An Example of mi Usage

Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman

06/16/2014

There are several steps in an analysis of missing data. Initially, users must get their data into R. There are several ways to do so, including the `read.table`, `read.csv`, `read.fwf` functions plus several functions in the `foreign` package. All of these functions will generate a `data.frame`, which is a bit like a spreadsheet of data. http://cran.r-project.org/doc/manuals/R-data.html for more information.

```r
options(width = 65)
suppressMessages(library(mi))
data(nlsyV, package = "mi")
```

From there, the first step is to convert the `data.frame` to a `missing_data.frame`, which is an enhanced version of a `data.frame` that includes metadata about the variables that is essential in a missing data context.

```r
mdf <- missing_data.frame(nlsyV)
```

NOTE: In the following pairs of variables, the missingness pattern of the first is a subset of the second. Please verify whether they are in fact logically distinct variables.

<table>
<thead>
<tr>
<th>[,1]</th>
<th>[,2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b.marr</td>
<td>income</td>
</tr>
</tbody>
</table>

The `missing_data.frame` constructor function creates a `missing_data.frame` called `mdf`, which in turn contains seven `missing_variable`s, one for each column of the `nlsyV` dataset.

The most important aspect of a `missing_variable` is its class, such as `continuous`, `binary`, and `count` among many others (see the table in the Slots section of the help page for `missing_variable-class`). The `missing_data.frame` constructor function will try to guess the appropriate class for each `missing_variable`, but rarely will it correspond perfectly to the user’s intent. Thus, it is very important to call the `show` method on a `missing_data.frame` to see the initial guesses

```r
show(mdf)  # momrace is guessed to be ordered
```

Object of class missing_data.frame with 400 observations on 7 variables

There are 20 missing data patterns

Append '@patterns' to this missing_data.frame to access the corresponding pattern for every observation

<table>
<thead>
<tr>
<th>type</th>
<th>missing</th>
<th>method</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppvtr.36</td>
<td>continuous</td>
<td>75</td>
<td>ppd linear</td>
</tr>
<tr>
<td>first</td>
<td>binary</td>
<td>0</td>
<td><NA> <NA></td>
</tr>
<tr>
<td>b.marr</td>
<td>binary</td>
<td>12</td>
<td>ppd logit</td>
</tr>
<tr>
<td>income</td>
<td>continuous</td>
<td>82</td>
<td>ppd linear</td>
</tr>
<tr>
<td>momage</td>
<td>continuous</td>
<td>0</td>
<td><NA> <NA></td>
</tr>
<tr>
<td>momed</td>
<td>ordered-categorical</td>
<td>40</td>
<td>ppd ologit</td>
</tr>
<tr>
<td>momrace</td>
<td>ordered-categorical</td>
<td>117</td>
<td>ppd ologit</td>
</tr>
</tbody>
</table>
and to modify them, if necessary, using the `change` function, which can be used to change many things about a `missing_variable`, so see its help page for more details. In the example below, we change the class of the `momrace` (race of the mother) variable from the initial guess of `ordered-categorical` to a more appropriate `unordered-categorical` and change the income `nonnegative-continuous`.

```r
mdf <- change(mdf, y = c("income", "momrace"), what = "type", to = c("non", "un"))
```

NOTE: In the following pairs of variables, the missingness pattern of the first is a subset of the second.
Please verify whether they are in fact logically distinct variables.
[1,1] [1,2]
[1,] "b.marr" "income"

```r
show(mdf)
```

Once all of the `missing_variables` are set appropriately, it is useful to get a sense of the raw data, which can be accomplished by looking at the `summary`, `image`, and / or `hist` of a `missing_data.frame`
summary(mdf)

ppvtr.36 first b.marr
Min. : 41.00 Min. :0.000 Min. :0.0000
1st Qu.: 74.00 1st Qu.:0.000 1st Qu.:0.0000
Median : 87.00 Median :0.000 Median :1.0000
Mean : 85.94 Mean :0.435 Mean :0.7062
3rd Qu.: 99.00 3rd Qu.:1.000 3rd Qu.:1.0000
Max. :132.00 Max. :1.000 Max. :1.0000
NA's :75 NA's :12

income momage momed momrace
Min. : 0 Min. :16.00 Min. :1.000 1 : 55
1st Qu.: 8590 1st Qu.:22.00 1st Qu.:1.000 2 : 80
Median : 17906 Median :24.00 Median :2.000 3 :148
Mean : 32041 Mean :23.75 Mean :2.042 NA
3rd Qu.: 31228 3rd Qu.:26.00 3rd Qu.:3.000
Max. :1057448 Max. :32.00 Max. :4.000
NA's :82 NA's :40

image(mdf)

Dark represents missing data

Clustered by missingness

Standardized Variable

Clustered by missingness

hist(mdf)
Next we use the `mi` function to do the actual imputation, which has several extra arguments that, for example, govern how many independent chains to utilize, how many iterations to conduct, and the maximum amount of time the user is willing to wait for all the iterations of all the chains to finish. The imputation step can be quite time consuming, particularly if there are many missing variables and if many of them are categorical. One important way in which the computation time can be reduced is by imputing in parallel, which is highly recommended and is implemented in the `mi` function by default on non-Windows machines. If users encounter problems running `mi` with parallel processing, the problems are likely due to the machine exceeding available RAM. Sequential processing can be used instead for `mi` by using the `parallel=FALSE` option.

```r
rm(nlsyV) # good to remove large unnecessary objects to save RAM
options(mc.cores = 2)
imputations <- mi(mdf, n.iter = 30, n.chains = 4, max.minutes = 20)
show(imputations)
```

Object of class mi with 4 chains, each with 30 iterations.
Each chain is the evolution of an object of missing_data.frame class with 400 observations on 7 variables.

The next step is very important and essentially verifies whether enough iterations were conducted. We want the mean of each completed variable to be roughly the same for each of the 4 chains.

```r
round(mapply(imputations, mean, to.matrix = TRUE), 3)
```

```r
## chain:1 chain:2 chain:3 chain:4
## ppvtr.36 -0.009 -0.006 0.000 -0.005
## first 1.435 1.435 1.435 1.435
## b.marr 1.685 1.685 1.688 1.690
## momage 0.000 0.000 0.000 0.000
```
Rhats(impuations)

mean_ppvtr.36 mean_b.marr mean_income mean_momed
0.9911648 1.0047919 1.0280528 0.9917420
mean_momrace sd_ppvtr.36 sd_b.marr sd_income
1.0098098 0.9892022 1.0034345 1.0526953
sd_momed sd_momrace
0.9876510 1.0311420

If so — and when it does in the example depends on the pseudo-random number seed — we can proceed to diagnosing other problems. For the sake of example, we continue our 4 chains for another 5 iterations by calling

imputations <- mi(imputations, n.iter = 5)

to illustrate that this process can be continued until convergence is reached.

Next, the plot of an object produced by mi displays, for all missing_variables (or some subset thereof), a histogram of the observed, imputed, and completed data, a comparison of the completed data to the fitted values implied by the model for the completed data, and a plot of the associated binned residuals. There will be one set of plots on a page for the first three chains, so that the user can get some sense of the sampling variability of the imputations. The hist function yields the same histograms as plot, but groups the histograms for all variables (within a chain) on the same plot. The image function gives a sense of the missingness patterns in the data.
plot(imputations, y = c("ppvtr.36", "momrace"))
$ppvtr.36

$ppvtr.36$is_missing

missing

FALSE TRUE

325 75

$ppvtr.36$imputed

$ppvtr.36$observed

$first

$first$is_missing

[1] "all values observed"

$first$observed

1 2

226 174

##
$b.marr
$b.marr$crosstab
##
observed imputed
0 456 41
1 1096 7
##
$income
$income$is_missing
missing
FALSE TRUE
318 82
##
$income$imputed
Min. 1st Qu. Median Mean 3rd Qu. Max.
##
$income$observed
Min. 1st Qu. Median Mean 3rd Qu. Max.
##
$momage
$momage$is_missing
[1] "all values observed"
##
$momage$observed
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.21400 -0.27470 0.03835 0.00000 0.35140 1.29000
##
$momed
$momed$crosstab
##
observed imputed
1 472 60
2 540 39
3 324 42
4 104 19
##
$momrace
$momrace$crosstab
##
observed imputed
1 220 136
2 320 130
3 592 202
Finally, we pool over $m = 5$ imputed datasets – pulled from across the 4 chains – in order to estimate a descriptive linear regression of test scores ($ppvtr.36$) at 36 months on a variety of demographic variables pertaining to the mother of the child.

```r
analysis <- pool(ppvtr.36 ~ first + b.marr + income + momage + momed + momrace, 
                 data = imputations, m = 5)
display(analysis)
```

bayesglm(formula = ppvtr.36 ~ first + b.marr + income + momage +
momed + momrace, data = imputations, m = 5)
coef.est coef.se
(Intercept) 79.45 8.69
first1 4.24 2.18
b.marr1 5.27 3.13
income 0.00 0.00
momage -0.05 0.36
momed.L 10.38 3.34
momed.Q 0.95 2.42
momed.C 0.08 1.76
momrace2 -6.08 3.22
momrace3 11.56 3.44
n = 390, k = 10
residual deviance = 92334.9, null deviance = 139537.8 (difference = 47202.9)
overdispersion parameter = 236.8
residual sd is sqrt(overdispersion) = 15.39

The rest is optional and only necessary if you want to perform some operation that is not supported by the `mi` package, perhaps outside of R. Here we create a list of `data.frames`, which can be saved to the hard disk
and / or exported in a variety of formats with the `foreign` package. Imputed data can be exported to Stata by using the `mi2stata` function instead of `complete`.

```r
dfs <- complete(imputations, m = 2)
```