Package ‘mfGARCH’

July 30, 2019

Title Mixed-Frequency GARCH Models
Version 0.1.8
Description Estimating GARCH-MIDAS (MIxed-DAta-Sampling) models (Engle, Ghy-
sels, Sohn, 2013, <doi:10.1162/REST_a_00300>) and related statistical inference, accompany-
ing the paper ‘Two are better than one: volatility forecasting using multiplicative compo-
MIDAS model decomposes the conditional variance of (daily) stock returns into a short-
and long-term component, where the latter may depend on an exogenous covariate sam-
pled at a lower frequency.

Depends R (>= 3.3.0)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports Rcpp, graphics, stats, numDeriv, zoo, maxLik
LinkingTo Rcpp
URL https://github.com/onnokleen/mfGARCH/
BugReports https://github.com/onnokleen/mfGARCH/issues
Suggests testthat, dplyr, ggplot2, covr, rmarkdown
NeedsCompilation yes
Author Onno Kleen [aut, cre] (<https://orcid.org/0000-0003-4731-4640>)
Maintainer Onno Kleen <r@onnokleen.de>
Repository CRAN
Date/Publication 2019-07-30 10:20:02 UTC

R topics documented:

 df_financial ... 2
df_mfgarch ... 2
df_financial

Description

A dataset containing the S&P 500 stock returns and the NFCI

Usage

df_financial

Format

A data frame with 11,306 rows and 5 variables:

date date
return daily S&P 500 log returns times 100
rv 5-minute realized variances
week a dummy for each year/week combination
nfcf National Financial Conditions Index

Source

https://github.com/onnokleen/mfGARCH/
https://de.finance.yahoo.com/
https://fred.stlouisfed.org/series/NFCI
https://realized.oxford-man.ox.ac.uk
df_mfgarch

Mixed-frequency data set.

Description

A dataset containing the S&P 500 stock returns, realized variances and macroeconomic variables

Usage

df_mfgarch

Format

A data frame with 11,938 rows and 11 variables:

date date
return daily S&P 500 log returns times 100
open_close open-close returns
rv 5-minute realized variances
vix Cboe VIX
year_week a dummy for each year/week combination
dhousing changes in housing starts
dindpro changes in industrial production
nai NAI
nfci National Financial Conditions Index
year_month a dummy for each year/month combination

Source

https://github.com/onnokleen/mfGARCH/
https://de.finance.yahoo.com/
https://fred.stlouisfed.org
https://realized.oxford-man.ox.ac.uk
This function estimates a multiplicative mixed-frequency GARCH model. For the sake of numerical stability, it is best to multiply log returns by 100.

Description

This function estimates a multiplicative mixed-frequency GARCH model. For the sake of numerical stability, it is best to multiply log returns by 100.

Usage

```r
fit_mfgarch(data, y, x = NULL, K = NULL, low.freq = "date",
            var.ratio.freq = NULL, gamma = TRUE, weighting = "beta.restricted",
            x.two = NULL, K.two = NULL, low.freq.two = NULL,
            weighting.two = NULL, multi.start = FALSE, control = list(par.start = NULL))
```

Arguments

- **data**: data frame containing a column named date of type 'Date'.
- **y**: name of high frequency dependent variable in df.
- **x**: covariate employed in mfGARCH.
- **K**: an integer specifying lag length K in the long-term component.
- **low.freq**: a string of the low frequency variable in the df.
- **var.ratio.freq**: specify a frequency column on which the variance ratio should be calculated.
- **gamma**: if TRUE, an asymmetric GJR-GARCH is used as the short-term component. If FALSE, a simple GARCH(1,1) is employed.
- **weighting**: specifies the weighting scheme employed in the long-term component. Options are "beta.restricted" (default) or "beta.unrestricted"
- **x.two**: optional second covariate
- **K.two**: lag lgenth of optional second covariate
- **low.freq.two**: low frequency of optional second covariate
- **weighting.two**: specifies the weighting scheme employed in the optional second long-term component. Currently, the only option is "beta.restricted"
- **multi.start**: if TRUE, optimization is carried out with multiple starting values
- **control**: a list
Value

A list of class mfGARCH with letters and numbers.

- **par** - vector of estimated parameters
- **rob.std.err** - sandwich/HAC-type standard errors
- **broom.mgarch** - a broom-like data.frame with entries 1) estimate: column of estimated parameters 2) rob.std.err - sandwich/HAC-type standard errors 3) p.value - p-values derived from sandwich/HAC-type standard errors 4) opg.std.err - Bollerslev-Wooldrige/OPG standard errors for GARCH processes 5) opg.p.value - corresponding alternative p-values
- **tau** - fitted long-term component
- **g** - fitted short-term component
- **df.fitted** - data frame with fitted values and residuals
- **K** - chosen lag-length in the long-term component
- **weighting.scheme** - chosen weighting scheme
- **llh** - log-likelihood value at estimated parameter vector
- **bic** - corresponding BIC value
- **y** - dependent variable y
- **optim** - output of the optimization routine
- **K.two** - lag-length of x.two if two covariates are employed
- **weighting.scheme.two** - chosen weighting scheme of x.two (if K.two != NULL)
- **tau.forecast** - one-step ahead forecast of the long-term component
- **variance.ratio** - calculated variance ratio
- **est.weighting** - estimated weighting scheme
- **est.weighting.two** - estimated weighting scheme of x.two (if K.two != NULL)

Examples

```r
## Not run:
fit_mfgarch(data = df_financial, y = "return", x = "nfci", low.freq = "week", K = 52)
fit_mfgarch(data = df_mfgarch, y = "return", x = "nfci", low.freq = "year_week", K = 52,
x.two = "dindpro", K.two = 12, low.freq.two = "year_month", weighting.two = "beta.restricted"

## End(Not run)
```
plot_weighting_scheme

This function plots the weighting scheme of an estimated GARCH-MIDAS model

Description

This function plots the weighting scheme of an estimated GARCH-MIDAS model

Usage

plot_weighting_scheme(x)

Arguments

x mfGARCH object obtained by fit_mfgarch

simulate_mfgarch

This function simulates a GARCH-MIDAS model. Innovations can follow a standard normal or student-t distribution.

Description

This function simulates a GARCH-MIDAS model. Innovations can follow a standard normal or student-t distribution.

Usage

simulate_mfgarch(n.days, mu, alpha, beta, gamma, m, theta, w1 = 1, w2, K, psi, sigma.psi, low.freq = 1, n.intraday = 288, student.t = NULL, corr = 0)

Arguments

n.days number of days
mu mu
alpha alpha
beta beta
gamma gamma
m m
theta theta
w1 w1
w2 w2
simulate_mfgarch_diffusion

This function simulates a GARCH-MIDAS model where the short-term GARCH component is replaced by its diffusion limit, see Andersen (1998).

Description

This function simulates a GARCH-MIDAS model where the short-term GARCH component is replaced by its diffusion limit, see Andersen (1998).

Usage

simulate_mfgarch_diffusion(n.days, mu, alpha, beta, m, theta, w1 = 1, w2, K, psi, sigma.psi, low.freq = 1, n.intraday = 288)

Arguments

- n.days: number of days
- mu: mu
- alpha: alpha
- beta: beta
- m: m
- theta: theta
- w1: w1
- w2: w2
- K: K
- psi: psi
- sigma.psi: sigma.psi
- low.freq: low.freq
- n.intraday: n.intraday

Examples

simulate_mfgarch(n.days = 200, mu = 0, alpha = 0.06, beta = 0.92, gamma = 0, m = 0, theta = 0.1, w1 = 1, w2 = 3, K = 12, psi = 0.98, sigma.psi = 0.1, low.freq = 10)
Examples

```r
## Not run: simulate_mfgarch_diffusion(n.days = 200, mu = 0, alpha = 0.06, beta = 0.92, m =
theta = 0.1, w1 = 1, w2 = 3, K = 12, psi = 0.98, sigma.psi = 0.1, low.freq = 10)
## End(Not run)
```

simulate_mfgarch_rv_dependent

Simulate a GARCH-MIDAS similar to Wang/Ghysels with lagged RVol as covariate

Description

Simulate a GARCH-MIDAS similar to Wang/Ghysels with lagged RVol as covariate

Usage

```r
simulate_mfgarch_rv_dependent(n.days, mu, alpha, beta, gamma, m, theta,
w1 = 1, w2, K, n.intraday = 288, low.freq = 1, rvol = FALSE)
```

Arguments

- `n.days`: number of days
- `mu`: mu
- `alpha`: alpha
- `beta`: beta
- `gamma`: gamma
- `m`: m
- `theta`: theta
- `w1`: w1
- `w2`: w2
- `K`: K
- `n.intraday`: number of maximum intraday returns, default 288
- `low.freq`: number of days per low frequency
- `rvol`: if TRUE, the square root of the realized variance is used as a covariate

Examples

```r
simulate_mfgarch_rv_dependent(n.days = 2200, mu = 0, alpha = 0.06, beta = 0.92, gamma = 0, m =
theta = 0.1, w1 = 1, w2 = 3, K = 3, low.freq = 22)
```