Package ‘mhazard’

May 29, 2022

Title Nonparametric and Semiparametric Methods for Multivariate Failure Time Data

Version 0.2.1

Description Nonparametric survival function estimates and semiparametric regression for the multivariate failure time data with right-censoring. For nonparametric survival function estimates, the Volterra, Dabrowska, and Prentice-Cai estimates for bivariate failure time data may be computed as well as the Dabrowska estimate for the trivariate failure time data. Bivariate marginal hazard rate regression can be fitted for the bivariate failure time data. Functions are also provided to compute (bootstrap) confidence intervals and plot the estimates of the bivariate survival function. For details, see ”The Statistical Analysis of Multivariate Failure Time Data: A Marginal Modeling Approach”, Prentice, R., Zhao, S. (2019, ISBN: 978-1-4822-5657-4), CRC Press.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.0

LinkingTo Rcpp, RcppArmadillo

Imports Rcpp, boot, plot3D, survival, rootSolve

NeedsCompilation yes

Author Eric Bair [aut, cre], Shanshan Zhao [aut]

Maintainer Eric Bair <eric.bair@sciome.com>

Repository CRAN

Date/Publication 2022-05-29 05:40:02 UTC

R topics documented:

genClayton2 ... 2
genClayton3 ... 3
genClaytonReg .. 4
%mHR2 ... 6
Description

Generates simulated survival data from a bivariate Clayton-Oakes model, which can be used to create example data for bivariate survival function estimation. The marginal distributions are exponential with given rate parameters. The joint distribution is defined using a Clayton copula. The censoring times are also exponentially distributed with given rate parameters.

Usage

genClayton2(n, theta, lambda10, lambda01, lambdaC1, lambdaC2)

Arguments

- `n`: Sample size for the simulated data set.
- `theta`: Parameter for the Clayton copula. Must be -1 or larger.
- `lambda10, lambda01`: Rate parameters for the (marginal) exponential distributions.
- `lambdaC1, lambdaC2`: Rate parameters for the censoring times. No censoring occurs if this parameter is equal to 0.

Value

A data frame containing the following elements:

- `Y1, Y2`: Survival times for the simulated data
- `Delta1, Delta2`: Censoring indicators for the simulated data

Generates survival data from a bivariate Clayton-Oakes model
Details

This function simulates data with the following survival function: \(F(t_1, t_2) = [F(t_1, 0)^{-\theta} + F(0, t_2)^{-\theta} - 1]^{-1/\theta} \) (The survival function is defined to be equal to 0 if this quantity is negative.) The marginal survival functions \(F(t_1, 0) \) and \(F(0, t_2) \) are exponentially distributed with rate parameters \(\lambda_{10} \) and \(\lambda_{01} \), respectively. After generating survival times \(Y_1 \) and \(Y_2 \) (of length \(n \)) under this distribution, censoring times \(C_1 \) and \(C_2 \) (also of length \(n \)) are generated. \(C_1/C_2 \) are generated under an exponential distribution with rate parameters \(\lambda_{C1} \) and \(\lambda_{C2} \). If \(C_1[i] < Y_1[i] \) for a given observation \(i \), then observation \(i \) is considered to be censored (i.e., \(\Delta_1[i] = 0 \)). \(\Delta_2 \) is defined in a similar manner. If \(\lambda_{C1} \) or \(\lambda_{C2} \) is equal to 0, then the corresponding variable is uncensored (meaning that \(\Delta[i] = 1 \) for all \(i \)).

References

Examples

```r
x <- genClayton2(1000, 0, 1, 1, 2, 2)
```

genClayton3

Generates survival data from a trivariate Clayton-Oakes model

Description

Generates simulated survival data from a trivariate Clayton-Oakes model, which can be used to create example data for trivariate survival function estimation. The marginal distributions are exponential with rate parameter 1. The joint distribution is defined using a Clayton copula. The censoring times are also exponentially distributed with given rate parameters.

Usage

```r
genClayton3(n, theta, lambdaC1, lambdaC2, lambdaC3)
```

Arguments

- `n` Sample size for the simulated data set.
- `theta` Parameter for the Clayton copula. Must be -1 or larger.
- `lambdaC1`, `lambdaC2`, `lambdaC3` Rate parameters for the censoring times. No censoring occurs if this parameter is equal to 0.
Value

A data frame containing the following elements:

Y1, Y2, Y3: Survival times for the simulated data
Delta1, Delta2, Delta3: Censoring indicators for the simulated data

Details

This function simulates data with the following survival function:
\[F(t_1,t_2,t_3) = [F(t_1,0,0)^{(-\theta)} + F(0,t_2,0)^{(-\theta)} + F(0,0,t_3) - 2]^{(-1/\theta)} \]
(The survival function is defined to be equal to 0 if this quantity is negative.)

The marginal survival functions F(t1,0,0), F(0,t2,0), and F(0,0,t3) are exponentially distributed with rate parameter 1. After generating survival times Y1, Y2, and Y3 (of length n) under this distribution, censoring times C1, C2, and C3 (also of length n) are generated. C1/C2/C3 are generated under an exponential distribution with rate parameters lambdaC1, lambdaC2, lambdaC3, respectively. If C1[i]<Y1[i] for a given observation i, then observation i is considered to be censored (i.e., Delta1[i]=0). Delta2 and Delta3 are defined in a similar manner. If lambdaC1, lambdaC2, and/or lambdaC3 is equal to 0, then the corresponding variable is uncensored (meaning that Delta[i]=1 for all i).

References

Examples

```r
x <- genClayton3(200, 0, 0.5, 0.5, 0.5)
```

Description

Generates simulated survival data from a bivariate Clayton-Oakes model where the hazard depends on a binary coefficient X. This can be used to create example data for bivariate Cox regression. The marginal distributions are exponential with given rate parameters. The joint distribution is defined using a Clayton copula. The censoring times are also exponentially distributed with given rate parameters.

Usage

```r
genClaytonReg(
  n,
  theta,
  Xp,
)```
genClaytonReg

lambda10, lambda01, b10, b01, b11, lambdaC1, lambdaC2 } )

Arguments

n Sample size for the simulated data set.
theta Parameter for the Clayton copula. Must be -1 or larger.
Xp Probability that the covariate is equal to 1. Must satisfy 0<Xp<1.
lambda10, lambda01 Rate parameters for the (marginal) exponential distributions when X=0.
b10, b01, b11 Regression coefficient values.
lambdaC1, lambdaC2 Rate parameters for the censoring times. No censoring occurs if this parameter is equal to 0.

Value

A data frame containing the following elements:

Y1, Y2: Survival times for the simulated data
Delta1, Delta2: Censoring indicators for the simulated data
X Covariate matrix (of dimension n x 1).

Details

This function simulates data with the following survival function: 
F(t1,t2) = \left[F(t1,0)^{-\eta} + F(0,t2)^{-\eta} - 1\right]^{(-1/\eta)} (The survival function is defined to be equal to 0 if this quantity is negative. Here \eta=theta^exp(Xb11). The marginal survival functions F(t1,0) and F(0,t2) are exponentially distributed with rate parameters lambda10^exp(Xb10) and lambda01^exp(Xb01), respectively. After generating survival times Y1 and Y2 (of length n) under this distribution, censoring times C1 and C2 (also of length n) are generated. C1/C2 are generated under an exponential distribution with rate parameters lambdaC1 and lambdaC2. If C1[i]<Y1[i] for a given observation i, then observation i is considered to be censored (i.e., Delta1[i]=0). Delta2 is defined in a similar manner. If lambdaC1 or lambdaC2 is equal to 0, then the corresponding variable is uncensored (meaning that Delta[i]=1 for all i).

References

Examples

x <- genClaytonReg(1000, 2, 0.5, 1, 1, log(2), log(2), log(8/3), 2, 2)

mHR2

Cox regression for a bivariate outcome

Description

Fits a semiparametric Cox regression model for a bivariate outcome. This function computes the regression coefficients, baseline hazards, and sandwich estimates of the standard deviation of the regression coefficients. If desired, estimates of the survival function F and marginal hazard rates Lambda11 can be computed using the mHR2.LF function.

Usage

mHR2(Y1, Y2, Delta1, Delta2, X)

Arguments

Y1, Y2 Vectors of event times (continuous).
Delta1, Delta2 Vectors of censoring indicators (1=event, 0=censored).
X Matrix of covariates (continuous or binary).

Value

A list containing the following elements:

Y1, Y2: Original vectors of event times
Delta1, Delta2: Original vectors of censoring indicators
X: Original covariate matrix
n10, n01: Total number of events for the first/second outcome
n11: Total number of double events
beta10, beta01, beta11: Regression coefficient estimates
lambda10, lambda01, lambda11: Baseline hazard estimates
SD.beta10, SD.beta01, SD.beta11: Sandwich estimates of the standard deviation of the regression coefficients
SD.beta10.cox, SD.beta01.cox: Standard deviation estimates for the regression coefficients based on a univariate Cox model

References

**mHR2.LF**

**See Also**

mHR2.LF

**Examples**

```r
dx <- genClaytonReg(1000, 2, 0.5, 1, 1, log(2), log(2), log(8/3), 2, 2)
dx.mHR2 <- mHR2(x$Y1, x$Y2, x$Delta1, x$Delta2, x$X)
```

**Description**

Estimates the survival function $F$ and the marginal hazards $\Lambda_{11}$ for a bivariate Cox regression model. $F$ and $\Lambda_{11}$ are estimated at two specified values of the covariates. If desired, (bootstrap) confidence intervals or confidence bounds for $F$ and $\Lambda_{11}$ may also be computed.

**Usage**

```r
mHR2.LF(
mHR2.obj,
X0_out,
X1_out,
T1_out,
T2_out,
confidence = c("none", "CI", "CB"),
n.boot = 100
)
```

**Arguments**

- **mHR2.obj** Output from the mHR2 function.
- **X0_out, X1_out** Two possible sets of values for the covariates. $F$ and $\Lambda_{11}$ will be estimated at $X=X_0$ and $X=X_1$.
- **T1_out, T2_out** Vector of time points at which $F$ and $\Lambda_{11}$ should be estimated. If confidence="CB", then both vectors must have length 3.
- **confidence** Type of confidence estimate to be computed. Possible values include "none", "CI" (to compute confidence intervals), and "CB" (to compute confidence bands). Defaults to "none".
- **n.boot** Number of bootstrap iterations for computing the confidence intervals/bands. Defaults to 100. Ignored if confidence="none".
Value

A list containing the following elements:

- **n10, n01**: Total number of events for the first/second outcome
- **n11**: Total number of double events
- **beta10, beta01, beta11**: Regression coefficient estimates
- **lambda10, lambda01, lambda11**: Baseline hazard estimates
- **Lambda11_out_Z0, Lambda11_out_Z1**: Estimates of Lambda11 at T1_out, T2_out for X=X0_out and X=X1_out
- **F_out_X0, F_out_X1**: Estimates of F at T1_out, T2_out for X=X0_out and X=X1_out
- **CI_Lambda11_X0.lb, CI_Lambda11_X0.ub**: Lower and upper bounds for Lambda11 at X=X0_out
- **CI_Lambda11_X1.lb, CI_Lambda11_X1.ub**: Lower and upper bounds for Lambda11 at X=X1_out
- **CI_F_X0.lb, CI_F_X0.ub**: Lower and upper bounds for F at X=X0_out
- **CI_F_X1.lb, CI_F_X1.ub**: Lower and upper bounds for F at X=X1_out
- **CB1_Lambda11_X0.lb, CB1_Lambda11_X0.ub, CB2_Lambda11_X0.lb, CB2_Lambda11_X0.ub, CB3_Lambda11_X0.lb, CB3_Lambda11_X0.ub**: Lower and upper bounds for Lambda11 at X=X0_out, at three T1_out, T2_out combinations
- **CB1_Lambda11_X1.lb, CB1_Lambda11_X1.ub, CB2_Lambda11_X1.lb, CB2_Lambda11_X1.ub, CB3_Lambda11_X1.lb, CB3_Lambda11_X1.ub**: Lower and upper bounds for Lambda11 at X=X1_out, at three T1_out, T2_out combinations
- **CB1_F_X0.lb, CB1_F_X0.ub, CB2_F_X0.lb, CB2_F_X0.ub, CB3_F_X0.lb, CB3_F_X0.ub**: Lower and upper bounds for F at X=X0_out, at three T1_out, T2_out combinations
- **CB1_F_X1.lb, CB1_F_X1.ub, CB2_F_X1.lb, CB2_F_X1.ub, CB3_F_X1.lb, CB3_F_X1.ub**: Lower and upper bounds for F at X=X1_out, at three T1_out, T2_out combinations

Details

If confidence="CI" or confidence="CB", then 95% bootstrap confidence bounds are computed by estimating the standard errors of F/Lambda11 based on n.boot bootstrap iterations. Currently confidence bounds can only be computed at three specified T1out/T2out combinations (meaning that T1out and T2out must both have length 3 if confidence="CB"). No confidence measures will be returned if confidence="none".

References


See Also

mHR2
Examples

```r
x <- genClaytonReg(1000, 2, 0.5, 1, 1, log(2), log(2), log(8/3), 2, 2)
x.mHR2 <- mHR2(x$Y1, x$Y2, x$Delta1, x$Delta2, x$X)
x.LF <- mHR2.LF(x.mHR2, 0, 1, c(0.25, 0.5, 1), c(0.25, 0.5, 1))
x.LF.CI <- mHR2.LF(x.mHR2, 0, 1, c(0.25, 0.5, 1),
c(0.25, 0.5, 1), confidence="CI")
x.LF.CB <- mHR2.LF(x.mHR2, 0, 1, c(0.25, 0.5, 1),
c(0.25, 0.5, 1), confidence="CB")
```

**mHR2.tvc**

*Cox regression for a bivariate outcome with time-varying covariates*

**Description**

Fits a semiparametric Cox regression model for a bivariate outcome with time-varying covariates. Currently only the regression coefficients are computed.

**Usage**

```r
mHR2.tvc(Y1, Y2, Delta1, Delta2, ids, X)
```

**Arguments**

- `Y1, Y2`: Vectors of event times (continuous).
- `Delta1, Delta2`: Vectors of censoring indicators (1=event, 0=censored).
- `ids`: Vector of ID numbers. It is used to map the values of the time-varying covariates back to the original Y1/Y2/Delta1/Delta2 values. See Details.
- `X`: Matrix of covariates (continuous or binary). See Details for the proper format of this matrix.

**Value**

A list containing the following elements:

- `beta10, beta01, beta11`: Regression coefficient estimates

**Details**

X must be a matrix with at least four columns. The first column contains the ID numbers. Each ID number in this column must map to a unique element of the ids vector. The second and third columns consist of time points for T1 and T2, respectively. They specify the time points at which the covariates take on the specified value(s). The remaining columns represent the values of the covariates on the specified time interval. For example, if we define `X.tv <- matrix(c(1001, 1001, 0, 0, 0, 5, 1, 2), nrow=2)` then, for the observation with ID number 1001, then when T1=0, the time-varying covariate has a value of 1 on when T2 is in [0,5) and a value of 2 when T2 is in [5,Inf). Note that the values of the time-varying covariates must be specified for when T1=0 (or T2=0) in
order to compute beta10 and beta01. If a value of a covariate is constant when T1=0 or T2=0, that covariate will be dropped when computing beta10 or beta01.

Support for time-varying covariates is experimental and has not been tested extensively. Use this function at your own risk.

References


See Also

mHR2

Examples

```r
x <- genClaytonReg(250, 2, 0.5, 1, 1, 0, log(2), 0, 5, 5)
x.tv <- tvc.example(x$Y1, x$Y2, x$Delta1, x$Delta2, x$X)
x.mHR2 <- mHR2.tvc(x$Y1, x$Y2, x$Delta1, x$Delta2,
x.tv$ids, x.tv$X.tv)
```

---

**npSurv2**

*Nonparametric estimates of the survival function for bivariate failure time data*

**Description**

Computes the survival function for bivariate failure time data using one of three possible estimators, including Dabrowska, Volterra and Prentice-Cai estimators. Optionally (bootstrap) confidence intervals for the survival function may also be computed.

**Usage**

```r
npSurv2(
 Y1,
 Y2,
 Delta1,
 Delta2,
 newT1 = NULL,
 newT2 = NULL,
 estimator = c("dabrowska", "volterra", "prentice-cai"),
 conf.int = FALSE,
 R = 1000,
 ...
)
```
Arguments

Y1, Y2  Vectors of event times (continuous).
Delta1, Delta2  Vectors of censoring indicators (1=event, 0=censored).
newT1, newT2  Optional vectors of times at which to estimate the survival function (which do not need to be subsets of Y1/Y2). Defaults to the unique values in Y1/Y2 if not specified.
estimator  Which estimator of the survival function should be used. Possible values include "dabrowska", "volterra", and "prentice-cai". Defaults to "dabrowska".
conf.int  Should bootstrap confidence intervals be computed?
R  Number of bootstrap replicates. This argument is passed to the boot function. Defaults to 1000. Ignored if conf.int is FALSE.
...  Additional arguments to the boot function.

Value

A list containing the following elements:

T1: Unique uncensored Y1 values
T2: Unique uncensored Y2 values
Fhat: Estimated bivariate survival function (computed at T1, T2)
Fhat.lci: Lower 95% confidence bounds for Fhat
Fhat.uci: Upper 95% confidence bounds for Fhat
Fmarg1.est: Estimated marginal survival function for T1 (computed at newT1)
Fmarg1.lci: Lower 95% confidence bounds for Fmarg1
Fmarg1.uci: Upper 95% confidence bounds for Fmarg1
Fmarg2.est: Estimated marginal survival function for T2 (computed at newT2)
Fmarg2.lci: Lower 95% confidence bounds for Fmarg2
Fmarg2.uci: Upper 95% confidence bounds for Fmarg2
F.est: Estimated survival function (computed at newT1, newT2)
F.est.lci: Lower 95% confidence bounds for F.est
F.est.uci: Upper 95% confidence bounds for F.est
CR: Estimated cross ratio (computed at T1, T2)
KT: Estimated Kendall\'s tau (computed at T1, T2)
CR.est: Estimated cross ratio (computed at newT1, newT2)
KT.est: Estimated Kendall\'s tau (computed at newT1, newT2)

Details

If conf.int is TRUE, confidence intervals will be computed using the boot function in the boot package. Currently only 95% confidence intervals computed using the percentile method are implemented. If conf.int is FALSE, confidence intervals will not be computed, and confidence bounds will not be returned in the output.
References


See Also

boot

Examples

x <- genClayton2(1000, 0, 1, 1, 2, 2)
x.npSurv2 <- npSurv2(x$Y1, x$Y2, x$Delta1, x$Delta2)
x.npSurv2.ci <- npSurv2(x$Y1, x$Y2, x$Delta1, x$Delta2, conf.int=TRUE)
x.npSurv2.volt <- npSurv2(x$Y1, x$Y2, x$Delta1, x$Delta2, estimator="volterra")
x.npSurv2.t <- npSurv2(x$Y1, x$Y2, x$Delta1, x$Delta2, newT1=-1*log(c(0.55, 0.7, 0.7, 0.85, 0.85, 0.85)), newT2=-1*log(c(0.55, 0.55, 0.7, 0.55, 0.7, 0.85)))

npSurv3

Nonparametric estimates of the survival function for trivariate failure time data

Description

Computes the survival function for a trivariate failure time data. The survival function for trivariate failure time data is analogous to the Kaplan-Meier estimator for a univariate failure time data and Dabrowska estimator for bivariate failure time data. Optionally (bootstrap) confidence intervals for the survival function may also be computed.

Usage

npSurv3(
    Y1, Y2, Y3, Delta1, Delta2, Delta3, newT1 = NULL, newT2 = NULL, newT3 = NULL, conf.int = FALSE, R = 1000, ...
    )
Arguments

Y1, Y2, Y3  Vectors of event times (continuous).
Delta1, Delta2, Delta3  Vectors of censoring indicators (1=event, 0=censored).
newT1, newT2, newT3  Optional vectors of times at which to estimate the survival function (which do not need to be subsets of Y1/Y2/Y3). Defaults to the unique values in Y1/Y2/Y3 if not specified.
conf.int  Should bootstrap confidence intervals be computed?
R  Number of bootstrap replicates. This argument is passed to the boot function. Defaults to 1000. Ignored if conf.int is FALSE.
...  Additional arguments to the boot function.

Value

A list containing the following elements:

T1: Unique values of Y1 at which Fhat was computed
T2: Unique values of Y2 at which Fhat was computed
T3: Unique values of Y3 at which Fhat was computed
Fhat: Estimated survival function (computed at T1, T2, T3)
Fhat.lci: Lower 95% confidence bounds for Fhat
Fhat.uci: Upper 95% confidence bounds for Fhat
Fmarg1.est: Estimated marginal survival function for T1 (computed at newT1)
Fmarg1.lci: Lower 95% confidence bounds for Fmarg1
Fmarg1.uci: Upper 95% confidence bounds for Fmarg1
Fmarg2.est: Estimated marginal survival function for T2 (computed at newT2)
Fmarg2.lci: Lower 95% confidence bounds for Fmarg2
Fmarg2.uci: Upper 95% confidence bounds for Fmarg2
Fmarg3.est: Estimated marginal survival function for T3 (computed at newT3)
Fmarg3.lci: Lower 95% confidence bounds for Fmarg3
Fmarg3.uci: Upper 95% confidence bounds for Fmarg3
F.est: Estimated survival function (computed at newT1, newT2, newT3)
F.est.lci: Lower 95% confidence bounds for F.est
F.est.uci: Upper 95% confidence bounds for F.est
C110: Pairwise marginal cross ratio estimator C110 (computed at newT1, newT2, newT3)
C101: Pairwise marginal cross ratio estimator C101 (computed at newT1, newT2, newT3)
C011: Pairwise marginal cross ratio estimator C011 (computed at newT1, newT2, newT3)
C111: Trivariate dependency estimator C111 (computed at newT1, newT2, newT3)
Details

If conf.int is TRUE, confidence intervals will be computed using the boot function in the boot package. Currently only 95% confidence intervals computed using the percentile method are implemented. If conf.int is FALSE, confidence intervals will not be computed, and confidence bounds will not be returned in the output.

References


See Also

boot

Examples

x <- genClayton3(200, 0, 0.5, 0.5, 0.5)
x.npSurv3 <- npSurv3(x$Y1, x$Y2, x$Y3, x$Delta1, x$Delta2, x$Delta3)
x.npSurv3.ci <- npSurv3(x$Y1, x$Y2, x$Y3, x$Delta1, x$Delta2, x$Delta3, conf.int=TRUE, R=500)

plotnpSurv2.3D  Uses a 3D perspective plot to visualize a nonparametric bivariate survival function

Description

Plots a 3D perspective plot of an estimated nonparametric bivariate survival function. This function is a wrapper for the persp3D function from the plot3D package with default parameters chosen to make the data easier to visualize.

Usage

plotnpSurv2.3D(
  npSurv2.obj,
  col = "grey",
  shade = 0.25,
  theta = 120,
  xlab = "T1",
  ylab = "T2",
  zlab = "Fhat",
  ...
)
plotnpSurv2.HM

Arguments

npSurv2.obj  Output of the npSurv2 function.
col          Color palette to be used for the plot. Defaults to "grey". See persp3D.
shade        The degree of shading of the surface facets. Defaults to 0.25. See persp.
theta        The azimuthal viewing direction. See persp.
xlab          The x-axis label. Defaults to "T1".
ylab          The y-axis label. Defaults to "T2".
zlab          The z-axis label. Defaults to "Fhat".
...          Additional parameters to the persp3D function.

See Also

npSurv2, persp3D

Examples

x <- genClayton2(1000, 0, 1, 1, 2, 2)
x.npSurv2 <- npSurv2(x$Y1, x$Y2, x$Delta1, x$Delta2)
plotnpSurv2.3D(x.npSurv2)

x2 <- genClayton2(1000, 2, 1, 1, 2, 2)
x2.npSurv2 <- npSurv2(x2$Y1, x2$Y2, x2$Delta1, x2$Delta2)
plotnpSurv2.3D(x2.npSurv2)

plotnpSurv2.HM

Uses a heat map to visualize a nonparametric bivariate survival function

Description

Plots a heat map of an estimated nonparametric bivariate survival function. This function is a
wrapper for the image function with default parameters chosen to make the data easier to visualize.

Usage

plotnpSurv2.HM(
  npSurv2.obj,
  contour = TRUE,
  col = terrain.colors(100),
  xlab = "T1",
  ylab = "T2",
  ...
)
Arguments

- `npSurv2.obj` Output of the `npSurv2` function.
- `contour` Should contour lines be added to the plot? Defaults to `TRUE`.
- `col` List of colors for the heat map. Defaults to `terrain.colors(100)`.
- `xlab` The x-axis label. Defaults to "T1".
- `ylab` The y-axis label. Defaults to "T2".
- `...` Additional parameters to the `image` function.

See Also

- `npSurv2`, `image`

Examples

```r
x <- genClayton2(1000, 0, 1, 2, 2)
x.npSurv2 <- npSurv2(x$Y1, x$Y2, x$Delta1, x$Delta2)
plotnpSurv2.HM(x.npSurv2)

x2 <- genClayton2(1000, 2, 1, 2, 2)
x2.npSurv2 <- npSurv2(x2$Y1, x2$Y2, x2$Delta1, x2$Delta2)
plotnpSurv2.HM(x2.npSurv2)
```

tvc.example

---

**Description**

Given a set of (non-time-varying) covariates, creates a simple example of a matrix of time-varying covariates that can be used as input data for the `mHR2` function.

**Usage**

```r
tvc.example(Y1, Y2, Delta1, Delta2, X)
```

**Arguments**

- `Y1`, `Y2` Vectors of event times (continuous).
- `Delta1`, `Delta2` Vectors of censoring indicators (1=event, 0=censored).
- `X` Matrix of covariates (continuous or binary).

**Value**

A list containing the following elements:

- `ids`: A vector of ids
- `X.tv`: Time-varying covariate matrix
Details
For each (non-time-varying) covariate in X, two time-varying covariates are created. The first time-varying covariate is equal to $X \log(T_1)$, and the second is equal to $X \log(T_2)$. (If $T=0$, then the time-varying covariate is set to be 0.) A vector of ID numbers and a matrix of time-varying covariates are created in a format that can be passed to the mHR2.tvc function.

See Also
mHR2, genClaytonReg

Examples
```r
x <- genClaytonReg(250, 2, 0.5, 1, 1, 0, log(2), 0, 5, 5)
x.tv <- tvc.example(x$Y1, x$Y2, x$Delta1, x$Delta2, x$X)
```
Index

boot, 12, 14

genClayton2, 2
genClayton3, 3
genClaytonReg, 4, 17

image, 16

mHR2, 6, 8, 10, 17
mHR2.LF, 7, 7
mHR2.tvc, 9

npSurv2, 10, 15, 16
npSurv3, 12

dpersp3D, 15
plotnpSurv2.3D, 14
plotnpSurv2.HM, 15

tvc.example, 16