Package ‘microbial’

April 1, 2021

Type Package

Title Do 16s Data Analysis and Generate Figures

Version 0.0.19

Description Provides functions to enhance the available statistical analysis procedures in R by providing simple functions to analysis and visualize the 16S rRNA data. Here we present a tutorial with minimum working examples to demonstrate usage and dependencies.

License GPL-3

Depends R (>= 3.5.0)

Imports dplyr, plyr, magrittr, broom, phyloseq, vegan, rlang, ggplot2, ggpudr, DESeq2, dada2, SummarizedExperiment, S4Vectors, Biostrings, rstatix, tidyr, DECIPHER, phangorn, MASS, randomForest, edgeR, testthat

Encoding UTF-8

LazyData true

Suggests markdown, rmarkdown, knitr, tools

VignetteBuilder knitr

biocViews Software, GraphAndNetwork

RoxygenNote 7.1.1

NeedsCompilation no

Author Kai Guo [aut, cre], Pan Gao [aut]

Maintainer Kai Guo <guokai8@gmail.com>

Repository CRAN

Date/Publication 2021-04-01 21:30:02 UTC

R topics documented:

.checkfile ... 2
.getstar ... 3
.checkfile check file format

Description

check file format

Usage

.checkfile(file)

Arguments

 file filename
.getstar

replace p value with star

Description

replace p value with star

Usage

.getstar(x)

Arguments

x a (non-empty) numeric data values

.lda.fun *LEfse function*

Description

LEfse function

Usage

.lda.fun(df)

Arguments

df a dataframe with groups and bacteria abundance

betadiv *calcaute beta diversity*

Description

calcaute beta diversity

Usage

betadiv(physeq, distance = "bray", method = "PCoA")
betatest

PERMANOVA test for phyloseq

Argument

physeq: A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.

distance: A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray"). "unifrac" , "wunifrac" , "manhattan" , "euclidean" , "canberra" , "bray" , "kulczynski" , "jaccard" , "gower" , "altGower" , "morisita" , "horn" , "mountford" , "raup" , "binomial" , "chao" , "cao" or "mahalanobis".

method: A character string specifying ordination method. All methods available to the ordinate function of phyloseq are acceptable here as well.

Value

list with beta diversity data.frame and PCs

Author(s)

Kai Guo

Examples

```r
{  
data("Physeq")  
phy<-normalize(physeq)  
res <- betadiv(phy)  
}
```

Description

PERMANOVA test for phyloseq

Usage

betatest(physeq, group, distance = "bray")

Arguments

physeq: A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.

group: (Required). Character string specifying name of a categorical variable that is preferred for grouping the information. information.
biomarker

distance A string character specifying dissimilarity index to be used in calculating pair-wise distances (Default index is "bray"). "unifrac","wunifrac","manhattan", "euclidean","canberra","bray","kulczynski","jaccard","gower","altGower", "morisita","horn","mountford","raup","binomial","chao","cao" or "mahalanobis".

Value

PERMANOVA test result

Author(s)

Kai Guo

Examples

{
data("Physeq")
phy<normalize(physeq)
beta <-betatest(phy,group="SampleType")
}

biomarker Identify biomarker by using randomForest method

Description

Identify biomarker by using randomForest method

Usage

biomarker(
 physeq,
 group,
 ntree = 500,
 pvalue = 0.05,
 normalize = TRUE,
 method = "relative"
)

Arguments

physeq A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and / or phylogenetic tree if available.

group group. A character string specifying the name of a categorical variable containing grouping information.
buildTree

ntree Number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times.

pvalue pvalue threshold for significant results from kruskal.test

normalize to normalize the data before analysis (TRUE/FALSE)

method A list of character strings specifying method to be used to normalize the phyloseq object. Available methods are: "relative", "TMM", "vst", "log2".

Value

data frame with significant biomarker

Author(s)

Kai Guo

Examples

```r
data("Physeq")
res <- biomarker(physeq, group="group")
```

buildTree

contraction of phylogenetic tree (extreme slow)

Description

contraction of phylogenetic tree (extreme slow)

Usage

`buildTree(seqs)`

Arguments

`seqs` DNA sequences

Value

tree object

Author(s)

Kai Guo
The physeq data was modified from the (Data) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample (2011)

Description

Published in PNAS in early 2011. This work compared the microbial communities from 25 environmental samples and three known “mock communities” – a total of 9 sample types – at a depth averaging 3.1 million reads per sample. Authors were able to reproduce diversity patterns seen in many other published studies, while also investigating technical issues/bias by applying the same techniques to simulated microbial communities of known

References

Examples

data(Physeq)

difftest

Calculate differential bacteria with DESeq2

Description

Calculate differential bacteria with DESeq2

Usage

difftest(
 physeq,
 group,
 ref = NULL,
 pvalue = 0.05,
 padj = NULL,
 log2FC = 0,
 gm_mean = TRUE,
 fitType = "local",
 quiet = FALSE
)
Arguments

- **physeq**
 A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.

- **group**
 group (DESeq2). A character string specifying the name of a categorical variable containing grouping information.

- **ref**
 reference group

- **pvalue**
 pvalue threshold for significant results

- **padj**
 adjust p value threshold for significant results

- **log2FC**
 log2 Fold Change threshold

- **gm_mean**
 TRUE/FALSE calculate geometric means prior to estimate size factors

- **fitType**
 either "parametric", "local", or "mean" for the type of fitting of dispersions to the mean intensity.

- **quiet**
 whether to print messages at each step

Value

dataframe with differential test with DESeq2

Author(s)

Kai Guo

Examples

```r

data("Physeq")
res <- difftest(physeq, group="group")

```

distcolor

distinguish colors for making figures

Description

distinguish colors for making figures

Usage

distcolor

Format

An object of class character of length 41.

Author(s)

Kai Guo
do_aov

do anova test and return results as data.frame

Description

do anova test and return results as data.frame

Usage

do_aov(x, group, ...)

Arguments

x data.frame with sample id as the column name, genes or otu as rownames
group group factor used for comparison
... parameters to anova_test

Author(s)

Kai Guo

Examples

{
 data("ToothGrowth")
 do_aov(ToothGrowth,group="supp")
}

do_ttest

do t.test

Description

do t.test

Usage

do_ttest(x, group, ref = NULL, ...)

Arguments

x data.frame with sample id as the column name, genes or otu as rownames
group group factor used for comparison
ref reference group
... parameters to t_test
do_wilcox

Author(s)
Kai Guo

Examples
{
 data("mtcars")
 do_ttest(mtcars, group="vs")
 do_ttest(mtcars, group="cyl", ref="4")
}

do_wilcox do wilcox test

Description
do wilcox test

Usage
 do_wilcox(x, group, ref = NULL, ...)

Arguments
 x data.frame with sample id as the column name, genes or otu as rownames
 group group factor used for comparison
 ref reference group
 ... parameters to wilcox_test

Author(s)
Kai Guo

Examples
{
 data("mtcars")
 do_wilcox(mtcars, group="vs")
 do_wilcox(mtcars, group="cyl", ref="4")
}
ldamarker

Identify biomarker by using LEfSe method

Description

Identify biomarker by using LEfSe method

Usage

ldamarker(physeq, group, pvalue = 0.05, normalize = TRUE, method = "relative")

Arguments

- **physeq**: A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.
- **group**: group. A character string specifying the name of a categorical variable containing grouping information.
- **pvalue**: pvalue threshold for significant results from kruskal.test
- **normalize**: to normalize the data before analysis(TRUE/FALSE)
- **method**: A list of character strings specifying method to be used to normalize the phyloseq object. Available methods are: "relative","TMM","vst","log2".

Author(s)

Kai Guo

Examples

data("Physeq")
res <- ldamarker(physeq,group="group")

lightcolor

light colors for making figures

Description

light colors for making figures

Usage

lightcolor
normalize

Format
An object of class character of length 56.

Author(s)
Kai Guo

normalize Normalize the phyloseq object with different methods

Description
Normalize the phyloseq object with different methods

Usage
normalize(physeq, group, method = "relative", table = FALSE)

Arguments

physeq A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.

group group (DESeq2). A character string specifying the name of a categorical variable containing grouping information.

method A list of character strings specifying method to be used to normalize the phyloseq object. Available methods are: "relative","TMM","vst","log2".

table return a data.frame or not

Value
phyloseq object with normalized data

Author(s)
Kai Guo

Examples
{
 data("Physeq")
 phy<-normalize(physeq)
}
otu_table

Description

extract otu table

Usage

```r
otu_table(physeq, ...)
```

Arguments

- `physeq` (Required). An integer matrix, otu_table-class, or phyloseq-class.
- `...` parameters for the `otu_table` function in phyloseq package

phy_tree

Retrieve phylogenetic tree (phylo-class) from object.

Description

Retrieve phylogenetic tree (phylo-class) from object.

Usage

```r
phy_tree(physeq, ...)
```

Arguments

- `physeq` (Required). An instance of phyloseq-class that contains a phylogenetic tree. If physeq is a phylogenetic tree (a component data class), then it is returned as-is.
- `...` parameters for the `phy_tree` function in phyloseq package
Description

plot alpha diversity

Usage

plotalpha(
physeq,
group,
method = c("Observed", "Simpson", "Shannon"),
color = NULL,
geom = "boxplot",
pvalue = 0.05,
padj = NULL,
sig.only = TRUE,
wilcox = FALSE,
show.number = FALSE
)

Arguments

physeq A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.
group group (Required). A character string specifying the name of a categorical variable containing grouping information.
method A list of character strings specifying method to be used to calculate for alpha diversity in the data. Available methods are: "Observed", "Chao1", "ACE", "Richness", "Fisher", "Simpson", "Shannon", "Evenness", "InvSimpson".
color A vector of character use specifying the color
geom different geom to display("boxplot","violin","dotplot")
pvalue pvalue threshold for significant dispersion results
padj adjust p value threshold for significant dispersion results
sig.only display the significant comparsion only(TRUE/FALSE)
wilcox use wilcoxon test or not
show.number to show the pvalue instead of significant symbol(TRUE/FALSE)

Value

Returns a ggplot object. This can further be manipulated as preferred by user.
plotbar

Author(s)
Kai Guo

Examples

{
 data("Physeq")
 plotalpha(physeq, group="SampleType")
}

plotbar plot bar for relative abundance for bacteria

Description
plot bar for relative abundance for bacteria

Usage

plotbar(
 physeq,
 level = "Phylum",
 color = NULL,
 group = NULL,
 top = 5,
 fontsize.x = 5,
 fontsize.y = 12
)

Arguments

physeq A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.

level the level to plot

color A vector of character use specifying the color

group group (Optional). A character string specifying the name of a categorical variable containing grouping information.

top the number of most abundance bacteria to display

fontsize.x the size of x axis label

fontsize.y the size of y axis label

Value

Returns a ggplot object. This can further be manipulated as preferred by user.
Author(s)
Kai Guo

Examples

```r
data("Physeq")
phy<-normalize(physeq)
plotbar(phy, level="Phylum")
```

plotbeta

Description

plot beta diversity

Usage

```r
plotbeta(
  physeq, 
  group, 
  shape = NULL, 
  distance = "bray", 
  method = "PCoA", 
  color = NULL, 
  size = 3, 
  ellipse = FALSE
)
```

Arguments

- `physeq`: A phylseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.
- `group`: (Required). Character string specifying name of a categorical variable that is preferred for grouping the information.
- `shape`: (Optional) Character string specifying shape of a categorical variable
- `distance`: A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray"). "unifrac", "wunifrac", "manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao" or "mahalanobis".
- `method`: A character string specifying ordination method. All methods available to the ordinate function of phylseq are acceptable here as well.
plotdiff

- `color`: user defined color for group
- `size`: the point size
- `ellipse`: draw ellipse or not

Value

ggplot2 object

Author(s)

Kai Guo

Examples

```r
{  
  data("Physeq")
  phy<-normalize(physeq)
  plotbeta(phy,group="SampleType")
}
```

Description

plot differential results

Usage

```r
plotdiff(
  res,
  level = "Genus",
  color = NULL,
  pvalue = 0.05,
  padj = NULL,
  log2FC = 0,
  size = 3,
  fontsize.x = 5,
  fontsize.y = 10,
  horiz = TRUE
)
```
Arguments

- **res**: differential test results from `diff_test`
- **level**: the level to plot
- **color**: A vector of character use specifying the color
- **pvalue**: p-value threshold for significant results
- **padj**: adjust p value threshold for significant results
- **log2FC**: log2 Fold Change threshold
- **size**: size for the point
- **fontsize.x**: the size of x axis label
- **fontsize.y**: the size of y axis label
- **horiz**: horizontal or not (TRUE/FALSE)

Value

- ggplot object

Author(s)

Kai Guo

Examples

```r
data("Physeq")
res <- difftest(physeq, group="group")
plotdiff(res, level="Genus", padj=0.001)
```

plotLDA

plot LEfSe results from ldamarker function

Description

plot LEfSe results from ldamarker function

Usage

```r
plotLDA(
  x,
  group,
  lda = 2,
  pvalue = 0.05,
  padj = NULL,
  color = NULL,
  fontsize.x = 4,
  fontsize.y = 5
)
```
plotmarker

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>LEfse results from ldamarker</td>
</tr>
<tr>
<td>group</td>
<td>a vector include two character to show the group comparsion</td>
</tr>
<tr>
<td>lda</td>
<td>LDA threshold for significant biomarker</td>
</tr>
<tr>
<td>pvalue</td>
<td>pvalue threshold for significant results</td>
</tr>
<tr>
<td>padj</td>
<td>adjust p value threshold for significant results</td>
</tr>
<tr>
<td>color</td>
<td>A vector of character use specifying the color</td>
</tr>
<tr>
<td>fontsize.x</td>
<td>the size of x axis label</td>
</tr>
<tr>
<td>fontsize.y</td>
<td>the size of y axis label</td>
</tr>
</tbody>
</table>

Value

ggplot2 object

Author(s)

Kai Guo

Examples

```r
data("Physeq")
res <- ldamarker(physeq,group="group")
plotLDA(res,group=c("A","B"),lda=5,pvalue=0.05)
```

plotmaker

plot the biomarker from the biomarker function with randomForest

Description

plot the biomarker from the biomarker function with randomForest

Usage

```r
plotmarker(
  x,
  level = "Genus",
  top = 30,
  rotate = FALSE,
  dot.size = 8,
  label.color = "black",
  label.size = 6
)
```
Arguments

- x: biomarker results from randomForest
- level: the bacteria level to display
- top: the number of important biomarker to draw
- rotate: TRUE/FALSE
- dot.size: size for the dot
- label.color: label color
- label.size: label size

Value

ggplot2 object

Author(s)
Kai Guo

Examples

data("Physeq")
res <- biomarker(physeq, group="group")
plotmarker(res, level="Genus")

plotquality

plot the quality for the fastq file

Description

plot the quality for the fastq file

Usage

plotquality(file, n = 5e+05, aggregate = FALSE)

Arguments

- file: (Required). character. File path(s) to fastq or fastq.gz file(s).
- n: (Optional). Default 500,000. The number of records to sample from the fastq file.
- aggregate: (Optional). Default FALSE. If TRUE, compute an aggregate quality profile for all fastq files provided.
Description
filter the phyloseq

Usage
prefilter(physeq, min = 10, perc = 0.05)

Arguments
physeq A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.
min Numeric, the threshold for minimal Phylum shown in samples
perc Numeric, input the percentage of samples for which to filter low counts.

Value
filter phyloseq object

Author(s)
Kai Guo

Examples

data("Physeq")
physeqs<-prefilter(physeq)
preRef

Download the reference database

Description

Download the reference database

Usage

```r
preRef(ref_db, path = ".")
```

Arguments

- `ref_db`: the reference database
- `path`: path for the database

Value

the path of the database

Author(s)

Kai Guo

Examples

```r
preRef(ref_db="silva", path=tempdir())
```

processSeq

Perform dada2 analysis

Description

Perform dada2 analysis

Usage

```r
processSeq(
    path = ".",
    truncLen = c(240, 160),
    trimLeft = 0,
    trimRight = 0,
    minLen = 20,
    maxLen = Inf,
)```
sample_info = NULL,
train_data = "silva_nr99_v138_train_set.fa.gz",
train_species = "silva_species_assignment_v138.fa.gz",
outpath = NULL,
saveobj = FALSE,
buildtree = FALSE,
verbose = TRUE
)

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>working dir for the input reads</td>
</tr>
<tr>
<td>truncLen</td>
<td>(Optional). Default 0 (no truncation). Truncate reads after truncLen bases.</td>
</tr>
<tr>
<td>trimLeft</td>
<td>(Optional). The number of nucleotides to remove from the start of each read.</td>
</tr>
<tr>
<td>trimRight</td>
<td>(Optional). Default 0. The number of nucleotides to remove from the end of each read. If both truncLen and trimRight are provided, truncation will be performed after trimRight is enforced.</td>
</tr>
<tr>
<td>minLen</td>
<td>(Optional). Default 20. Remove reads with length less than minLen. minLen is enforced after trimming and truncation.</td>
</tr>
<tr>
<td>maxLen</td>
<td>Optional). Default Inf (no maximum). Remove reads with length greater than maxLen. maxLen is enforced before trimming and truncation.</td>
</tr>
<tr>
<td>sample_info</td>
<td>(Optional). Sample information for the sequence</td>
</tr>
<tr>
<td>train_data</td>
<td>(Required). Training database</td>
</tr>
<tr>
<td>train_species</td>
<td>(Required). Species database</td>
</tr>
<tr>
<td>outpath</td>
<td>(Optional). The path for the filtered reads and the output table</td>
</tr>
<tr>
<td>saveobj</td>
<td>(Optional). Default FALSE. Save the phyloseq object output.</td>
</tr>
<tr>
<td>buildtree</td>
<td>Build phylogenetic tree or not (default: FALSE)</td>
</tr>
<tr>
<td>verbose</td>
<td>(Optional). Default TRUE. Print verbose text output.</td>
</tr>
</tbody>
</table>

**Value**

List include count table, summary table, taxonomy information and phyloseq object

**Author(s)**

Kai Guo
richness

*calculat the richness for the phyloseq object*

**Description**

calculat the richness for the phyloseq object

**Usage**

```r
richness(physeq, method = c("Observed", "Simpson", "Shannon"))
```

**Arguments**

- `physeq`: A phyloseq object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples, and/or phylogenetic tree if available.
- `method`: A list of character strings specifying method to be used to calculate for alpha diversity in the data. Available methods are: "Observed", "Chao1", "ACE", "Richness", "Fisher", "Simpson", "Shannon", "Evenness", "InvSimpson".

**Value**

data.frame of alpha diversity

**Author(s)**

Kai Guo

**Examples**

```r
{
 data("Physeq")
 rich <- richness(physeq, method=c("Simpson", "Shannon"))
}
```

---

**sample_data**

*extract sample information*

**Description**

extract sample information

**Usage**

```r
sample_data(physeq, ...)
```
**subset_samples**

**Arguments**
- **physeq**  
  (Required). A data.frame-class, or a phyloseq-class object.  
- ...  
  parameters for the `sample_data` function in phyloseq package

**Description**
Subset the phyloseq based on sample

**Usage**

```r
subset_samples(physeq, ...)```

Arguments
- **physeq**
 A sample_data-class, or a phyloseq-class object with a sample_data. If the sample_data slot is missing in physeq, then physeq will be returned as-is, and a warning will be printed to screen.
- ...
 parameters for the `subset_samples` function in phyloseq package

subset_taxa

Description
Subset species by taxonomic expression

Usage

```r
subset_taxa(physeq, ...)```

**Arguments**
- **physeq**  
  A sample_data-class, or a phyloseq-class object with a sample_data. If the sample_data slot is missing in physeq, then physeq will be returned as-is, and a warning will be printed to screen.  
- ...  
  parameters for the `subset_taxa` function in phyloseq package
**tax_table**

*extract taxonomy table*

---

**Description**

extract taxonomy table

**Usage**

```r
tax_table(physeq, ...)
```

**Arguments**

- `physeq`:
  
  An object among the set of classes defined by the phyloseq package that contain `taxonomyTable`.

- `...`:
  
  Parameters for the `tax_table` function in phyloseq package
Index

* datasets
  - distcolor, 8
  - lightcolor, 11

* data
  - data-physeq, 7
    - .checkfile, 2
    - .getstar, 3
    - .lda.fun, 3
  - betadiv, 3
  - betatest, 4
  - biomarker, 5
  - buildTree, 6
  - data-physeq, 7
  - difftest, 7
  - distcolor, 8
  - do_aov, 9
  - do_ttest, 9
  - do_wilcox, 10
  - ldamarker, 11
  - lightcolor, 11
  - normalize, 12
  - otu_table, 13
  - phy_tree, 13
  - physeq(data-physeq), 7
  - plotalpha, 14
  - plotbar, 15
  - plotbeta, 16
  - plotdiff, 17
  - plotLDA, 18
  - plotmarker, 19
  - plotquality, 20
  - prefilter, 21
  - preRef, 22
  - processSeq, 22
  - richness, 24
  - sample_data, 24
  - subset_samples, 25
  - subset_taxa, 25
  - tax_table, 26