Package ‘microbial’

May 15, 2024

Type Package

Title Do 16s Data Analysis and Generate Figures

Version 0.0.21

Description Provides functions to enhance the available statistical analysis procedures in R by providing simple functions to analysis and visualize the 16S rRNA data. Here we present a tutorial with minimum working examples to demonstrate usage and dependencies.

License GPL-3

Depends R (>= 3.5.0)

Imports dplyr, plyr, magrittr, broom, phyloseq, vegan, rlang, ggplot2, ggpubr, DESeq2, SummarizedExperiment, S4Vectors, rstatix, tidyr, phangorn, randomForest, edgeR

Encoding UTF-8

LazyData true

Suggests markdown, dada2, rmarkdown, knitr, tools, Biostrings, DECIPHER, MASS, testthat

VignetteBuilder knitr

biocViews Software, GraphAndNetwork

RoxygenNote 7.2.3

NeedsCompilation no

Author Kai Guo [aut, cre], Pan Gao [aut]

Maintainer Kai Guo <guokai8@gmail.com>

Repository CRAN

Date/Publication 2024-05-15 18:20:02 UTC

\textbf{R topics documented:}

.\checkfile \hfill 2
.\getstar \hfill 3
.checkfile

description
check file format

usage
.checkfile(file)
.getstar

Arguments

file filename

.replace p value with star

Description

replace p value with star

Usage

.getstar(x)

Arguments

x a (non-empty) numeric data values

.lda.fun

LEfse function

Description

LEfse function

Usage

.lda.fun(df)

Arguments

df a dataframe with groups and bacteria abundance
Description

calcaute beta diversity

Usage

`betadiv(physeq, distance = "bray", method = "PCoA")`

Arguments

- **physeq**
 A `phyloseq` object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and / or phylogenetic tree if available.

- **distance**
 A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray"). "unifrac", "wunifrac", "manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao" or "mahalanobis".

- **method**
 A character string specifying ordination method. All methods available to the ordinate function of phyloseq are acceptable here as well.

Value

- list with beta diversity data.frame and PCs

Author(s)

Kai Guo

Examples

```r
{  
data("Physeq")  
phy<-normalize(physeq)  
res <- betadiv(phy)  
}
```
Description

PERMANOVA test for phyloseq

Usage

`betatest(physeq, group, distance = "bray")`

Arguments

- **physeq**: A `phyloseq` object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and / or phylogenetic tree if available.
- **group**: (Required). Character string specifying name of a categorical variable that is preferred for grouping the information.
- **distance**: A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray"). "unifrac", "wunifrac", "manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao" or "mahalanobis".

Value

PERMANOVA test result

Author(s)

Kai Guo

Examples

```r
{
  data("Physeq")
  phy <- normalize(physeq)
  beta <- betatest(phy, group="SampleType")
}
```
biomarker

Identify biomarker by using randomForest method

Description

Identify biomarker by using randomForest method

Usage

```r
biomarker(
    physeq,
    group,
    ntree = 500,
    pvalue = 0.05,
    normalize = TRUE,
    method = "relative"
)
```

Arguments

- **physeq**: A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.
- **group**: A character string specifying the name of a categorical variable containing grouping information.
- **ntree**: Number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times.
- **pvalue**: pvalue threshold for significant results from kruskal.test
- **normalize**: to normalize the data before analysis (TRUE/FALSE)
- **method**: A list of character strings specifying method to be used to normalize the phyloseq object. Available methods are: "relative", "TMM", "vst", "log2".

Value

data frame with significant biomarker

Author(s)

Kai Guo

Examples

```r
data("Physeq")
res <- biomarker(physeq, group="group")
```
Description

contruction of phylogenetic tree (extreme slow)

Usage

buildTree(seqs)

Arguments

seqs DNA sequences

Value

tree object

Author(s)

Kai Guo

data-physeq

The physeq data was modified from the (Data) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample (2011)

Description

Published in PNAS in early 2011. This work compared the microbial communities from 25 environmental samples and three known “mock communities” – a total of 9 sample types – at a depth averaging 3.1 million reads per sample. Authors were able to reproduce diversity patterns seen in many other published studies, while also investigating technical issues/bias by applying the same techniques to simulated microbial communities of known

References

Examples

data(Physeq)
Calculate differential bacteria with DESeq2

Description

Calculate differential bacteria with DESeq2

Usage

```r
difftest(
  physeq,
  group,
  ref = NULL,
  pvalue = 0.05,
  padj = NULL,
  log2FC = 0,
  gm_mean = TRUE,
  fitType = "local",
  quiet = FALSE
)
```

Arguments

- `physeq`: A `phyloseq` object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.
- `group`: group (DESeq2). A character string specifying the name of a categorical variable containing grouping information.
- `ref`: reference group
- `pvalue`: pvalue threshold for significant results
- `padj`: adjust p value threshold for significant results
- `log2FC`: log2 Fold Change threshold
- `gm_mean`: TRUE/FALSE calculate geometric means prior to estimate size factors
- `fitType`: either "parametric", "local", or "mean" for the type of fitting of dispersions to the mean intensity.
- `quiet`: whether to print messages at each step

Value

dataframe with differential test with DESeq2

Author(s)

Kai Guo
Examples

```r
data("Physeq")
res <- difftest(physeq, group="group")
```

distcolor

distinguish colors for making figures

Description
distinguish colors for making figures

Usage
distcolor

Format
An object of class character of length 41.

Author(s)
Kai Guo

do_aov
do anova test and return results as data.frame

Description
do anova test and return results as data.frame

Usage
do_aov(x, group, ...)

Arguments

- `x` - data.frame with sample id as the column name, genes or otu as rownames
- `group` - group factor used for comparison
- `...` - parameters to anova_test

Author(s)
Kai Guo
Examples

{
 data("ToothGrowth")
 do_aov(ToothGrowth,group="supp")
}

do_ttest do t.test

Description

do t.test

Usage

do_ttest(x, group, ref = NULL, ...)

Arguments

 x data.frame with sample id as the column name, genes or otu as rownames
 group group factor used for comparison
 ref reference group
 ... parameters to t_test

Author(s)

Kai Guo

Examples

{
 data("mtcars")
 do_ttest(mtcars,group="vs")
 do_ttest(mtcars,group="cyl",ref="4")
}
do_wilcox

do wilcox test

Description

do wilcox test

Usage

do_wilcox(x, group, ref = NULL, ...)

Arguments

x data.frame with sample id as the column name, genes or otu as rownames
group group factor used for comparison
ref reference group
... parameters to wilcoxon

Author(s)

Kai Guo

Examples

{
 data("mtcars")
 do_wilcox(mtcars, group="vs")
 do_wilcox(mtcars, group="cyl", ref="4")
}

glmr

Do the generalized linear model regression

Description

Do the generalized linear model regression

Usage

glmrm(
 physeq,
 group,
 factors = NULL,
 ref = NULL,
 family = binomial(link = "logit")
)
ldamarker

Identify biomarker by using LEfSe method

Description

Identify biomarker by using LEfSe method

Usage

```r
ldamarker(physeq, group, pvalue = 0.05, normalize = TRUE, method = "relative")
```

Arguments

- **physeq**: A `phyloseq` object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.
- **group**: A character string specifying the name of a categorical variable containing grouping information.
- **pvalue**: pvalue threshold for significant results from `kruskal.test`
- **normalize**: to normalize the data before analysis (TRUE/FALSE)
- **method**: A list of character strings specifying method to be used to normalize the `phyloseq` object. Available methods are: "relative", "TMM", "vst", "log2".

Author(s)

Kai Guo
Examples

```r
data("Physeq")
res <- ldamarker(physeq, group="group")
```

Description

Light colors for making figures

Usage

```r
lightcolor
```

Format

An object of class character of length 56.

Author(s)

Kai Guo

normalize

Normalize the phyloseq object with different methods

Description

Normalize the phyloseq object with different methods

Usage

```r
normalize(physeq, group, method = "relative", table = FALSE)
```

Arguments

- **physeq**: A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.
- **group**: group (DESeq2). A character string specifying the name of a categorical variable containing grouping information.
- **method**: A list of character strings specifying method to be used to normalize the phyloseq object. Available methods are: "relative", "TMM", "vst", "log2".
- **table**: return a data.frame or not
Value

phyloseq object with normalized data

Author(s)

Kai Guo

Examples

```
{
  data("Physeq")
  phy<-normalize(physeq)
}
```

otu_table

extract otu table

Description

extract otu table

Usage

```
otu_table(physeq, ...)
```

Arguments

physeq (Required). An integer matrix, otu_table-class, or phyloseq-class.

... parameters for the otu_table function in phyloseq package

phy_tree

Retrieve phylogenetic tree (phylo-class) from object.

Description

Retrieve phylogenetic tree (phylo-class) from object.

Usage

```
phy_tree(physeq, ...)
```

Arguments

physeq (Required). An instance of phyloseq-class that contains a phylogenetic tree. If physeq is a phylogenetic tree (a component data class), then it is returned as-is.

... parameters for the phy_tree function in phyloseq package
plot alpha diversity

Description

plot alpha diversity

Usage

plotalpha(physeq, group, method = c("Observed", "Simpson", "Shannon"), color = NULL, geom = "boxplot", pvalue = 0.05, padj = NULL, sig.only = TRUE, wilcox = FALSE, show.number = FALSE)

Arguments

physeq A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.

group group (Required). A character string specifying the name of a categorical variable containing grouping information.

method A list of character strings specifying method to be used to calculate for alpha diversity in the data. Available methods are: "Observed", "Chao1", "ACE", "Richness", "Fisher", "Simpson", "Shannon", "Evenness", "InvSimpson".

color A vector of character use specifying the color

geom different geom to display("boxplot","violin","dotplot")

pvalue pvalue threshold for significant dispersion results

padj adjust p value threshold for significant dispersion results

sig.only display the significant comparsion only(TRUE/FALSE)

wilcox use wilcoxon test or not

show.number to show the pvalue instead of significant symbol(TRUE/FALSE)

Value

Returns a ggplot object. This can further be manipulated as preferred by user.
Author(s)

Kai Guo

Examples

```r
{  
data("Physeq")  
plotalpha(physeq,group="SampleType")
}
```

plotbar

plot bar for relative abundance for bacteria

Description

plot bar for relative abundance for bacteria

Usage

```r
plotbar(  
  physeq,  
  level = "Phylum",  
  color = NULL,  
  group = NULL,  
  top = 5,  
  return = FALSE,  
  fontsize.x = 5,  
  fontsize.y = 12
)
```

Arguments

- `physeq` A phylaseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and / or phylogenetic tree if available.
- `level` the level to plot
- `color` A vector of character use specifying the color
- `group` group (Optional). A character string specifying the name of a categorical variable containing grouping information.
- `top` the number of most abundance bacteria to display
- `return` return the data with the relative abundance
- `fontsize.x` the size of x axis label
- `fontsize.y` the size of y axis label
Value

Returns a ggplot object. This can further be manipulated as preferred by user.

Author(s)

Kai Guo

Examples

```r
data("Physeq")
phy<-normalize(physeq)
plotbar(phy, level="Phylum")
```

plotbeta

plot beta diversity

Description

plot beta diversity

Usage

```r
plotbeta(
  physeq,
  group,
  shape = NULL,
  distance = "bray",
  method = "PCoA",
  color = NULL,
  size = 3,
  ellipse = FALSE
)
```

Arguments

physeq A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.

group (Required). Character string specifying name of a categorical variable that is preferred for grouping the information.

shape (Optional) Character string specifying shape of a categorical variable

distance A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray"). "unifrac", "wunifrac", "manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao" or "mahalanobis".
method A character string specifying ordination method. All methods available to the `ordinate` function of `phyloseq` are acceptable here as well.
color user defined color for group
size the point size
ellipse draw ellipse or not

Value

ggplot2 object

Author(s)

Kai Guo

Examples

```{r}
# load data
data("Physeq")
phy<normalize(physeq)
plotbeta(phy, group="SampleType")
```

Description

plot differential results

Usage

```{r}
plotdiff(
res,
level = "Genus",
color = NULL,
pvalue = 0.05,
padj = NULL,
log2FC = 0,
size = 3,
fontsize.x = 5,
fontsize.y = 10,
horiz = TRUE
)
```
plotLDA

Arguments

- **res**: differential test results from `diff_test`
- **level**: the level to plot
- **color**: A vector of character use specifying the color
- **pvalue**: p-value threshold for significant results
- **padj**: adjust p value threshold for significant results
- **log2FC**: log2 Fold Change threshold
- **size**: size for the point
- **fontsize.x**: the size of x axis label
- **fontsize.y**: the size of y axis label
- **horiz**: horizontal or not (TRUE/FALSE)

Value

ggplot object

Author(s)

Kai Guo

Examples

data("Physeq")
res <- difftest(physeq, group="group")
plotdiff(res, level="Genus", padj=0.001)

Description

plot LEfSe results from ldamarker function

Usage

```r
plotLDA(
  x,
  group,
  lda = 2,
  pvalue = 0.05,
  padj = NULL,
  color = NULL,
  fontsize.x = 4,
  fontsize.y = 5
)
```
plotmarker

plot the biomarker from the biomarker function with randomForest

Description

plot the biomarker from the biomarker function with randomForest

Usage

```r
plotmarker(
  x,
  level = "Genus",
  top = 30,
  rotate = FALSE,
  dot.size = 8,
  label.color = "black",
  label.size = 6
)
```
plotquality

Arguments

x biomarker results from randomForest
level the bacteria level to display
top the number of important biomarker to draw
rotate TRUE/FALSE
dot.size size for the dot
label.color label color
label.size label size

Value

ggplot2 object

Author(s)

Kai Guo

Examples

data("Physeq")
res <- biomarker(physeq,group="group")
plotmarker(res,level="Genus")

plotquality plot the quality for the fastq file

Description

plot the quality for the fastq file

Usage

plotquality(file, n = 5e+05, aggregate = FALSE)

Arguments

file (Required). character. File path(s) to fastq or fastq.gz file(s).
n (Optional). Default 500,000. The number of records to sample from the fastq file.
aggregate (Optional). Default FALSE. If TRUE, compute an aggregate quality profile for all fastq files provided.
Value
 figure

Examples

 plotquality(system.file("extdata", "sam1F.fastq.gz", package="dada2"))

prefilter filter the phyloseq

Description
 filter the phyloseq

Usage
 prefilter(physeq, min = 10, perc = 0.05)

Arguments

 physeq A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.
 min Numeric, the threshold for minimal Phylum shown in samples
 perc Numeric, input the percentage of samples for which to filter low counts.

Value
 filter phyloseq object

Author(s)
 Kai Guo

Examples

 data("Physeq")
 physeqs<-prefilter(physeq)
preRef Download the reference database

Description
Download the reference database

Usage
```r
preRef(ref_db, path = ".")
```

Arguments
- `ref_db` the reference database
- `path` path for the database

Value
the path of the database

Author(s)
Kai Guo

Examples
```r
preRef(ref_db="silva", path=tempdir())
```

processSeq Perform dada2 analysis

Description
Perform dada2 analysis

Usage
```r
processSeq(
  path = ".",
  truncLen = c(0, 0),
  trimLeft = 0,
  trimRight = 0,
  minLen = 20,
  maxLen = Inf,
```
sample_info = NULL,
train_data = "silva_nr99_v138_train_set.fa.gz",
train_species = "silva_species_assignment_v138.fa.gz",
outpath = NULL,
saveobj = FALSE,
buildtree = FALSE,
verbose = TRUE
)

Arguments

path working dir for the input reads
truncLen (Optional). Default 0 (no truncation). Truncate reads after truncLen bases. Reads shorter than this are discarded.
trimLeft (Optional). The number of nucleotides to remove from the start of each read.
trimRight (Optional). Default 0. The number of nucleotides to remove from the end of each read. If both truncLen and trimRight are provided, truncation will be performed after trimRight is enforced.
minLen (Optional). Default 20. Remove reads with length less than minLen. minLen is enforced after trimming and truncation.
maxLen Optional). Default Inf (no maximum). Remove reads with length greater than maxLen. maxLen is enforced before trimming and truncation.
sample_info (Optional). sample information for the sequence
train_data (Required). training database
train_species (Required). species database
outpath (Optional). the path for the filtered reads and the output table
saveobj (Optional). Default FALSE. save the phyloseq object output.
buildtree build phylogenetic tree or not (default: FALSE)
verbose (Optional). Default TRUE. Print verbose text output.

Value

list include count table, summary table, taxonomy information and phyloseq object

Author(s)

Kai Guo
psmelt

Description
Melt phyloseq data object into large data.frame

Usage
```r  
psmelt(physeq, ...)  
```

Arguments

- `physeq`
 A sample_data-class, or a phyloseq-class object with a sample_data. If the sample_data slot is missing in physeq, then physeq will be returned as-is, and a warning will be printed to screen.

- `...`
 Parameters for the subset_samples function in phyloseq package

richness
calculate the richness for the phyloseq object

Description
Calculate the richness for the phyloseq object

Usage
```r  
richness(physeq, method = c("Observed", "Simpson", "Shannon"))  
```

Arguments

- `physeq`
 A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.

- `method`
 A list of character strings specifying method to be used to calculate for alpha diversity in the data. Available methods are: "Observed", "Chao1", "ACE", "Richness", "Fisher", "Simpson", "Shannon", "Evenness", "InvSimpson".

Value

data.frame of alpha diversity

Author(s)

Kai Guo
Examples

```r
{ 
data(“Physeq”) 
rich <- richness(physeq, method=c(“Simpson”, “Shannon”)) 
}
```

sample_data: extract sample information

Description

extract sample information

Usage

```r
sample_data(physeq, ...) 
```

Arguments

- `physeq` *(Required)*. A data.frame-class, or a phyloseq-class object.
- `...` parameters for the `sample_data` function in phyloseq package

subset_samples: Subset the phyloseq based on sample

Description

Subset the phyloseq based on sample

Usage

```r
subset_samples(physeq, ...) 
```

Arguments

- `physeq` A sample_data-class, or a phyloseq-class object with a sample_data. If the sample_data slot is missing in physeq, then physeq will be returned as-is, and a warning will be printed to screen.
- `...` parameters for the `subset_samples` function in phyloseq package
subset_taxa

Subset species by taxonomic expression

Description

Subset species by taxonomic expression

Usage

```r
subset_taxa(physeq, ...)
```

Arguments

- `physeq`
 A sample_data-class, or a phyloseq-class object with a sample_data. If the sample_data slot is missing in physeq, then physeq will be returned as-is, and a warning will be printed to screen.

- `...`
 parameters for the subset_taxa function in phyloseq package

tax_table

extract taxonomy table

Description

extract taxonomy table

Usage

```r
tax_table(physeq, ...)
```

Arguments

- `physeq`
 An object among the set of classes defined by the phyloseq package that contain taxonomyTable.

- `...`
 parameters for the tax_table function in phyloseq package
Index

* datasets
 distcolor, 9
 lightcolor, 13

* data
 data-physeq, 7
 .checkfile, 2
 .getstar, 3
 .lda.fun, 3
 betadiv, 4
 betatest, 5
 biomarker, 6
 buildTree, 7
 data-physeq, 7
 difftest, 8
 distcolor, 9
 do_aov, 9
 do_ttest, 10
 do_wilcox, 11
 glmr, 11
 ldamarker, 12
 lightcolor, 13
 normalize, 13
 otu_table, 14
 phy_tree, 14
 physeq (data-physeq), 7
 plotalpha, 15
 plotbar, 16
 plotbeta, 17
 plotdiff, 18
 plotLDA, 19
 plotmarker, 20
 plotquality, 21
 prefilter, 22
 preRef, 23
 processSeq, 23
 psmelt, 25
 richness, 25
 sample_data, 26
 subset_samples, 26
 subset_taxa, 27
 tax_table, 27