimated maximum profile likelihood at $(\psi, \lambda)$
- r: values of likelihood root corresponding to $\psi$
- psi: vector of interest parameter
- q: vector of likelihood modifications
- rstar: modified likelihood root vector
- rstar.old: uncorrected modified likelihood root vector
- param: parameter

**Author(s)**

Leo Belzile

**Examples**

```r
set.seed(123)
dat <- evd::rgpd(n = 40, scale = 1, shape = -0.1)
with plots
m1 <- gpd.tem(param = "shape", n.psi = 50, dat = dat, plot = TRUE)
m2 <- gpd.tem(param = "scale", n.psi = 50, dat = dat)
m3 <- gpd.tem(param = "VaR", n.psi = 50, dat = dat, m = 100)
Providing psi
Not run:
psi <- c(seq(2, 5, length = 15), seq(5, 35, length = 45))
m4 <- gpd.tem(param = "ES", dat = dat, m = 100, psi = psi, correction = FALSE)
plot.fr(m4, which = c(2, 4))
plot(fr4 <- spline.corr(m4))
confint(m1)
confint(m4, parm = 2, warn = FALSE)
m5 <- gpd.tem(param = "Nmean", dat = dat, N = 100, psi = psi, correction = FALSE)
m6 <- gpd.tem(param = "Nquant", dat = dat, N = 100, q = 0.7, correction = FALSE)
End(Not run)
```
Description

Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized Pareto distribution parametrized in terms of expected shortfall.

The parameter $m$ corresponds to $\zeta_u/(1-\alpha)$, where $\zeta_u$ is the rate of exceedance over the threshold $u$ and $\alpha$ is the percentile of the expected shortfall. Note that the actual parametrization is in terms of excess expected shortfall, meaning expected shortfall minus threshold.

Arguments

- `par`: vector of length 2 containing $e_m$ and $\xi$, respectively the expected shortfall at probability $1/(1-\alpha)$ and the shape parameter.
- `dat`: sample vector
- `m`: number of observations of interest for return levels. See Details
- `tol`: numerical tolerance for the exponential model
- `method`: string indicating whether to use the expected ("exp") or the observed ("obs" - the default) information matrix.
- `nobs`: number of observations
- `V`: vector calculated by `gpde.Vfun`

Details

The observed information matrix was calculated from the Hessian using symbolic calculus in Sage.

Usage

- `gpde.ll(par, dat, m, tol=1e-5)`
- `gpde.ll.optim(par, dat, m, tol=1e-5)`
- `gpde.score(par, dat, m)`
- `gpde.infomat(par, dat, m, method = c("obs", "exp"), nobs = length(dat))`
- `gpde.Vfun(par, dat, m)`
- `gpde.phi(par, dat, V, m)`
- `gpde.dphi(par, dat, V, m)`

Functions

- `gpde.ll`: log likelihood
- `gpde.ll.optim`: negative log likelihood parametrized in terms of log expected shortfall and shape in order to perform unconstrained optimization
- `gpde.score`: score vector
- `gpde.infomat`: observed information matrix for GPD parametrized in terms of rate of expected shortfall and shape
- gpde.Vfun: vector implementing conditioning on approximate ancillary statistics for the TEM
- gpde.phi: canonical parameter in the local exponential family approximation
- gpde.dphi: derivative matrix of the canonical parameter in the local exponential family approximation

Author(s)
Leo Belzile

---

### Description

Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized Pareto distribution parametrized in terms of average maximum of *N* exceedances.

The parameter *N* corresponds to the number of threshold exceedances of interest over which the maxima is taken. *z* is the corresponding expected value of this block maxima. Note that the actual parametrization is in terms of excess expected mean, meaning expected mean minus threshold.

### Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>par</td>
<td>vector of length 2 containing <em>z</em> and <em>ξ</em> respectively the mean excess of the maxima of <em>N</em> exceedances above the threshold and the shape parameter.</td>
</tr>
<tr>
<td>dat</td>
<td>sample vector</td>
</tr>
<tr>
<td><em>N</em></td>
<td>block size for threshold exceedances.</td>
</tr>
<tr>
<td>tol</td>
<td>numerical tolerance for the exponential model</td>
</tr>
<tr>
<td>V</td>
<td>vector calculated by gpdN.Vfun</td>
</tr>
</tbody>
</table>

### Details

The observed information matrix was calculated from the Hessian using symbolic calculus in Sage.

### Usage

```r
Example usage

Likelihood
gpdN.ll(par, dat, N, tol=1e-5)

Score function
gpdN.score(par, dat, N)

Information matrix
gpdN.inform(par, dat, N, method = c("obs", "exp"), nobs = length(dat))

Vfun
gpdN.Vfun(par, dat, N)

phi
gpdN.phi(par, dat, N, V)

dphi
gpdN.dphi(par, dat, N, V)
```
Functions

- `gpdr$ll`: log likelihood
- `gpdr$score`: score vector
- `gpdr$infomat`: observed information matrix for GP parametrized in terms of mean of the maximum of \(N\) exceedances and shape
- `gpdr$Vfun`: vector implementing conditioning on approximate ancillary statistics for the TEM
- `gpdr$phi`: canonical parameter in the local exponential family approximation
- `gpdr$dphi`: derivative matrix of the canonical parameter in the local exponential family approximation

Author(s)

Leo Belzile

---

**gpdr**  
*Generalized Pareto distribution (return level parametrization)*

Description

Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized Pareto distribution parametrized in terms of return levels.

Arguments

- `par`: vector of length 2 containing \(y_m\) and \(\xi\), respectively the \(m\)-year return level and the shape parameter.
- `dat`: sample vector
- `m`: number of observations of interest for return levels. See Details
- `tol`: numerical tolerance for the exponential model
- `method`: string indicating whether to use the expected ("exp") or the observed ("obs" - the default) information matrix.
- `nobs`: number of observations
- `V`: vector calculated by `gpdr$Vfun`

Details

The observed information matrix was calculated from the Hessian using symbolic calculus in Sage. The interpretation for \(m\) is as follows: if there are on average \(m_y\) observations per year above the threshold, then \(m = Tm_y\) corresponds to \(T\)-year return level.
**Usage**

- `gpdr.ll(par, dat, m, tol=1e-5)`
- `gpdr.ll.optim(par, dat, m, tol=1e-5)`
- `gpdr.score(par, dat, m)`
- `gpdr.infomat(par, dat, m, method = c("obs", "exp"), nobs = length(dat))`
- `gpdr.Vfun(par, dat, m)`
- `gpdr.phi(par, v, dat, m)`
- `gpdr.dphi(par, v, dat, m)`

**Functions**

- `gpdr.ll`: log likelihood
- `gpdr.ll.optim`: negative log likelihood parametrized in terms of log(scale) and shape in order to perform unconstrained optimization
- `gpdr.score`: score vector
- `gpdr.infomat`: observed information matrix for GPD parametrized in terms of rate of \(m\)-year return level and shape
- `gpdr.Vfun`: vector implementing conditioning on approximate ancillary statistics for the TEM
- `gpdr.phi`: canonical parameter in the local exponential family approximation
- `gpdr.dphi`: derivative matrix of the canonical parameter in the local exponential family approximation

**Author(s)**

Leo Belzile

---

**Description**

This is an adaptation of the `evir` package `interpret.gpdbiv` function. `interpret.fbpot` was adapted to deal with the output of a call to `fbpot` from the `evd` and to handle families other than the logistic distribution. The likelihood derivation comes from expression 2.10 in Smith et al. (1997).

**Usage**

`ibvpot(fitted, q, silent = FALSE)`

**Arguments**

- `fitted`: the output of `fbpot` or a list. See Details.
- `q`: a vector of quantiles to consider, on the data scale. Must be greater than the thresholds.
- `silent`: boolean; whether to print the interpretation of the result. Default to `FALSE`. 
Details

The list fitted must contain

- `model` a string; see `bvevd` for options
- `param` a named vector containing the parameters of the `model`, as well as parameters `scale1`, `shape1`,`scale2` and `shape2`, corresponding to marginal GPD parameters.
- `threshold` a vector of length 2 containing the two thresholds.
- `pat` the proportion of observations above the corresponding threshold

Value

an invisible numeric vector containing marginal, joint and conditional exceedance probabilities.

Author(s)

Leo Belzile, adapting original S code by Alexander McNeil

References


See Also

`interpret.gpdbiv`

Examples

```r
y <- evd::rgpd(1000,1,1,1)
x <- y*rmevspec(n=1000,d=2,sigma=cbind(c(0,0.5),c(0.5,0)),model="hr")
mod <- evd::fbvpot(x,threshold = c(1,1),model = "hr",likelihood ="censored")
ibvpot(mod, c(20,20))
```

infomat.test

*Information matrix test statistic and MLE for the extremal index*

Description

The Information Matrix Test (IMT), proposed by Suveges and Davison (2010), is based on the difference between the expected quadratic score and the second derivative of the log-likelihood. The asymptotic distribution for each threshold $u$ and gap $k$ is asymptotically $\chi^2$ with one degree of freedom. The approximation is good for $N > 80$ and conservative for smaller sample sizes. The test assumes independence between gaps.

Usage

```r
infomat.test(x, q, K, plot = TRUE)
```
Arguments

- \( x \)  
  data vector

- \( q \)  
  vector of thresholds

- \( K \)  
  int specifying the largest K-gap

- \( \text{plot} \)  
  logical: should the graphical diagnostic be plotted?

Details

The procedure proposed in Suveges & Davison (2010) was corrected for errata. The maximum likelihood is based on the limiting mixture distribution of the intervals between exceedances (an exponential with a point mass at zero). The condition \( D^{(K)}(u_n) \) should be checked by the user.

Fukutome et al. (2015) propose an ad hoc automated procedure

1. Calculate the interexceedance times for each K-gap and each threshold, along with the number of clusters
2. Select the \((u, K)\) pairs for which \(\text{IMT} < 0.05\) (corresponding to a P-value of 0.82)
3. Among those, select the pair \((u, K)\) for which the number of clusters is the largest

Value

an invisible list of matrices containing

- \( \text{IMT} \) a matrix of test statistics
- \( \text{pvals} \) a matrix of approximate p-values (corresponding to probabilities under a \( \chi^2 \) distribution)
- \( \text{mle} \) a matrix of maximum likelihood estimates for each given pair \((u, K)\)
- \( \text{loglik} \) a matrix of log-likelihood values at MLE for each given pair \((u, K)\)
- \( \text{threshold} \) a vector of thresholds based on empirical quantiles at supplied levels.
- \( q \) the vector \( q \) supplied by the user

Author(s)

Leo Belzile

References


Examples

```r
infomat.test(x <- evd::rgpd(n = 1000), q = seq(0.9, 0.995, length=10), K <- 3)
```
**Description**

Estimation of the bivariate lambda function of Wadsworth and Tawn (2013)

**Usage**

```r
lambdadep(dat, qu = 0.95, method = c("hill", "mle", "bayes"), plot = TRUE)
```

**Arguments**

- `dat`: an n by 2 matrix of multivariate observations
- `qu`: quantile level on uniform scale at which to threshold data. Default to 0.95
- `method`: string indicating the estimation method
- `plot`: logical indicating whether to return the graph of lambda

The confidence intervals are based on normal quantiles. The standard errors for the hill are based on the asymptotic covariance and that of the mle derived using the delta-method. Bayesian posterior predictive interval estimates are obtained using ratio-of-uniform sampling with flat priors: the shape parameters are constrained to lie within the triangle, as are frequentist point estimates which are adjusted post-inference.

**Value**

- a plot of the lambda function if plot=TRUE, plus an invisible list with components
  - `w`: the sequence of angles in (0,1) at which the lambda values are evaluated
  - `lambda`: point estimates of lambda
  - `lower.confint 95`
  - `lower.confint 95`

**Examples**

```r
set.seed(12)
dat <- evd::rbevd(n=1000, dep = 0.1)
lambdadep(dat, method = "hill")
Not run:
lambdadep(dat, method = "bayes")
lambdadep(dat, method = "mle")
dat <- matrix(runif(n = 2000), ncol = 2)
lambdadep(dat, method = "hill")
End(Not run)
```
mvrnorm

Multivariate Normal distribution sampler

Description
Sampler derived using the eigendecomposition of the covariance matrix Sigma. The function uses the Armadillo random normal generator.

Usage
mvrnorm(n, mu, Sigma)

Arguments
- n: sample size
- mu: mean vector. Will set the dimension
- Sigma: a square covariance matrix, of same dimension as mu. No sanity check is performed to validate that the matrix is p.s.d., so use at own risk

Value
an n sample from a multivariate Normal distribution

Examples
mvrnorm(n=10, mu=c(0,2), Sigma=diag(2))

ncNdiag

Score and likelihood ratio tests fit of equality of shape over multiple thresholds

Description
The function returns a P-value path for the score test and/or likelihood ratio test for equality of the shape parameters over multiple thresholds under the generalized Pareto model.

Usage
ncNdiag(x, u, GP.fit = c("Grimshaw", "nlm", "optim", "ismev"), do.LRT = FALSE, size = NULL, my.xlab = NULL, xi.tol = 0.001)
Arguments

- **x**: raw data
- **u**: m-vector of thresholds (sorted from smallest to largest)
- **GP.fit**: function used to optimize the generalized Pareto model.
- **do.LRT**: boolean indicating whether to perform the likelihood ratio test (in addition to the score test)
- **size**: level at which a horizontal line is drawn on multiple threshold plot
- **my.xlab**: (optional) x-axis label
- **xi.tol**: numerical tolerance for threshold distance; if the absolute value of \( \hat{\xi} \) is less than \( \xi.tol \) use linear interpolation to evaluate score vectors, expected Fisher information matrices, Hessians

Details

The default method is “Grimshaw” using the reduction of the parameters to a one-dimensional maximization. Other options are one-dimensional maximization of the profile the nlm function or \texttt{optim}. Two-dimensional optimisation using 2D-optimization \texttt{ismev} using the routine from \texttt{gpd.fit} from the \texttt{isme}v library, with the addition of the algebraic gradient. The choice of \texttt{GP.fit} should make no difference but the options were kept. **Warning**: the function is not robust and will not recover from failure of the maximization routine, returning various error messages.

Value

a plot of P-values for the test at the different thresholds \( u \)

Author(s)

Paul J. Northrop and Claire L. Coleman

References


Examples

```r
Not run:
library(ismev)
data(rain)
u <- quantile(rain, seq(0.85,0.99,by=0.01))
NC.diag(rain, u, size=0.05)

End(Not run)
```
plot.extprof  
*Plot of (modified) profile likelihood*

**Description**

The function plots the (modified) profile likelihood and the tangent exponential profile likelihood.

**Usage**

```r
S3 method for class 'extprof'
plot(x, ...)
```

**Arguments**

- `x` an object of class `extprof` returned by `gpd.pll` or `gev.pll`.
- `...` further arguments to `plot`.

**Value**

A graph of the (modified) profile likelihoods.

**References**


plot.fr  
*Plot of tangent exponential model profile likelihood*

**Description**

This function is adapted from `plot.fr`. It differs mostly in the placement of legends.

**Usage**

```r
S3 method for class 'fr'
plot(x, ...)
```

**Arguments**

- `x` an object of class `fr` returned by `gpd.tem` or `gev.tem`.
- `...` further arguments to `plot` currently ignored. Providing a numeric vector which allows for custom selection of the plots. A logical `all`. See **Details**.
Details

Plots produced depend on the integers provided in which. 1 displays the Wald pivot, the likelihood root \( r \), the modified likelihood root \( r_{star} \) and the likelihood modification \( q \) as functions of the parameter \( \psi \). 2 gives the renormalized profile log likelihood and adjusted form, with the maximum likelihood having ordinate value of zero. 3 provides the significance function, a transformation of 1. Lastly, 4 plots the correction factor as a function of the likelihood root; it is a diagnostic plot aimed for detecting failure of the asymptotic approximation, often due to poor numerics in a neighborhood of \( r=0 \); the function should be smooth. The function \texttt{spline.corr} is designed to handle this by correcting numerically unstable estimates, replacing outliers and missing values with the fitted values from the fit.

Value

graphs depending on argument \texttt{which}

References


---

\texttt{rdir} \hspace{1cm} \textit{Random variate generation for Dirichlet distribution on} \( S_d \)

Description

A function to sample Dirichlet random variables, based on the representation as ratios of Gamma. Note that the RNG will generate on the full simplex and the sum to one constraint is respected here.

Usage

\texttt{rdir(n, alpha, normalize = TRUE)}

Arguments

\begin{itemize}
  \item \texttt{n} \hspace{1cm} \text{sample size}
  \item \texttt{alpha} \hspace{1cm} \text{vector of parameter}
  \item \texttt{normalize} \hspace{1cm} \text{boolean. If FALSE, the function returns Gamma variates with parameter alpha.}
\end{itemize}

Value

sample of dimension \( d \) (size of \texttt{alpha}) from the Dirichlet distribution.

Examples

\begin{verbatim}
rdir(n=100, alpha=c(0.5,0.5,2),TRUE)
rdir(n=100, alpha=c(3,1,2),TRUE)
\end{verbatim}
Exact simulations of multivariate extreme value distributions

Description

Implementation of the random number generators for multivariate extreme-value distributions and max-stable processes based on the two algorithms described in Dombry, Engelke and Oesting (2016).

Usage

rmev(n, d, param, asy, sigma, model = c("log", "alog", "neglog", "aneglog", "bilog", "negbilog", "hr", "br", "xstud", "smith", "schlather", "ct", "sdirk", "dirmix"), alg = c("ef", "sm"), weights, vario, loc, grid = FALSE, ...)

Arguments

n  number of observations
d  dimension of sample
param  parameter vector for the logistic, bilogistic, negative bilogistic and extremal Dirichlet (Coles and Tawn) model. Parameter matrix for the Dirichlet mixture. Degree of freedoms for extremal student model. See Details.
asy  list of asymmetry parameters, as in rmvevd, of $2^d - 1$ vectors of size corresponding to the power set of $d$, with sum to one constraints.
sigma  covariance matrix for Brown-Resnick and extremal Student-t distributions. Symmetric matrix of squared coefficients $\lambda^2$ for the Husler-Reiss model, with zero diagonal elements.
model  for multivariate extreme value distributions, users can choose between 1-parameter logistic and negative logistic, asymmetric logistic and negative logistic, bilogistic, Husler-Reiss, extremal Dirichlet model (Coles and Tawn) or the Dirichlet mixture. Spatial models include the Brown-Resnick, Smith, Schlather and extremal Student max-stable processes.
alg  algorithm, either simulation via extremal function (’ef’) or via the spectral measure (’sm’). Default to ef.
weights  vector of length $m$ for the $m$ mixture components. Must sum to one
vario  variogram function whose first argument must be distance. Used only if provided in conjunction with loc and if sigma is missing
loc  d by k matrix of location, used as input in the variogram vario or as parameter for the Smith model. If grid is TRUE, unique entries should be supplied.
grid  Logical. TRUE if the coordinates are two-dimensional grid points (spatial models).
...  additional arguments for the vario function
Details

The vector param differs depending on the model:

- **log**: one dimensional parameter greater than 1
- **alog**: $2^d - d - 1$ dimensional parameter for dep. Values are recycled if needed.
- **neglog**: one dimensional positive parameter
- **aneglog**: $2^d - d - 1$ dimensional parameter for dep. Values are recycled if needed.
- **bilog**: d-dimensional vector of parameters in $[0, 1]$
- **negbilog**: d-dimensional vector of negative parameters
- **ct, dir, negdir, sdir**: d-dimensional vector of positive (a)symmetry parameters. For dir and negdir, a $d + 1$ vector consisting of the d Dirichlet parameters and the last entry is an index of regular variation in $(- \min(\alpha_1, \ldots, \alpha_d), 1]$ treated as shape parameter
- **xstud**: one dimensional parameter corresponding to degrees of freedom alpha
- **dirmix**: d by m-dimensional matrix of positive (a)symmetry parameters

Stephenson points out that the multivariate asymmetric negative logistic model given in e.g. Coles and Tawn (1991) is not a valid distribution function in dimension $d > 3$. The implementation in mev uses the same construction as the asymmetric logistic distribution (see the vignette). As such it does not match the bivariate implementation of rbvevd.

The dependence parameter of the evd package for the Husler-Reiss distribution can be recovered taking for the Brown–Resnick model $2/r = \sqrt{(2\gamma(h))}$ where $h$ is the lag vector between sites and $r = 1/\lambda$ for the Husler–Reiss.

Value

an n by d exact sample from the corresponding multivariate extreme value model

Warning

As of version 1.8 (August 16, 2016), there is a distinction between models hr and br. The latter is meant to be used in conjunction with variograms. The parametrization differs between the two models.

The former implementation of mev assumed that the Brown-Resnick process was stationary (NOT intrinsically stationary). To obtain this, one must provide a covariance matrix sigma. Passing a variogram (which must now be parameterized by distance and not location) will give the intrinsically stationary Brown-Resnick process.

The family of scaled Dirichlet is now parametrized by a parameter in $- \min(\alpha)$ appended to the d vector param containing the parameter alpha of the Dirichlet model. Arguments model="dir" and model="negdir" are still supported internally, but not listed in the options.

Author(s)

Leo Belzile
References


See Also

rmevspec, rmvevd, rbvevd

Examples

set.seed(1)
rmev(n=100, d=3, param=2.5, model="log", alg="ef")
rmev(n=100, d=4, param=c(0.2,0.1,0.9,0.5), model="bilog", alg="sm")
## Spatial example using power variogram
#NEW: Variogram must take distance as argument
vario <- function(x, scale, alpha){ scale*x^alpha }
#grid specification
gird.loc <- as.matrix(expand.grid(runif(4), runif(4)))
rmev(n=100, vario=vario, loc=gird.loc, model="br", scale = 0.5, alpha = 1)
vario2cov <- function(loc, ...){
sapply(1:nrow(loc), function(i) sapply(1:nrow(loc), function(j)
  vario(sqrt(sum((loc[i,] - loc[j,] )^2)), ... ) +
  vario(sqrt(sum((loc[j,] - loc[i,] )^2)), ...) -
  vario(sqrt(sum((loc[i,] - loc[j,] )^2)), ...))
}
rmev(n=100, sigma=vario2cov(grid.loc, scale = 0.5, alpha = 1), model="br")
#grid specification
rmev(n=10, sigma=cbind(c(2,1),c(1,3)), loc=cbind(runif(4),runif(4)),model="smith", grid=TRUE)
# Example with Dirichlet mixture
alpha.mat <- cbind(c(2,1,1),c(1,2,1),c(1,1,2))
rmev(n=100, param=alpha.mat, weights=rep(1/3,3), model="dirmix")

rmevspec

Random samples from spectral distributions of multivariate extreme value models.

Description

Generate from $Q_i$, the spectral measure of a given multivariate extreme value model based on the L1 norm.

Usage

rmevspec(n, d, param, sigma, model = c("log", "neglog", "bilog", "negbilog", "hr", "br", "xstud", "smith", "schlather", "ct", "sdir", "dirmix"), weights, vario, loc, grid = FALSE, ...)
Arguments

n   number of observations

d   dimension of sample

param   parameter vector for the logistic, bilogistic, negative bilogistic and extremal Dirichlet (Coles and Tawn) model. Parameter matrix for the Dirichlet mixture. Degree of freedoms for extremal student model. See Details.

sigma   covariance matrix for Brown-Resnick and extremal Student-t distributions. Symmetric matrix of squared coefficients $\lambda^2$ for the Husler-Reiss model, with zero diagonal elements.

model   for multivariate extreme value distributions, users can choose between 1-parameter logistic and negative logistic, asymmetric logistic and negative logistic, bilogistic, Husler-Reiss, extremal Dirichlet model (Coles and Tawn) or the Dirichlet mixture. Spatial models include the Brown-Resnick, Smith, Schlather and extremal Student max-stable processes.

weights   vector of length $m$ for the $m$ mixture components. Must sum to one

vario   variogram function whose first argument must be distance. Used only if provided in conjunction with loc and if sigma is missing

loc   $d$ by $k$ matrix of location, used as input in the variogram vario or as parameter for the Smith model. If grid is TRUE, unique entries should be supplied.

grid   Logical. TRUE if the coordinates are two-dimensional grid points (spatial models).

...   additional arguments for the vario function

Details

The vector param differs depending on the model

- log: one dimensional parameter greater than 1
- neglog: one dimensional positive parameter
- bilog: $d$-dimensional vector of parameters in $[0, 1]$
- negbilog: $d$-dimensional vector of negative parameters
- ct, dir, negdir: $d$-dimensional vector of positive (a)symmetry parameters. Alternatively, a $d + 1$ vector consisting of the $d$ Dirichlet parameters and the last entry is an index of regular variation in $(0,1]$ treated as scale
- xstud: one dimensional parameter corresponding to degrees of freedom alpha
- dirmix: $d$ by $n$-dimensional matrix of positive (a)symmetry parameters

Value

an $n$ by $d$ exact sample from the corresponding multivariate extreme value model

Note

This functionality can be useful to generate for example Pareto processes with marginal exceedances.
Author(s)
Leo Belzile

References


Examples

```r
set.seed(1)
rmevspec(n=100, d=3, shape=2.5, model="log")
rmevspec(n=100, d=3, shape=2.5, model="neglog")
rmevspec(n=100, d=4, param=c(0.2,0.1,0.9,0.5), model="bilog")
rmevspec(n=100, d=2, param=c(0.8,1.2), model="ct") #Dirichlet model
rmevspec(n=100, d=2, param=c(0.8,1.2,0.5), model="sdir") #with additional scale parameter
#Varioogram gamma(h) = scale*||h||^alpha
#NEW: Varioigram must take distance as argument
vario <- function(x, scale=0.5, alpha=0.8){ scale*x^alpha }
#grid specification
grid.loc <- as.matrix(expand.grid(runif(4), runif(4)))
rmevspec(n=100, vario=vario, loc=grid.loc, model="br")
Example with Dirichlet mixture
alpha.mat <- cbind(c(2,1,1),c(1,2,1),c(1,1,2))
rmevspec(n=100, param=alpha.mat, weights=rep(1/3,3), model="dirmix")
```

---

rparp  

Simulation from R-Pareto processes

Description
Simulation from R-Pareto processes

Usage

```r
rparp(n, shape = 1, riskf = c("sum", "site", "max"), siteindex = NULL, d,
 param, sigma, model = c("log", "neglog", "bilog", "negbilog", "hr", "br",
 "xstud", "smith", "schlather", "ct", "sdirm", "dirmix"), weights, vario, loc, ...
```

Arguments

- `n` number of observations
- `shape` shape index of Pareto variable
- `riskf` string indicating risk functional.
siteindex  integer between 1 and d specifying the index of the site or variable

d  dimension of sample

param  parameter vector for the logistic, bilogistic, negative bilogistic and extremal
       Dirichlet (Coles and Tawn) model. Parameter matrix for the Dirichlet mixture.
       Degree of freedoms for extremal student model. See Details.

sigma  covariance matrix for Brown-Resnick and extremal Student-t distributions. Symmetric
       matrix of squared coefficients $\lambda^2$ for the Husler-Reiss model, with zero
       diagonal elements.

model  for multivariate extreme value distributions, users can choose between 1-parameter
       logistic and negative logistic, asymmetric logistic and negative logistic, bilogistic,
       Husler-Reiss, extremal Dirichlet model (Coles and Tawn) or the Dirichlet
       mixture. Spatial models include the Brown-Resnick, Smith, Schlather and ex-
       tremal Student max-stable processes.

weights  vector of length m for the m mixture components. Must sum to one

vario  variogram function whose first argument must be distance. Used only if pro-
       vided in conjunction with loc and if sigma is missing

loc  d by k matrix of location, used as input in the variogram vario or as parameter
       for the Smith model. If grid is TRUE, unique entries should be supplied.

...  additional arguments for the vario function

Details

For riskf=max and riskf=min, the procedure uses rejection sampling based on Pareto variates
sampled from sum and may be slow if d is large.

Examples

rparp(n=10, riskf = "site", siteindex=2, d=3, param=2.5, model="log")
rparp(n=10, riskf = "min", d=3, param=2.5, model="neglog")
rparp(n=10, riskf = "max", d=4, param=c(0.2, 0.1, 0.9, 0.5), model="bilog")
rparp(n=10, riskf = "sum", d=3, param=c(0.8, 1.2, 0.6, -0.5), model="sdir")
vario <- function(x, scale=0.5, alpha=0.8)( scale*x^alpha )
grid.loc <- as.matrix(expand.grid(runif(4), runif(4)))
rparp(n=10, riskf = "max", vario=vario, loc=grid.loc, model="br")
Usage

```
smith.penult(densF, distF, ddensF = NULL, model = c("bm", "pot"), u, m,
family, quantF = NULL, returnList = TRUE, ...)
```

Arguments

densF  
density function; for standard statistical family family, given by dfamily
distF  
distribution function, for standard statistical family family, given by pfamily
ddensF  
derivative of the density function (optional)
model  
either block maxima ("bm") or peaks-over-threshold ("pot") are supported
u  
vector of thresholds for method "pot"
m  
vector of block sizes for method "bm"
family  
the name of the parametric family. Will be used to obtain dfamily, pfamily, qfamily
quantF  
quantile function, default to NULL
returnList  
logical; should the arguments be returned as a list or as a matrix of parameter
...  
additional arguments passed to densF and distF

Value

a matrix or a list (if returnList) containing

- loc: location parameters (method="bm")
- scale: scale parameters
- shape: shape parameters
- u: thresholds (method="pot")
- m: block sizes (method="bm")

Author(s)

Leo Belzile

References


Examples

```r
#Threshold exceedance for Normal variables
qu <- seq(1.5, by=0.02)
penult <- smith.penult(densF=dnorm, distF=pnorm,
 ddensF=function(x){-x*dnorm(x)}, model="pot", u=qu)
plot(qu, penult$shape, type="l",xlab="Quantile",
ylab="Penultimate shape",ylim=c(-0.5,0))

#Block maxima for Gamma variables -
```
smith.penult.fn

Smith (1987) third penultimate approximation

Description
This function returns the density and distribution functions of the 3rd penultimate approximation for extremes of Smith (1987). It requires knowledge of the exact constants $\epsilon$ and $\rho$.

Usage
smith.penult.fn(loc, scale, shape, eps, rho = NULL, model = c("bm", "pot"), mdaGumbel = FALSE)

Arguments
- loc: location parameter returned by `smith.penult` or threshold vector
- scale: scale parameter returned by `smith.penult`
- shape: shape parameter returned by `smith.penult`
- eps: parameter vector, see Details.
- rho: second-order parameter, model dependent
- model: one of "pot" for the generalized Pareto or "bm" for the generalized extreme value distribution
- mdaGumbel: logical indicating whether the function $H_\rho$ should be replaced by $x^3/6$; see Details.

Details
Let $F, f$ denote respectively the distribution and density functions and define the function $\phi(x)$ as

$$\phi(x) = -\frac{F(x) \log F(x)}{f(x)}$$

for block maxima. The sequence $b_n$ corresponds to $b_n$ otherwise, defined as the solution of $F(b_n) = \exp(-1/n)$.

The scale is given by $a_n = \phi(b_n)$, the shape as $\gamma_n = \phi'(b_n)$. These are returned by a call to `smith.penult`.

For threshold exceedances, $b_n$ is replaced by the sequence of thresholds $u$ and we take instead $\phi(x)$ to be the reciprocal hazard function $\phi(x) = (1 - F(x))/f(x)$.

In cases where the distribution function is in the maximum domain of attraction of the Gumbel distribution, $\rho$ is possibly undetermined and $\epsilon$ can be equal to $\phi(b_n)\phi''(b_n)$. 
For distributions in the maximum domain of attraction of the Gumbel distribution and that are class N, it is also possible to abstract from the $\rho$ parameter by substituting the function $H_\rho$ by $x^3/6$ without affecting the rate of convergence. This can be done by setting `mdagumbel=TRUE` in the function call.

**Warning**

The third penultimate approximation does not yield a valid distribution function over the whole range of the original distribution, but is rather valid in a neighborhood of the true support of the distribution of maxima/threshold exceedance. The function handles the most standard failure (decreasing distribution function and negative densities), but any oscillatory behaviour will not be captured. This is inherent to the method and can be resolved by ‘not’ evaluating the functions $F$ and $f$ at the faulty points.

**References**


**Examples**

```r
#Normal maxima example from Smith (1987)
m <- 100 #block of size 100
p <- smith.penult(family="norm",
 ddensF=function(x){-x*dnorm(x)}, model="bm", m=m, returnList=FALSE)
approx <- smith.penult.fn(loc=p[1], scale=p[2], shape=p[3],
x <- seq(0.5,6,by=0.001)

#First penultimate approximation
plot(x, exp(m*pnorm(x, log.p=TRUE)),type="l", ylab="CDF",
 main="Distribution of the maxima of\n100 standard normal variates")
lines(x, evd::pgumbel(x,loc=p[1], scale=p[2], shape=0),col=2)
lines(x, evd::pgumbel(x,loc=p[1], scale=p[2], shape=p[3]),col=3)
lines(x, approx$F(x),col=4)
legend(x="bottomright",lty=c(1,1,1,1),col=c(1,2,3,4),
 legend=c("Exact","1st approx.","2nd approx.","3rd approx"),bty="n")

#Threshold exceedances
p <- c(4,smith.penult(densF=dnorm, distF=pnorm,
 ddensF=function(x){-x*dnorm(x)},model="pot", u=4, returnList=FALSE)
approx <- smith.penult.fn(loc=p[1], scale=p[2], shape=p[3],
x <- seq(4.01,7,by=0.01)

#Distribution function
plot(x, 1-(1-pnorm(p[1]))/(1-pnorm(p[1]))),type="l", ylab="Conditional CDF",
```
spline.corr

Spline correction for Fraser-Reid approximations

Description

The tangent exponential model can be numerically unstable for values close to $r = 0$. This function corrects these incorrect values, which are interpolated using splines. The function takes as input an object of class fr and returns the same object with different rstar values.

Usage

spline.corr(fr)

Arguments

fr an object of class fr, normally the output of gpd.tem or gev.tem.

Details

If available, the function uses cobs from the eponym package. The latter handles constraints and smoothness penalties, and is more robust than the equivalent smooth.spline.

Value

an object of class fr, containing as additional arguments spline and a modified rstar argument.

Warning

While penalized (robust) splines often do a good job at capturing and correcting for numerical outliers and NA, it may also be driven by unusual features of the curve or fail at detecting outliers (or falsely identifying ‘correct’ values as outliers). The user should always validate by comparing the plots of both the uncorrected (raw) output of the object with that of spline.corr.
W.diag

Wadsworth’s univariate and bivariate exponential threshold diagnostics

Description

Function to produce diagnostic plots and test statistics for the threshold diagnostics exploiting structure of maximum likelihood estimators based on the non-homogeneous Poisson process likelihood

Usage

W.diag(xdat, model = c("nhpp", "exp", "invexp"), u = NULL, k, q1 = 0, q2 = 1, par = NULL, M = NULL, nbs = 1000, alpha = 0.05, plots = c("LRT", "WN", "PS"), UseQuantiles = TRUE, pmar = c(5.5, 7, 3, 3), tikz = FALSE, ...)

Arguments

- **xdat**: a numeric vector of data to be fitted.
- **model**: string specifying whether the univariate or bivariate diagnostic should be used. Either nhpp for the univariate model, exp (invexp) for the bivariate exponential model with rate (inverse rate) parametrization. See details.
- **u**: optional; vector of candidate thresholds.
- **k**: number of thresholds to consider (if u unspecified).
- **q1**: lowest quantile for the threshold sequence.
- **q2**: upper quantile limit for the threshold sequence (q2 itself is not used as a threshold, but rather the uppermost threshold will be at the \((q_2 - 1/k)\) quantile).
- **par**: parameters of the NHPP likelihood. If missing, the fpot routine will be run to obtain values
- **M**: number of superpositions or "blocks" / "years" the process corresponds to (can affect the optimization)
- **nbs**: number of simulations used to assess the null distribution of the LRT, and produce the p-value
- **alpha**: significance level of the LRT
- **plots**: vector of strings indicating which plots to produce; LRT= likelihood ratio test, WN = white noise, PS = parameter stability
- **UseQuantiles**: logical; use quantiles as the thresholds in the plot?
- **pmar**: vector of length 4 giving the arguments for the plot margins in par(mar=c(*,*)), tikz logical; if TRUE, axis labels are replaced with LaTeX code
- **...**: additional parameters passed to plot.
Details

The function is a wrapper for the univariate (non-homogeneous Poisson process model) and bivariate exponential dependence model. For the latter, the user can select either the rate or inverse rate parameter (the inverse rate parametrization works better for uniformity of the p-value distribution under the LR test.

There are two options for the bivariate diagnostic: either provide pairwise minimum of marginally exponentially distributed margins or provide a \( n \) times 2 matrix with the original data, which is transformed to exponential margins using the empirical distribution function.

Value

plots of the requested diagnostics and a list with components

- **MLE** maximum likelihood estimates from all thresholds
- **Cov** joint asymptotic covariance matrix for \( \xi, \eta \) or \( \eta^{-1} \).
- **WN** values of the white noise process.
- **LRT** values of the likelihood ratio test statistic vs threshold.
- **pval** P-value of the likelihood ratio test.
- **k** final number of thresholds used.
- **thresh** threshold selected by the likelihood ratio procedure.
- **mle.u** maximum likelihood estimates from selected threshold.

Author(s)

Jennifer L. Wadsworth

References


Examples

```r
Not run:
set.seed(123)
W.diag(rexp(1000), model="nhpp", k=30, q1=0)
Parameter Stability only
W.diag(abs(rnorm(5000)), model="nhpp", k=30, q1=0, plots=c("PS"))
library(mvtnorm)
xbvn<-rmvnorm(6000, sigma=matrix(c(1,0.7,0.7,1),2,2))
Transform margins to exponential manually
xbvn.exp<- -log(1-pnorm(xbvn))
W.diag(apply(xbvn.exp,1,min), model="exp", k=30, q1=0) #rate parametrization
W.diag(xbvn, model="exp", k=30, q1=0)
W.diag(apply(xbvn.exp,1,min), model="invexp", k=30, q1=0) #inverse rate parametrization

End(Not run)
Not run:
```
library(ismev)
data(rain)

u <- quantile(rain, seq(0.85, 0.99, by = 0.01))
W.diag(xdat = rain, u = u, plots = "PS")

## End(Not run)
Index

angextrapo, 4
angmeas, 5
angmeasdir, 6
bvevd, 42
chibar, 7
chiplot, 8
confint.extprof, 8
confint.fr, 9
ejp, 10, 14
ejp.fit, 11, 14
ejp.fitrange (ejp.fit), 11
ejp2, 12, 14, 15
ejp2.fit, 13
ejp2.G, 15
emplilk, 16
ext.index, 17
fbvpot, 41
fpot, 30, 59
gev, 18
gev.abias, 19
gev.bcor, 20
gev.mle, 21
gev.Nyr, 21
gev.pll, 9, 22, 47
gev.tem, 9, 24, 47, 58
gevN, 26
genr, 27
gp.fit, 28
gpd, 30
gpd.abias, 31
gpd.bcor, 32
gpd.fit, 28, 30
gpd.mle, 33
gpd.pll, 9, 34, 47
gpd.tem, 9, 36, 47, 58
gpde, 38

gpdN, 39
gpdr, 40
ibvpot, 41
infomat.test, 42
interpret.gpdbiv, 41, 42
ismev, 3, 28, 46
lambdadep, 44
mev (mev-package), 3
mev-package, 3
mvnorm, 45
NC.diag, 45
nlm, 28
optim, 12, 28, 29
plot.extprof, 47
plot.fr, 47, 47
rbvevd, 50, 51
rdir, 48
rmev, 49
rmevspec, 51, 51
rmvevd, 49, 51
rparp, 53
smith.penult, 54, 56
smith.penult.fn, 56
smooth.spline, 58
spline.corr, 25, 36, 48, 58
tem, 25, 37
W.diag, 59