Package ‘microclustr’

October 1, 2020

Type Package
Title Entity Resolution with Random Partition Priors for Microclustering
Version 0.1.0
Date 2020-09-15
Depends R (>= 3.2.4)
Imports Rcpp (>= 1.0.1), stats
Suggests knitr, rmarkdown
Description An implementation of the model in Betancourt, Zanella, Steorts (2020) <arXiv:2004.02008>, which performs microclustering models for categorical data. The package provides a vignette for two proposed methods in the paper as well as two standard Bayesian non-parametric clustering approaches for entity resolution. The experiments are reproducible and illustrated using a simple vignette. LICENSE: GPL-3 + file license.
VignetteBuilder knitr
License GPL-3
LinkingTo Rcpp
RoxygenNote 7.1.1.9000
NeedsCompilation yes
Author Rebecca C Steorts [aut, cre], Brenda Betancourt [aut], Giacomo Zanella [aut]
Maintainer Rebecca C Steorts <beka@stat.duke.edu>
Repository CRAN
Date/Publication 2020-10-01 08:30:02 UTC

R topics documented:

 microclustr-package .. 2
 DataRemap .. 3
Index

microclustr-package A short title line describing what the package does

Description

A more detailed description of what the package does. A length of about one to five lines is recommended.

Details

This section should provide a more detailed overview of how to use the package, including the most important functions.

Author(s)

Your Name, email optional.

Maintainer: Your Name <your@email.com>

References

This optional section can contain literature or other references for background information.

See Also

Optional links to other man pages

Examples

```r
## Not run:
## Optional simple examples of the most important functions
## These can be in \dontrun{} and \donttest{} blocks.

## End(Not run)
```
DataRemap

Remap data to a list of consecutive integers per field

Description

Remap data to a list of consecutive integers per field

Usage

DataRemap(data)

Arguments

data | Data frame containing only categorical variables

Value

Data frame of remapped values to consecutive list of integers

Examples

truePartition <- c(10,10,10,10)
numberFields <- 5
numberCategories <- rep(10,5)
trueBeta <- 0.01
data <- SimData(truePartition, numberFields, numberCategories, trueBeta)
DataRemap(data)

fdr_fun

Calculates FDR when ground truth is available

Description

Calculates FDR when ground truth is available

Usage

fdr_fun(z, id)

Arguments

z | Vector of cluster assignments
id | Vector of true cluster assignments (ground truth)

Value

FDR
Examples

```r
truePartition <- c(50,50,50,50)
maxPartitionSize <- length(truePartition)
uniqueNumberRecords <- sum(truePartition)
id <- rep(1:uniqueNumberRecords, times=rep(1:maxPartitionSize, times=truePartition))
fdr_fun(z = truePartition, id)
```

fnr_fun

Calculates FNR when ground truth is available

Description

Calculates FNR when ground truth is available

Usage

```r
fnr_fun(z, id)
```

Arguments

- `z` Vector of cluster assignments
- `id` Vector of true cluster assignments (ground truth)

Value

FNR

Examples

```r
truePartition <- c(50,50,50,50)
maxPartitionSize <- length(truePartition)
uniqueNumberRecords <- sum(truePartition)
id <- rep(1:uniqueNumberRecords, times=rep(1:maxPartitionSize, times=truePartition))
fnr_fun(z = truePartition, id)
```

mean_fdr

Calculates average FDR when ground truth is available

Description

Calculates average FDR when ground truth is available

Usage

```r
mean_fdr(zm, id)
```
mean_fnr

Arguments

zm Matrix with posterior samples of cluster assignments
id Vector of true cluster assignments (ground truth)

Value

Average FDR over posterior samples

Examples

truePartition <- c(50,50,50,50)
maxPartitionSize <- length(truePartition)
uniqueNumberRecords <- sum(truePartition)
id <- rep(1:uniqueNumberRecords, times=rep(1:maxPartitionSize, times=truePartition))
numberFields <- 5
numberCategories <- rep(10,5)
trueBeta <- 0.01
simulatedData <- SimData(truePartition, numberFields, numberCategories, trueBeta)
posteriorESCD <- SampleCluster(data=simulatedData, Prior="ESCD", burn=0, nsamples=10)
mean_fdr(zm=posteriorESCD$Z, id)

mean_fnr

Calculates average FNR when ground truth is available

Description

Calculates average FNR when ground truth is available

Usage

mean_fnr(zm, id)

Arguments

zm Matrix with posterior samples of cluster assignments
id Vector of true cluster assignments (ground truth)

Value

Average FNR over posterior samples
Examples

```r
truePartition <- c(50,50,50,50)
maxPartitionSize <- length(truePartition)
uniqueNumberRecords <- sum(truePartition)
id <- rep(1:uniqueNumberRecords, times=rep(1:maxPartitionSize, times=truePartition))
numberFields <- 5
numberCategories <- rep(10,5)
trueBeta <- 0.01
simulatedData <- SimData(truePartition, numberFields, numberCategories, trueBeta)
posteriorESCD <- SampleCluster(data=simulatedData, Prior="ESCD", burn=0, nsamples=10)
mean_fnr(zm = posteriorESCD$Z, id)
```

SampleCluster

Posterior samples of cluster assignments and Prior parameters

Description

Posterior samples of cluster assignments and Prior parameters

Usage

```r
SampleCluster(data, Prior, burn, nsamples, spacing = 1000, block_flag = TRUE)
```

Arguments

data: Data frame containing only categorical variables
Prior: Specify partition prior: "DP", "PY", "ESCNB"
burn: MCMC burn-in period
nsamples: MCMC iterations after burn-in
spacing: Thinning for chaperones algorithm (default 1000)
block_flag: TRUE for non-uniform chaperones (default)

Value

List with posterior samples for cluster assignments (Z), Prior parameters and distortion probabilities (Params)
SimData

Generates a simulated dataset based on a true partition

Description

Generates a simulated dataset based on a true partition

Usage

SimData(true_L, nfields, ncat, true_beta)

Arguments

- true_L: Vector of size max cluster size with number of clusters of each size
- nfields: Number of fields
- ncat: Vector with number of categories per field
- true_beta: Distortion probability for the fields

Value

Simulated data set

Examples

truePartition <- c(2,2,2,2)
numberFields <- 2
numberCategories <- rep(5,2)
tureBeta <- 0.01
SimData(truePartition, numberFields, numberCategories, trueBeta)
Index

* package
 microclustr-package, 2

DataRemap, 3
fdr_fun, 3
fnr_fun, 4
mean_fdr, 4
mean_fnr, 5
microclustr (microclustr-package), 2
microclustr-package, 2

SampleCluster, 6
SimData, 7