Package ‘mexhaz’

March 16, 2017

Type Package
Title Mixed Effect Excess Hazard Models
Version 1.3
Date 2017-03-16
Author Hadrien Charvat, Aurelien Belot
Maintainer Hadrien Charvat <chadrien@ncc.go.jp>
Description Fit flexible (excess) hazard regression models with the possibility of including non-proportional effects of covariables and of adding a random effect at the cluster level (corresponding to a shared frailty).
Depends survival
Imports statmod, MASS, numDeriv, splines
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-03-16 16:16:20 UTC

R topics documented:
mexhaz-package ... 2
mexhaz .. 4
plot.predMexhaz ... 9
points.predMexhaz .. 10
predict.mexhaz .. 11
print.mexhaz ... 15
print.predMexhaz ... 15
ranef .. 16
ranef.mexhaz ... 17
simdatn1 ... 18
simdatn2 ... 18
summary.mexhaz .. 19
update.mexhaz ... 20

Index 24
mexhaz-package

Mixed effect parametric excess hazard models

Description

Fit an (excess) hazard regression model using different shapes for the baseline hazard (Weibull, piecewise constant, exponential of a B-spline of degree 1 to 3, exponential of a restricted cubic spline), with the possibility to include time-dependent effects of variable(s) and a random effect defined at the cluster level. Follow-up time can be entered in the right-censored or counting process input style. The latter allows the modelling of survival data with delayed entries. The time-dependent effect of a covariable is modelled by adding interaction terms between the covariable and a function of time of the same class as the one used for the baseline hazard (in particular, with the same knots for piecewise constant hazards; and with the same degree and the same knots for B-spline or restricted cubic spline functions). The random effect is assumed to be normally distributed with mean 0 and standard deviation sigma. The optimisation process uses adaptive Gaussian quadrature to calculate the cluster-specific marginal likelihoods. The logarithm of the full marginal likelihood, defined as the sum of the logarithms of the cluster-specific marginal likelihoods, is then maximised using an optimisation routine such as \texttt{nlm} (default) or \texttt{optim}. Functions to compute and plot the predicted (excess) hazard and (net) survival (possibly with cluster-specific predictions in the case of a random effect model) are provided.

Details

Package: mexhaz
Type: Package
Version: 1.2
Date: 2016-12-13
License: GPL (>=2)

Author(s)

Hadrien Charvat, Aurelien Belot

References

Examples
data(simdatn1)

Fit of a mixed-effect excess hazard model, with the baseline hazard
described by a Weibull distribution (without covariates)

Mod_weib_mix <- mexhaz(formula=Surv(time=timesurv, event=vstat)~1, data=simdatn1, base="weibull", expected="popmrate", verbose=8, random="clust")

Examples of syntax for various models (not run)

Fit of a fixed-effect excess hazard model, with the baseline hazard
described by a Weibull distribution and with effects of age (agecr),
deprivation index (depindex) and sex (IsexH) using the optim
procedure and the BFGS method (see help of optim).

Mod_weib <- mexhaz(formula=Surv(time=timesurv,
event=vstat)=agecr+depindex+IsexH, data=simdatn1, base="weibull",
expected="popmrate", verbose=1000, fnoptim="optim",
method="BFGS")

Fit of a mixed-effect excess hazard model, with the baseline hazard
described by a cubic B-spline with two knots at 1 and 5 year and with
effects of age (agecr), deprivation index (depindex) and sex (IsexH)

Mod_bs3_2mix <- mexhaz(formula=Surv(time=timesurv,
event=vstat)=agecr+depindex+IsexH, data=simdatn1, base="exp.bs",
degree=3, knots=c(1,5), expected="popmrate", random="clust",
verbose=1000)

Fit of a fixed-effect overall hazard model, with the baseline hazard
described by a piecewise constant function with the following vector
of knots (defining the endpoints of the intervals on which the hazard
is constant): (1,3,5,8), and with effects of age (agecr), deprivation
index (depindex) and sex (IsexH)

Mod_pw <- mexhaz(formula=Surv(time=timesurv, event=vstat)=
agecr+depindex+IsexH, data=simdatn1, base="pw.cst", knots=c(1,3,5,8),
verbose=1000)

Fit of a fixed-effect excess hazard model, with the baseline hazard
described by a cubic B-spline with two knots at 1 and 5 year and with
effects of age (agecr), deprivation index (depindex) and sex (IsexH)

Mod_bs3_2 <- mexhaz(formula=Surv(time=timesurv,
event=vstat)=agecr+depindex+IsexH, data=simdatn1, base="exp.bs",
degree=3, knots=c(1,5), expected="popmrate", verbose=1000)
mexhaz function

Description

Fit an (excess) hazard regression model using different shapes for the baseline hazard (Weibull, piecewise constant, exponential of a B-spline of degree 1 to 3, exponential of a restricted cubic spline), with the possibility to include time-dependent effects of variable(s) and a random effect defined at the cluster level. The function accepts right-censored and counting process input styles for the follow-up time. The latter allows the modelling of survival data with delayed entries. The time-dependent effect of a covariable is modelled by adding interaction terms between the covariable and a function of time of the same class as the one used for the baseline hazard (in particular, with the same knots for piecewise constant hazards; and with the same degree and the same knots for B-spline or restricted cubic spline functions). The random effect is assumed to be normally distributed with mean 0 and standard deviation sigma. The optimisation process uses adaptive Gaussian quadrature to calculate the cluster-specific marginal likelihoods. The logarithm of the full marginal likelihood, defined as the sum of the logarithms of the cluster-specific marginal likelihoods, is then maximised using an optimisation routine such as nlm (default) or optim.

Usage

```r
mexhaz(formula, data, expected = NULL, base = c("weibull", "exp.bs", "exp.ns", "pw.cst"), degree = 3, knots = NULL, bound = NULL, n.gleg = 20, init = NULL, random = NULL, n.aghq = 10, fnoptim = c("nlm", "optim"), verbose = 100, method = "Nelder-Mead", iterlim=10000, numHess=FALSE, print.level=1,...)
```
Arguments

`formula` a formula object, with the response on the left of the ~ operator, and the linear predictor on the right. The response must be of the form `Surv(time, event)` for right censored data or `Surv(time, time2, event)` for counting process style data. The linear predictor accepts a special instruction `nph()` for specifying variables for which a time-dependent effect should be modelled (if several variables are modelled with time-dependent effects, separate these variables inside the `nph()` instruction with a + sign).

In case `time` takes the value 0 for some observations when data are entered in the right censored style, it is assumed that these observations refer to events/censoring that occurred on the first day of follow-up. Consequently, a value of 1/730.5 (half a day) is substituted in order to make computations possible. However, it should be stressed that this is just a convention and that it does not make much sense if the time scale is not expressed in years. We therefore advise the analyst to deal with 0 time values during the dataset preparation stage.

`data` a `data.frame` containing the variables referred to in the formula, as well as in the expected and random arguments if these arguments are used.

`expected` name of the variable (must be given in quotes) representing the population (i.e., expected) hazard. By default, `expected=NULL`, which means that the function estimates the overall hazard (and not the excess hazard).

`base` functional form that should be used to model the baseline hazard. Selection can be made between the following options: "weibull" for a Weibull hazard, "exp.bs" for a hazard described by the exponential of a B-spline (only B-splines of degree 1, 2 or 3 are accepted), "exp.ns" for a hazard described by the exponential of a restricted cubic spline (also called 'natural spline'), "pw.cst" for a piecewise constant hazard. By default, `base="weibull"`.

`degree` if `base="exp.bs"`, degree represents the degree of the B-spline used. Only integer values between 1 and 3 are accepted, and 3 is the default.

`knots` if `base="exp.bs"` or "exp.ns", knots is the vector of interior knots of the spline. If `base="pw.cst"`, knots is the vector defining the endpoints of the time intervals on which the hazard is assumed to be constant. By default, `knots=NULL` (that is, it produces a B-spline with no interior knots if `base="exp.bs"`, a linear B-spline with no interior knots if `base="exp.ns"`, or a constant hazard over the whole follow-up period if `base="pw.cst"`).

`bound` a vector of two numerical values corresponding to the boundary knots of the spline functions. If `base="exp.bs"` or `base="exp.ns"`, computation of the B-spline basis requires that boundary knots be given. The bound argument allows the user to specify these boundary knots. If `base="exp.bs"`, the interval defined by the boundary knots must at least include the interval $c(0, \max(time))$ (otherwise, there could be problems with ill-conditioned bases). If `base="exp.ns"`, the boundary knots correspond to the knots beyond which the spline is constrained to be linear (in that case, the boundary knots can be values contained in $c(0, \max(time))$). By default, the boundary knots are set to $c(0, \max(time))$.

`n.gleg` if `base="exp.bs"` and degree is equal to 2 or 3, or if `base="exp.ns"`, the cumulative hazard is computed via Gauss-Legendre quadrature and `n.gleg` is the
number of quadrature nodes to be used to compute the cumulative hazard. By default, n.gleg=20.

`init` vector of initial values. By default `init=NULL` and the initial values are internally set to the following values:

for the baseline hazard:
- if `base="weibull"`, the scale and shape parameters are set to 0.1;
- if `base="exp.bs"`, the parameters of the B-spline are all set to -1;
- if `base="exp.ns"`, the parameters of the restricted cubic spline are all set to -1;
- if `base="pw.cst"`, the logarithm of the piecewise-constant hazards are set to -1;

the parameters describing the effects of the covariables are all set to 0;
the parameter representing the standard deviation of the random effect is set to 0.1.

`random` name of the variable to be entered as a random effect (must be given between quotes), representing the cluster membership. By default, `random=NULL` which means that the function fits a fixed effects model.

`n.agph` number of quadrature points to be used for estimating the cluster-specific marginal likelihoods by adaptive Gauss-Hermite quadrature. By default, `n.agph=10`.

`fnoptim` name of the R optimisation procedure used to maximise the likelihood. Selection can be made between "nlm" (by default) and "optim".

`verbose` integer parameter representing the frequency at which the current state of the optimisation process is displayed. Internally, an 'evaluation' is defined as an estimation of the log-likelihood for a given vector of parameters. This means that the number of evaluations is increased each time the optimisation procedure updates the value of any of the parameters to be estimated. If `verbose=n` (with `n` an integer), the function will display the current values of the parameters, the log-likelihood and the time elapsed every `n` evaluations. If `verbose=0`, nothing is displayed.

`method` if `fnoptim="optim"`, `method` represents the optimisation method to be used by `optim`. By default, `method="Nelder-Mead"`. This parameter is not used if `fnoptim="nlm"`.

`iterlim` if `fnoptim="nlm"`, `iterlim` represents the maximum number of iterations before the `nlm` optimisation procedure is terminated. By default, `iterlim` is set to 10000. This parameter is not used if `fnoptim="optim"` (in this case, the maximum number of iterations must be given as part of a list of control parameters via the `control` argument: see the help page of `optim` for further details).

`numHess` logical value allowing the user to choose between the Hessian returned by the optimization algorithm (default) or the Hessian estimated by the `hessian` function from the `numDeriv` package. The latter might be more accurate but its estimation is more time-consuming. We suggest to use the default Hessian estimation procedure during model building and estimate the `numDeriv`-based Hessian only on the final model.

`print.level` this argument is only used if `fnoptim="nlm"`. It determines the level of printing during the optimisation process. The default value (for the `mexhaz` function) is set to '1' which means that details on the initial and final step of the optimisation procedure are printed (see the help page of `nlm` for further details).
... represents additional parameters directly passed to `nlm` or `optim` to control the optimisation process.

Value

An object of class `mexhaz` containing the following elements:

- `dataset` : name of the dataset used to fit the model.
- `call` : function call on which the model is based.
- `formula` : formula part of the call.
- `expected` : name of the variable corresponding to the expected hazard (takes the value `NA` for standard, i.e., 'non-excess' hazard models).
- `xlevels` : information concerning the levels of the categorical variables used in the model (used by `predict.mexhaz`).
- `n.obs.tot` : total number of observations in the dataset.
- `n.obs` : number of observations used to fit the model (after exclusion of missing values).
- `n.events` : number of events (after exclusion of missing values).
- `n.clust` : number of clusters.
- `n.time.0` : number of observations for which the observed follow-up time was equal to 0 (only for right censored type data).
- `base` : function used to model the baseline hazard.
- `max.time` : maximal observed time in the dataset.
- `bounds` : vector of boundary values used to define the B-spline (or natural spline) bases.
- `degree` : degree of the B-spline used to model the logarithm of the baseline hazard.
- `knots` : vector of interior knots used to define the B-spline (or natural spline) bases.
- `names.ph` : names of the covariables with a proportional effect.
- `random` : name of the variable defining cluster membership (set to `NA` in the case of a purely fixed effects model).
- `init` : a vector containing the initial values of the parameters.
- `coefficients` : a vector containing the parameter estimates.
- `std.errors` : a vector containing the standard errors of the parameter estimates.
- `vcov` : the variance-covariance matrix of the estimated parameters.
- `mu.hat` : a `data.frame` containing the estimated cluster-specific random effects (shrinkage estimators).
- `var.mu.hat` : the covariance matrix of the cluster-specific shrinkage estimators.
- `vcov.fix.mu.hat` : a matrix containing the covariances between the fixed effect and the cluster-specific shrinkage estimators. More specifically, the i-th line of the matrix represents the covariances between the shrinkage estimator of the i-th cluster and the fixed effect estimates. This matrix is used by the function `predict.mexhaz` to make cluster-specific predictions.
- `n.par` : number of estimated parameters.
n.gleg number of Gauss-Legendre quadrature points used to calculate the cumulative (excess) hazard (only relevant if a B-spline of degree 2 or 3 or a cubic restricted spline was used to model the logarithm of the baseline hazard).

n.aghq number of adaptive Gauss-Hermite quadrature points used to calculate the cluster-specific marginal likelihoods (only relevant if a multi-level model is fitted).

fnoptim name of the R optimisation procedure used to maximise the likelihood.

method optimisation method used by optim.

code code (integer) indicating the status of the optimisation process (this code has a different meaning for nlm and for optim: see their respective help page for details).

loglik value of the log-likelihood at the end of the optimisation procedure.

iter number of iterations used in the optimisation process.

eval number of evaluations used in the optimisation process.

time.elapsed total time required to reach convergence.

Author(s)

Hadrien Charvat, Aurelien Belot

References

See Also

print.mexhaz, summary.mexhaz, predict.mexhaz

Examples

data(simdatn1)

Fit of a mixed-effect excess hazard model, with the baseline hazard
described by a Weibull distribution (without covariables)

Mod_weib_mix <- mexhaz(formula=Surv(time=timesurv,
 event=vstat)-1, data=simdatn1, base="weibull",
expected="popmrate", verbose=0, random="clust")

More complex examples (not run)

Fit of a mixed-effect excess hazard model, with the baseline hazard
described by a cubic B-spline with two knots at 1 and 5 year and with
effects of age (agecr), deprivation index (depindex) and sex (IsexH)
plot.predMexhaz

Plot method for a predMexhaz object

Description

Function for plotting the predicted (excess) hazard or (net) survival based on a predMexhaz object.

Usage

```r
data <- mxhaz(formula = Surv(time = timesurv, 
    event = vstat) ~ agecr + depindex + I(sex = nph)*agecr,
    data = simdatn1, base = "exp.bs", degree = 3, knots = c(1, 5), 
    expected = "popmrate", 
    random = "clust", verbose = 1000)

## Fit of a mixed-effect excess hazard model, with the baseline hazard 
## described by a restricted cubic spline with two knots at the 
## tertiles of the distribution of follow-up times for individuals who 
## presented the event and with effects of age (agecr) and sex (I(sex))

## S3 method for class 'predMexhaz'
plot(x, which = c("surv", "hazard"), conf.int = TRUE, 
    lty.pe = "solid", lty.ci = "dashed", ...)
```

Arguments

- `x`: an object of class predMexhaz, corresponding to (excess) hazard and (net) survival predictions based on a survival model fitted with the mexhaz function. Predictions can be obtained for multiple times for one vector of covariables ("multitime") or for several vectors of covariables at one time point ("multiobs"). The plot() function only applies to the "multitime" type of predictions.

- `which`: type of curve to be plotted. Selection can be made between "surv" (default value) for the (net) survival curve and "hazard" for the (excess) hazard.

- `conf.int`: logical value allowing the user to decide whether to plot the confidence limits of the survival (or hazard).

- `lty.pe`: type of line used for drawing the hazard/survival estimate.

- `lty.ci`: type of line used for drawing the confidence limits.

- `...`: additional parameters that are directly passed to the plot function. These parameters will apply simultaneously to the point estimate and confidence limit curves.
points.predMexhaz

See Also

`predict.mexhaz`, `points.predMexhaz`

Examples

```r
data(simdatn1)

## Fit of a fixed-effect hazard model, with the baseline hazard
## described by a linear B-spline with two knots at 1 and 5 year and with
## effects of age (agecr), deprivation index (depindex) and sex (IsexH)

Mod_bs2_2 <- mexhaz(formula=Surv(time=timesurv,
       event=vstat)-agecr+depindex+IsexH, data=simdatn1, base="exp.bs",
       degree=2, knots=c(1,5), verbose=0)

## Prediction at several time points for one vector of covariates
Pred_Modbs2_2A <- predict.mexhaz(Mod_bs2_2, time.pts=seq(0,10,by=0.1),
       data.val=data.frame(agecr=0,depindex=0.5,IsexH=1))

plot(Pred_Modbs2_2A, which="hazard")
```

Description

Function for adding to an already existing graphical window the predicted (excess) hazard or (net) survival based on a `predMexhaz` object.

Usage

```r
## S3 method for class 'predMexhaz'
points(x, which=c("surv", "hazard"), conf.int=TRUE,
       lty.pe="solid", lty.ci="dashed", ...)
```

Arguments

- `x` an object of class `predMexhaz`, corresponding to (excess) hazard and (net) survival predictions based on a survival model fitted with the `mexhaz` function. Predictions can be obtained for multiple times for one vector of covariables ("multitime") or for several vectors of covariables at one time point ("multiobs"). The `points()` function only applies to the "multitime" type of predictions.
- `which` type of curve to be plotted. Selection can be made between "surv" (default value) for the (net) survival curve and "hazard" for the (excess) hazard.
- `conf.int` logical values allowing the user to decide whether to plot the confidence limits of the survival (or hazard).
predict.mexhaz

lty.pe type of line used for drawing the hazard/survival estimate.
lty.ci type of line used for drawing the confidence limits.
...
additional parameters that are directly passed to the points function. These
parameters, if not already used internally by the points.mexhaz function,
will apply simultaneously to the point estimate and confidence limit curves.

See Also
predict.mexhaz, plot.predMmexhaz

Examples

data(simdatn1)

Fit of a fixed-effect hazard model, with the baseline hazard
described by a linear B-spline with two knots at 1 and 5 year and with
effects of age (agecr), deprivation index (depindex) and sex (IsexH)

Mod_bs2_2 <- mexhaz(formula=Surv(time=timesurv,
event=vstat)-agecr+depindex+IsexH, data=simdatn1, base="exp.bs",
degree=2, knots=c(1,5), verbose=0)

Prediction at several time points for one vector of covariates
Pred_Modbs2_2A <- predict.mexhaz(Mod_bs2_2, time.pts=seq(0,10,by=0.1),
data.val=data.frame(agecr=0,depindex=0.5,IsexH=1))

plot(Pred_Modbs2_2A, which="hazard", col="red")
points(Pred_Modbs2_2A, which="hazard", conf.int=FALSE)

predict.mexhaz

Predictions based on a mexhaz model

Description

Function for predicting the (excess) hazard and the corresponding (net) survival from a model fitted
with the mexhaz function for a particular vector of covariables. If the survival model was fitted
with an expected hazard (excess hazard model), the estimates obtained are excess hazard and net
survival estimates. Corresponding variance estimates are based on the Delta Method or Monte Carlo
simulation (based on the assumption of multivariate normality of the model parameter estimates).
When the model includes a random effect, predictions can be made for a particular cluster (using
the corresponding shrinkage estimate) or for the value 0 of the random effect. This function allows
the computation of the hazard and the survival at one time point for several vectors of covariables
or for one vector of covariables at several time points.
Usage

```r
# S3 method for class 'mexhaz'
predict(object, time.pts, data.val = data.frame(.NotUsed=NA),
        cluster=NULL, conf.int=c("delta","simul","none"), level=0.95,
        delta.type.h=c("log", "plain"), delta.type.s=c("log-log", "log",
        "plain"), nb.sim = 10000, include.gradient=FALSE, ...)
```

Arguments

- **object**: an object of class `mexhaz`, corresponding to a hazard-based regression model fitted with the `mexhaz` function.
- **time.pts**: a vector of numerical values representing the time points at which predictions are requested. Time values greater than the maximum follow-up time on which the model estimation was based are discarded.
- **data.val**: a `data.frame` containing the values of the covariables at which predictions should be calculated.
- **cluster**: a single number or character string corresponding to the name of the cluster for which predictions should be calculated. In that case, standard errors of prediction are obtained with the approximation of the conditional mean squared error of prediction (without the second-order bias correction term) described in Booth and Hobert. This argument is not used if the model is a fixed effect model. The default value is `NULL`: this corresponds to prediction for the value 0 of the random effect.
- **conf.int**: method to be used to compute confidence limits. Selection can be made between the following options: "delta" for the Delta Method (default value); "simul" for Monte Carlo simulations (can be time-consuming, especially for models using B-splines for the logarithm of the baseline hazard); "none" indicates absence of confidence limits estimation.
- **level**: a number in (0,1) specifying the level of confidence for computing the confidence intervals of the hazard and the survival. By default, `level=0.95`.
- **delta.type.h**: type of confidence limits for the hazard when using the Delta Method. If `delta.type.h="log"` (default value), the confidence limits are based on a Wald-type confidence interval for the logarithm of the hazard, otherwise they are based directly on a Wald-type CI for the hazard.
- **delta.type.s**: type of confidence limits for the survival when using the Delta Method. If `delta.type.s="log-log"` (default value), the confidence limits are based on a Wald-type confidence interval for the logarithm of the cumulative hazard; if `delta.type.s="log"`, they are based on a Wald-type CI for the cumulative hazard; otherwise they are based directly on a Wald-type CI for the survival.
- **include.gradient**: logical value allowing the function to return the components of the gradient of the logarithm of the hazard and of the logarithm of the cumulative hazard for each prediction. This argument is used only if `conf.int="delta"`. The default value is `FALSE`.
- **nb.sim**: integer value representing the number of simulations used to estimate the confidence limits for the (excess) hazard and the (net) survival. This argument is used only if `conf.int="simul"`.
for potential additional parameters.

Value

An object of class predMehaz that can be used by the functions plot.predMehaz and points.predMehaz to produce graphics of the (excess) hazard and the (net) survival. It contains the following elements:

call the mexhaz function call on which the model is based.

results a data.frame consisting of: the time points at which the (excess) hazard and the (net) survival have been calculated; the values of the covariables used to estimate the (excess) hazard and the (net) survival; the (excess) hazard values with their confidence limits; and the (net) survival values with their confidence limits.

variances a data.frame consisting of two columns: the variance of the logarithm of the (excess) hazard and the variance of the (excess) cumulative hazard for each time points or each vector of covariables. The object variances is produced only when conf.int="delta".

grad.loghaz a data.frame consisting of the components of the gradient of the logarithm of the (excess) hazard for each time points or each vector of covariables. The number of columns corresponds to the number of model parameters. This object is produced only when conf.int="delta" and include.gradient=TRUE.

grad.logcum a data.frame consisting of the components of the gradient of the logarithm of the (excess) cumulative hazard for each time points or each vector of covariables. The number of columns corresponds to the number of model parameters. This object is produced only when conf.int="delta" and include.gradient=TRUE.

vcov a matrix corresponding to the covariance matrix used to compute the confidence intervals.

type the type of predictions produced. Can take the value "multitime" (computation of the hazard and the survival at at several time points for one vector of covariables) or multiobs (computation of the hazard and the survival at at one time point for several vectors of covariables). This value is used by plot.predMehaz and points.predMehaz.

ci.method the method used to compute confidence limits.

level level of confidence used to compute confidence limits.

delta.type type of confidence limits for the hazard and the survival when using the Delta Method.

nb.sim number of simulations used to estimate the confidence limits when ci.method = "simul".

Author(s)

Hadrien Charvat, Aurelien Belot

References

See Also
print.prdMehaz, plot.prdMehaz, points.prdMehaz

Examples

data(simdatn1)

Fit of a fixed-effect hazard model, with the baseline hazard
described by a linear B-spline with two knots at 1 and 5 year and with
effects of age (ager), deprivation index (depindex) and sex (IsexH)

Mod bs1_2 <- mexhaz(formula=Surv(time=timesurv,
 event=vstat)-agecr+depindex+IsexH, data=simdatn1, base="exp.bs",
 degree=1, knots=c(1,5), verbose=0)

Prediction at several time points for one vector of covariates
Pred_Modbs1_2A <- predict.mehaz(Mod bs1_2, time pts=seq(0.1,10,by=0.1),
 data.val=data.frame(agercr=0,depindex=0.5,IsexH=1))

Prediction for several vectors of covariates at one time point
Pred_Modbs1_2B <- predict.mehaz(Mod bs1_2, time pts=10,
 data.val=data.frame(agercr=c(-0.2,-0.1,0), depindex=c(0.5,0.5,0.5),
 IsexH=c(1,1,1)))

Prediction for all individuals of the study population at one time point
Pred_Modbs1_2C <- predict.mehaz(Mod bs1_2, time pts=10,
 data.val=simdatn1)

Example of cluster-specific prediction (not run)

Fit of a mixed-effect excess hazard model, with the baseline hazard
described by a cubic B-spline with two knots at 1 and 5 year

Mod bs3_2mix <- mexhaz(formula=Surv(time=timesurv,
event=vstat)-agecr+IsexH, data=simdatn1, base="exp.bs", degree=3,
knots=c(1,5), expected="popmrate", random="clust", verbose=1000)

Prediction at several time points for an individual in cluster 15
with a specific vector of covariates
Pred_Modbs3_2A <- predict.mehaz(Mod bs3_2mix,
time pts=seq(0.1,10,by=0.1), data.val=data.frame(agercr=0.2, IsexH=1),
cluster=15)
print.mexhaz

Print method for a mexhaz object

Description

Display the model call as well as the values of the estimated model parameters.

Usage

```r
## S3 method for class 'mexhaz'
print(x, ...)
```

Arguments

- `x` an object of class `mexhaz`.
- `...` represents additional parameters directly passed to `print`.

See Also

`mexhaz`, `summary.mexhaz`

Examples

```r
data(simdat1)

## Fit of a mixed-effect excess hazard model, with the baseline hazard 
## described by a Weibull distribution (without covariables)
Mod_weib_mix <- mexhaz(formula=Surv(time=timesurv, 
event=vstat)-1, data=simdat1, base="weibull", 
expected="popmrate", verbose=0, random="clust")
print(Mod_weib_mix)
```

print.predMehaz

Print method for a predMehaz object

Description

Display the first lines of the `data.frame` containing the predictions provided by the `predMehaz` function.

Usage

```r
## S3 method for class 'predMehaz'
print(x, ...)
```
ranef

Arguments

x an object of class predMexhaz.

... represents additional parameters directly passed to print.

See Also

predict.mexhaz

Examples

data(simdatn1)

Fit of a fixed-effect hazard model, with the baseline hazard
described by a linear B-spline with two knots at 1 and 5 year and with
effects of age (agecr), deprivation index (depindex) and sex (IsexH)

Mod_bs1_2 <- mexhaz(formula=Surv(time=timesurv,
 event=vstat)~agecr+depindex+IsexH, data=simdatn1, base="exp.bs",
 degree=1, knots=c(1,5), verbose=0)

Prediction at several time points for one vector of covariates
Pred_Modbs1_2A <- predict.mexhaz(Mod_bs1_2, time.pts=seq(0.7,10,by=0.1),
 data.val=data.frame(agecr=0,depindex=0.5,IsexH=1), conf.int="delta")

print(Pred_Modbs1_2A)

Description

This is a generic function; currently, only the mexhaz class has a method implemented for this function.

Usage

ranef(x, ...)

Arguments

x currently, an object of class mexhaz.

... not used.

Value

see the documentation for ranef.mexhaz.
ranef.mexhaz

See Also

mexhaz

Examples

data(simdatn1)

Fit of a mixed-effect excess hazard model, with the baseline hazard
described by a Weibull distribution (without covariables)

Mod_weib_mix <- mexhaz(formula=Surv(time=timesurv,
event=vstat)-1, data=simdatn1, base="weibull",
expected="popmrate", verbose=0, random="clust")

ranef(Mod_weib_mix)

ranef.mexhaz
Method for extracting random effects from a mexhaz object

Description

Display a data frame containing the cluster-specific random effects with their standard errors.

Usage

S3 method for class 'mexhaz'

ranef(x, ...)

Arguments

- **x** an object of class mexhaz.
- **...** not used.

Value

A data frame with three columns containing the cluster names, the random effect estimates, and their standard errors.

See Also

mexhaz
Examples

```r
data(simdatn1)

# Fit of a mixed-effect excess hazard model, with the baseline hazard
# described by a Weibull distribution (without covariates)

Mod_weib_mix <- mexhaz(formula=Surv(time=timesurv, event=vstat)-1, data=simdatn1, base="weibull",
expected="popmrate", verbose=0, random="clust")

ranef(Mod_weib_mix)
```

simdatn1

Simulated dataset

Description

The *simdatn1* dataset has 4000 rows and 8 columns.

Format

This dataset contains the following columns:

- **age** Age at diagnosis (continuous).
- **agercr** Centred and rescaled age variable (age-70)/100.
- **depindex** Deprivation index (continuous).
- **IsexH** Sex (0 = Female, 1 = Male).
- **clust** ID number of the cluster.
- **vstat** Vital status (0 = Alive, 1 = Dead).
- **timesurv** Follow-up time (years).
- **popmrate** Population (expected) mortality rate at the time of censoring.

simdatn2

Simulated dataset

Description

The *simdatn2* dataset has 4000 rows and 8 columns. The *IsexH* variable is simulated with a non-proportional effect.
Format

This dataset contains the following columns:

- **age**: Age at diagnosis (continuous).
- **agecr**: Centred and rescaled age variable ((age-70)/100).
- **depindex**: Deprivation index (continuous).
- **IsexH**: Sex (0 = Female, 1 = Male).
- **clust**: ID number of the cluster.
- **vstat**: Vital status (0 = Alive, 1 = Dead).
- **timesurv**: Follow-up time (years).
- **popmrate**: Population (expected) mortality rate at the time of censoring.

Description

Display the model call, the values of the estimated model parameters, as well as the corresponding hazard ratios (only for proportional effects).

Usage

```r
## S3 method for class 'mexhaz'
summary(object, ...)
```

Arguments

- `object`: an object of class `mexhaz`.
- `...`: represents additional parameters directly passed to `summary`.

See Also

- `mexhaz`, `print.mexhaz`

Examples

```r
data(simdatn1)

## Fit of a mixed-effect excess hazard model, with the baseline hazard described by a Weibull distribution (without covariates)
Mod_weib <- mexhaz(formula=Surv(time=timesurv, event=vstat)-1, data=simdatn1, base="weibull", verbose=0)
summary(Mod_weib)
```
update.mexhaz

Update of a mexhaz model

Description

Function allowing the user to update an existing mexhaz model. All the arguments of the model can be updated. If the argument 'init' is not provided, the function uses the estimated values of the existing model as starting values for the corresponding parameters of the new model.

Usage

```r
## S3 method for class 'mexhaz'
update(object, formula, data, expected = NULL,
        base = c("weibull", "exp.bs", "exp.ns", "pw.cst"),
        degree = 3, knots = NULL, bound = NULL,
        n.gleg = 20, init = NULL, random = NULL,
        n.aghq = 10, fnoptim = c("nlm", "optim"),
        verbose = TRUE, method = "Nelder-Mead",
        iterlim=10000, numHess=FALSE, print.level=1,...)
```

Arguments

- **object**: an object of class mexhaz, corresponding to a survival model fitted with the mexhaz function.
- **formula**: a formula object, with the response on the left of the ~ operator, and the linear predictor on the right. The response must be of the form `Surv(time, event)` for right censored data or `Surv(time, time2, event)` for counting process style data. The linear predictor accepts a special instruction `nph()` for specifying variables for which a time-dependent effect should be modelled (if several variables are modelled with time-dependent effects, separate these variables inside the `nph()` instruction with a + sign).

 In case `time` takes the value 0 for some observations when data are entered in the right censored style, it is assumed that these observations refer to events/censoring that occurred on the first day of follow-up. Consequently, a value of \(1/730.5\) (half a day) is substituted in order to make computations possible. However, it should be stressed that this is just a convention and that it does not make much sense if the time scale is not expressed in years. We therefore advise the analyst to deal with 0 time values during the dataset preparation stage.

 See `update.formula` for more details.
- **data**: a data frame containing the variables referred to in the formula, as well as in the expected and random arguments if these arguments are used.
- **expected**: name of the variable (must be given in quotes) representing the population (i.e., expected) hazard. By default, `expected=\NULL`, which means that the function estimates the overall hazard (and not the excess hazard).
- **base**: functional form that should be used to model the baseline hazard. Selection can be made between the following options: "weibull" for a Weibull hazard, "exp.bs" for a hazard described by the exponential of a B-spline (only..."exp.ns" for a hazard described by the natural B-spline, "pw.cst" for a piecewise constant baseline hazard.)
B-splines of degree 1, 2 or 3 are accepted), "exp.ns" for a hazard described by the exponential of a restricted cubic B-spline (also called 'natural spline'), "pw.cst" for a piecewise constant hazard. By default, base="weibull".

degree

if base="exp.bs", degree represents the degree of the B-spline used. Only integer values between 1 and 3 are accepted, and 3 is the default.

knots

if base="exp.bs" or "exp.ns", knots is the vector of interior knots of the spline. If base="pw.cst", knots is the vector defining the endpoints of the time intervals on which the hazard is assumed to be constant. By default, knots=NULL (that is, it produces a B-spline with no interior knots if base="exp.bs", a linear B-spline with no interior knots if base="exp.ns", or a constant hazard over the whole follow-up period if base="pw.cst").

bound

If base="exp.bs" or base="exp.ns", computation of the B-spline basis requires that boundary knots be given. The bound argument allows the user to specify these boundary knots. If base="exp.bs", the interval defined by the boundary knots must at least include the interval c(0, max(time)) (otherwise, there could be problems with ill-conditioned bases). If base="exp.ns", the boundary knots correspond to the knots beyond which the spline is constrained to be linear (in that case, the boundary knots can be values contained in c(0, max(time))). By default, the boundary knots are set to c(0, max(time)).

n.gleg

if base="exp.bs" and degree is equal to 2 or 3, or if base="exp.ns", the cumulative hazard is computed via Gauss-Legendre quadrature and n.gleg is the number of quadrature nodes to be used to compute the cumulative hazard. By default, n.gleg=20.

init

vector of initial values. By default init=NULL and the initial values are internally set to the following values:

for the baseline hazard:

if base="weibull", the scale and shape parameters are set to 0.1;
if base="exp.bs", the parameters of the B-spline are all set to -1;
if base="exp.ns", the parameters of the restricted cubic B-spline are all set to -1;
if base="pw.cst", the logarithm of the piecewise-constant hazards are set to -1;
the parameters describing the effects of the covariates are all set to 0;
the parameter representing the standard deviation of the random effect is set to 0.1.

random

name of the variable to be entered as a random effect (must be given between quotes), representing the cluster membership. By default, random=NULL which means that the function fits a fixed effects model.

n.aghq

number of quadrature points to be used for estimating the cluster-specific marginal likelihoods by adaptive Gauss-Hermite quadrature. By default, n.aghq=10.

fnoptim

name of the R optimisation procedure used to maximise the likelihood. Selection can be made between "nlm" (by default) and "optim".

verbose

integer parameter representing the frequency at which the current state of the optimisation process is displayed. Internally, an 'evaluation' is defined as an estimation of the log-likelihood for a given vector of parameters. This means that the number of evaluations is increased each time the optimisation procedure
updates the value of any of the parameters to be estimated. If verbose=n (with n an integer), the function will display the current values of the parameters, the log-likelihood and the time elapsed every n evaluations. If verbose=0, nothing is displayed.

method
if fnoptim="optim", method represents the optimisation method to be used by optim. By default, method="Nelder-Mead". This parameter is not used if fnoptim="nlm".

iterlim
if fnoptim="nlm", iterlim represents the maximum number of iterations before the nlm optimisation procedure is terminated. By default, iterlim is set to 10000. This parameter is not used if fnoptim="optim" (in this case, the maximum number of iterations must be given as part of a list of control parameters via the control argument: see the help page of optim for further details).

numHess
logical value allowing the user to choose between the Hessian returned by the optimization algorithm (default) or the Hessian estimated by the hessian function from the numDeriv package. The latter might be more accurate but its estimation is more time-consuming. We suggest to use the default Hessian estimation procedure during model building and estimate the numDeriv-based Hessian only on the final model.

print.level
this argument is only used if fnoptim="nlm". It determines the level of printing during the optimisation process. The default value (for the mexhaz function) is set to 1 which means that details on the initial and final step of the optimisation procedure are printed (see the help page of nlm for further details).

...
represents additional parameters directly passed to nlm or optim to control the optimisation process.

Value
An object of class mexhaz. See mexhaz for more details.

Author(s)
Hadrien Charvat, Aurelien Belot

References

See Also
print.mexhaz, summary.mexhaz, predict.mexhaz

Examples

data(simdatn1)
Fit of a mixed-effect excess hazard model, with the baseline hazard described by a Weibull distribution (without covariates)

```r
Mod_weib <- mexhaz(formula=Surv(time=timesurv, event=vstat)-1, data=simdatn1, base="weibull", verbose=0)

## Add an effect of gender
Mod_weib_2 <- update(Mod_weib, formula=-.I(sexH))
```
Index

*Topic** package
 mexhaz-package, 2

mexhaz, 4, 15, 17, 19, 22
mexhaz-package, 2

plot.predMexhaz, 9, 11, 14
points.predMexhaz, 10, 10, 14
predict.mexhaz, 8, 10, 11, 11, 16, 22
print.mexhaz, 8, 15, 19, 22
print.predMexhaz, 14, 15

ranef, 16
ranef.mexhaz, 17

simdatn1, 18
simdatn2, 18
summary.mexhaz, 8, 15, 19, 22

update.formula, 20
update.mexhaz, 20