Package ‘micromap’

February 6, 2024

Version 1.9.8
Date 2024-02-05
Title Linked Micromap Plots
Depends R (>= 3.5), RColorBrewer, sp, sf
Imports ggplot2 (>= 2.0.0), grid
Description This group of functions simplifies the creation of linked micromap plots. Please see <https://www.jstatsoft.org/v63/i02/> for additional details.
License GPL (>= 2)
Author Quinn Payton [aut], Tony Olsen [aut], Marc Weber [ctb], Michael McManus [ctb], Tom Kincaid [ctb], Marcus W. Beck [cre, ctb]
Maintainer Marcus W. Beck <mbeck@tbep.org>
NeedsCompilation no
Repository CRAN
Suggests knitr
URL <https://github.com/fawda123/micromap>
BugReports https://github.com/USEPA/micromap/issues
RoxygenNote 7.2.3
Encoding UTF-8
Date/Publication 2024-02-06 14:00:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>alterForMedian</td>
<td>2</td>
</tr>
<tr>
<td>assimilatePlot</td>
<td>3</td>
</tr>
<tr>
<td>create_map_table</td>
<td>3</td>
</tr>
<tr>
<td>edPov</td>
<td>4</td>
</tr>
</tbody>
</table>
Description

Adds a median line to the DF table.

Usage

```
alterForMedian(DF, a)
```

Arguments

- `DF` the DF table created by `create_DF_rank`.
- `a` the attributes list, which contains the user specified choice of whether to include a median row.

Value

Returns the DF table.

Note

See the Introduction Guide for a full list of the options available for altering micromaps.

Author(s)

Quinn Payton <Payton.Quinn@epa.gov>
assimilatePlot

Cleans a User Made Panel

Description

Sends a user made panel out to the graph "cleaning functions" in lmplot in order to properly display a user made panel seemlessly into the rest of an lmplot.

Usage

assimilatePlot(pl, i, a, limsx = NA, limsy = NA)

Arguments

pl the lmplot object.
i the panel number.
a the attribute list.
limsx limits of the x axis if desired.
limsy limits of the y axis if desired.

Value

Returns a cleaned plot object.

Note

See the Introduction Guide for a full list of the options available for altering micromaps.

Author(s)

Quinn Payton <Payton.Quinn@epa.gov>

create_map_table

Prepares A Polygon Table

Description

Takes the user supplied polygon table and prepares it to be plotted correctly with the lmplot function.

Usage

create_map_table(tmp.map, IDcolumn = NA, poly.thresh = 1e-04)
edPov

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tmp.map</td>
<td>a shapefile to be parsed into a flat table for use with ggplot2.</td>
</tr>
<tr>
<td>IDcolumn</td>
<td>specify which column in the data file to use as a unique identifier.</td>
</tr>
<tr>
<td>poly.thresh</td>
<td>specify the minimum polygon area which to keep. All polygons with less area</td>
</tr>
<tr>
<td></td>
<td>will be dropped.</td>
</tr>
</tbody>
</table>

Value

A flat table of all the polygons in the shapefile with an entry for each vertex.

Author(s)

Quinn Payton <Payton.Quinn@epa.gov>

Examples

data("USstates")
head(USstates@data)
statePolys <- create_map_table(USstates, IDcolumn="ST")
head(statePolys)

edPov

Example Dataset: Education and Poverty Levels

Description

A dataset comparing education and poverty levels among the states.

Format

A data frame with 51 rows and the following 5 columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>full state name.</td>
</tr>
<tr>
<td>ed</td>
<td>education rate.</td>
</tr>
<tr>
<td>pov</td>
<td>poverty rate.</td>
</tr>
<tr>
<td>region</td>
<td>major us region.</td>
</tr>
<tr>
<td>StateAb</td>
<td>abbreviated state name.</td>
</tr>
</tbody>
</table>

Note

This is just an example data set.
labels_att

Examples

```r
data(edPov)
head(edPov)
```

Description

Creates a list of default attribute lists for each panel type.

Usage

```r
labels_att(show = FALSE)
```

Arguments

- `show` If show equals FALSE, then the resulting list is returned invisibly.

Value

A list of defaults to be stored in the overall attribute list.

Author(s)

Quinn Payton <Payton.Quinn@epa.gov>

labels_build

Builds panels

Description

Creates a panel of the user specified type using the attribute list to make adjustments.

Usage

```r
labels_build(pl, p, DF, att)
```

Arguments

- `pl` the lmplot object being constructed.
- `p` number of the panel within the plot.
- `DF` the data table of statistics to be referenced.
- `att` the attribute list to specify visual and graphical characteristics.
Value

Returns a ggplot object to be printed later in the lmplot function.

Author(s)

Quinn Payton <Payton.Quinn@epa.gov>

lmgroupedplot

Linked Micromaps

Description

Creates a linked micromap, displaying specified polygons and their associated statistical summary displays; differentiated by color.

Usage

lmgroupedplot(
 stat.data,
 map.data,
 panel.types,
 panel.data,
 map.link = NULL,
 nPanels = length(panel.types),
 grp.by,
 cat,
 colors = brewer.pal(10, "Spectral"),
 map.color = "lightyellow",
 map.all = FALSE,
 print.file = "no",
 print.res = NA,
 panel.att = vector("list", nPanels),
 plot.header = NA,
 plot.header.size = NA,
 plot.header.color = NA,
 plot.footer = NA,
 plot.footer.size = NA,
 plot.footer.color = NA,
 plot.width = 7,
 plot.height = 7,
 map.spacing = 1,
 plot.grp.spacing = 1,
 plot.panel.spacing = 1,
 plot.panel.margins = c(0, 0, 1, 0),
 ...
)
lmgroupedplot

lmplot(
 stat.data,
 map.data = NULL,
 panel.types,
 panel.data,
 map.link = NULL,
 nPanels = length(panel.types),
 ord.by,
 rev.ord = FALSE,
 grouping,
 median.row = FALSE,
 vertical.align = "top",
 median.color = gray(0.5),
 colors = brewer.pal(max(grouping), "Spectral"),
 map.all = FALSE,
 map.color2 = "lightgray",
 two.ended.maps = FALSE,
 print.file = "no",
 print.res = 300,
 panel.att = vector("list", nPanels),
 plot.header = NA,
 plot.header.size = NA,
 plot.header.color = NA,
 plot.footer = NA,
 plot.footer.size = NA,
 plot.footer.color = NA,
 plot.width = 7,
 plot.height = 7,
 map.spacing = 1,
 plot.pGrp.spacing = 1,
 plot.panel.spacing = 1,
 plot.panel.margins = c(0, 0, 1, 0),
 ...
)

mmgroupedplot(
 stat.data,
 map.data,
 panel.types,
 panel.data,
 map.link = NULL,
 nPanels = length(panel.types),
 grp.by,
 cat,
 colors = brewer.pal(10, "Spectral"),
 map.color = "lightyellow",
 map.all = FALSE,
 print.file = "no",
print.res = NA,
panel.att = vector("list", nPanels),
plot.header = NA,
plot.header.size = NA,
plot.header.color = NA,
plot.footer = NA,
plot.footer.size = NA,
plot.footer.color = NA,
plot.width = 7,
plot.height = 7,
map.spacing = 1,
plot.grp.spacing = 1,
plot.panel.spacing = 1,
plot.panel.margins = c(0, 0, 1, 0)

mmplot(map.data, ...)

S3 method for class 'SpatialPolygonsDataFrame'
mmplot(map.data, ...)

S3 method for class 'sf'
mmplot(map.data, ...)

Default S3 method:
mmplot(
 map.data,
 stat.data,
 panel.types,
 panel.data,
 map.link,
 nPanels = length(panel.types),
 ord.by,
 rev.ord = FALSE,
 grouping,
 median.row = FALSE,
 vertical.align = "top",
 median.color = gray(0.5),
 median.text.color = "black",
 median.text.size = 1,
 median.text.label = "Median",
 colors = brewer.pal(max(grouping), "Spectral"),
 map.all = FALSE,
 map.color2 = "lightgray",
 two.ended.maps = FALSE,
 trans = "identity",
 print.file = "no",
 print.res = 300,
lmgroupedplot

panel.att = vector("list", nPanels),
plot.header = NA,
plot.header.size = NA,
plot.header.color = NA,
plot.footer = NA,
plot.footer.size = NA,
plot.footer.color = NA,
plot.width = 7,
plot.height = 7,
map.spacing = 1,
plot.pGrp.spacing = 1,
plot.panel.spacing = 1,
plot.panel.margins = c(0, 0, 1, 0),
...
)

Arguments

stat.data table of statistics for display
map.data table of polygons to be associated with each item in stat.data.
panel.types vector of panel types to specify the layout of the plot (e.g. c('map', 'labels',
'dot.cl'))
panel.data a list (of lists) of data to be used with each panel (e.g. list(NA, 'Names',
list('lower.bound', 'estimate', 'upper.bound'))).
map.link a vector with the name of the columns from stat.data and map.data, respectively,
on which to join.
nPanels the number of panels, which is not expected to be set by the user. The default is
the length of panel.types.
grp.by The column name from stat.data with which to order the lines of the output
graphic for a standard lmPlot or identifier column on which to group the cate-
gorized lmPlot.
cat category column within stats table for a categorization type lmPlot.
colors a vector of colors for the perceptual groups. The default is brewer.pal(max(grouping),
'Spectral') for lmPlot and brewer.pal(10, 'Spectral') for lmgroupedplot). The
colors are passed to colorRampPalette to create a continuous color vector
equal in length to the groupings.
map.color the color to fill in previously displayed polygons.
map.all by default, lmPlot will only plot the polygons associated with data in the stats
table; map.all = TRUE will show all the polygons in the polygon table regardless
of whether they are actively referred to.
print.file name of the file being created. The extension (.pdf, .tiff, jpeg, .png) tells lmPlot
which image creation tool to use.
print.res the resolution of the image to use.
panel.att a list of panel specific attributes to be altered (see lmPlot documentation).
plot.header the overall title to be placed on the lmPlot.
plot.header.size
- size of the overall title to be placed on the lmPlot.

plot.header.color
- color of the overall title to be placed on the lmPlot.

plot.footer
- the overall footer to be placed under the lmPlot.

plot.footer.size
- size of the overall footer to be placed under the lmPlot.

plot.footer.color
- color of the overall footer to be placed under the lmPlot.

plot.width
- width of the overall plot in inches. Defaults to 7.

plot.height
- height of the overall plot in inches. Defaults to 7.

map.spacing
- the vertical spacing between maps measured in lines. Perceptual group spacing does not affect map spacing so as to leave the maps as large as possible. The user can increase map spacing using this argument. Defaults to 1.

plot.grp.spacing
- the vertical spacing between groups measured in lines. Defaults to 1.

plot.panel.spacing
- the vertical spacing between panels measured in lines. Defaults to 1.

plot.panel.margins
- the horizontal spacing between panels measured in lines. THIS IS LEGACY CODE AND SHOULD NOT BE USED.

... Additional arguments passed to or from other methods.

ord.by
- The column name from stat.data with which to order the lines of the output graphic for a standard lmPlot or identifier column on which to group the categorized lmPlot.

rev.ord
- specifies whether the plot should be displayed in reverse order of the ranking column. The default is FALSE.

grouping
- the number of lines per perceptual group (for the standard lmplot only). Can be a single number to have the same numer in each group or a vector of numbers for unequal groupings.

median.row
- specifies whether a median row should be included. If an odd number of data lines are supplied, a data line itself will be used as the median, otherwise median entries will be calculated from the supplied data. Note that without a median row maps are forced into proper size.

vertical.align
- controls vertical alignment of the median row.

median.color
- specifies color of the median row.

map.color2
- the color to fill in previously displayed polygons.

two.ended.maps
- the resulting micromaps will highlight previously referenced polygons (see map.color2) up to the median perceptual group then switch to highlighting all polygons that are still to be referenced later.

plot.pGrp.spacing
- the vertical spacing between perceptual groups measured in lines. Defaults to 1.

median.text.color
- specifies color of text in the median row.
lmgroupedplot

median.text.size
specifies size of text in the median row.

median.text.label
specifies the label for text in the median row.

trans
chr string for axis transformations, passed to \texttt{scale_x_continuous}. Acceptable values are "asn", "atanh", "boxcox", "exp", "identity", "log", "log10", "log1p", "log2", "logit", "probability", "probit", "reciprocal", "reverse" or "sqrt". One value will be recycled to all panels as needed, otherwise one per panel can be used in a combined string. Applies only to panels with axes.

Value
A list of ggplot2 objects with entries for each individual panel.

Note
See the Introduction Guide for a full list of the options available for altering micromaps.

Author(s)
Quinn Payton <Payton.Quinn@epa.gov>

Examples

initial example
data("USstates")
head(USstates@data)
statePolys <- create_map_table(USstates, 'ST')
head(statePolys)
data("edPov")

basic figure 1
lmplot(stat.data = edPov,
map.data = statePolys,
panel.types = c('labels', 'dot', 'dot', 'map'),
panel.data = list('state', 'pov', 'ed', NA),
ord.by = 'pov',
grouping = 5, median.row = TRUE,
map.link = c('StateAb', 'ID'))

Not run:
publication figure 1a
lmplot(stat.data = edPov, map.data = statePolys, panel.types = c('labels', 'dot', 'dot', 'map'),
panel.data = list('state', 'pov', 'ed', NA),
ord.by = 'pov',
grouping = 5,
median.row = TRUE,
map.link = c('StateAb', 'ID'),

plot.height = 9,
colors = c('red', 'orange', 'green', 'blue', 'purple'),
map.color2 = 'lightgray',

panel.att = list(
 list(1, header = 'States', panel.width = .8, align = 'left',
 text.size = .9),
 list(2, header = 'Percent Living Below \n Poverty Level',
 graph.bgcolor = 'lightgray', point.size = 1.5,
 xaxis.ticks = list(10,15,20), xaxis.labels = list(10,15,20),
 xaxis.title = 'Percent'),
 list(3, header = 'Percent Adults With\n4+ Years of College',
 graph.bgcolor = 'lightgray', point.size = 1.5,
 xaxis.ticks = list(0,20,30,40), xaxis.labels = list(0,20,30,40),
 xaxis.title = 'Percent'),
 list(4, header = 'Light Gray Means\nHighlighted Above',
 inactive.border.color = gray(.7), inactive.border.size = 2,
 panel.width = .8))

edPov$points <- 0

publication figure 1b
lmplot (stat.data = edPov, map.data = statePolys,
 panel.types = c('dot', 'labels', 'dot', 'dot', 'map'),
 panel.data = list('points', 'state', 'pov', 'ed', NA),
 map.link = c('StateAb', 'ID'),
 ord.by = 'pov',
 grouping = 5,
 median.row = TRUE,

plot.height = 9,
colors = c('red', 'orange', 'green', 'blue', 'purple'),
map.color2 = 'lightgray',

panel.att = list(list(1, panel.width = .15, point.type = 20,
 graph.border.color = 'white',
 xaxis.text.display = FALSE, xaxis.line.display = FALSE,
 graph.grid.major = FALSE),
 list(2, header = 'States', panel.width = .8,
 align = 'left', text.size = .9),
 list(3, header = 'Percent Living Below \n Poverty Level',
 graph.bgcolor = 'lightgray', point.size = 1.5,
 xaxis.ticks = list(10,15,20), xaxis.labels = list(10,15,20),
 xaxis.title = 'Percent'),
 list(4, header = 'Percent Adults With\n4+ Years of College',
 graph.bgcolor = 'lightgray', point.size = 1.5,
 xaxis.ticks = list(20,30,40),
Publication Figure 1c

```r
myPlot <- lmplot(stat.data = edPov, map.data = statePolys,
  panel.types = c('map', 'dot', 'labels', 'dot', 'dot'),
  panel.data = list(NA, 'points', 'state', 'pov', 'ed'),
  map.link = c('StateAb', 'ID'),
  ord.by = 'pov',
  grouping = 5,
  median.row = TRUE,
  plot.height = 9,
  colors = c('red', 'orange', 'green', 'blue', 'purple'),
  map.color2 = 'lightgray',
  panel.att = list(list(2, panel.width = .15, point.type = 20,
    graph.border.color = 'white',
    xaxis.text.display = FALSE, xaxis.line.display = FALSE,
    graph.grid.major = FALSE),
  list(3, header = 'States', panel.width = .8,
    align = 'left', text.size = .9),
  list(4, header = 'Percent Living Below\nPoverty Level',
    graph.bgcolor = 'lightgray', point.size = 1.5,
    xaxis.ticks = list(10,15,20), xaxis.labels = list(10,15,20),
    xaxis.title = 'Percent'),
  list(5, header = 'Percent Adults With\n4+ Years of College',
    graph.bgcolor = 'lightgray', point.size = 1.5,
    xaxis.ticks = list(20,30,40),
    xaxis.labels = list(20,30,40),
    xaxis.title = 'Percent'),
  list(1, header = 'Light Gray Means\nHighlighted Above',
    inactive.border.color = gray(.7), inactive.border.size = 2,
    panel.width = .8))

print(myPlot, name = 'myExhibit.tiff', res = 300)
```

End(Not run)

lungMort

Example Dataset: Lung Cancer Mortality
Description

Lung mortality rates for all 50 states and Washington D.C.

Format

A data frame with 51 rows and the following 14 columns:

- **StateAb**: abbreviation of state name.
- **Rate_95**: mortality rate estimate for 1995.
- **Count_95**: estimated number of cases in 1995.
- **Lower_95**: lower bound of a 95 percent confidence interval for 1995 mortality rate.
- **Upper_95**: lower bound of a 95 percent confidence interval for 1995 mortality rate.
- **Pop_95**: population in 1995.
- **StdErr_95**: estimated standard error of the estimated mortality rate in 2000.
- **Rate_00**: mortality rate estimate for 2000.
- **Count_00**: estimated number of cases in 2000.
- **Lower_00**: lower bound of a 95 percent confidence interval for 2000 mortality rate.
- **Upper_00**: lower bound of a 95 percent confidence interval for 2000 mortality rate.
- **Pop_00**: population in 2000.
- **StdErr_00**: estimated standard error of the estimated mortality rate in 2000.
- **State**: full state name.

Note

This is just an example data set.

Examples

```r
data(lungMort)
head(lungMort)
```

OrEcoLevel3

Example Dataset: Oregon Level 3 Ecoregion Shapefile

Description

An object of class 'SpatialPolygonsDataFrame' that was created from a shapefile detailing boundaries of the level 3 ecoregion borders of Oregon.

Format

The format is: Formal class 'SpatialPointsDataFrame' [package "sp"].
\textit{print.mm} \hfill 15

\textbf{Note}

This is just an example data set.

\textbf{Examples}

\[
data(\text{OrEcoLevel3})
\text{spplot}(\text{OrEcoLevel3, zcol="US_L3NAME"}, \text{col.regions=rainbow(9, s=0.75))}
\]

\textit{print.mm} \hfill \textit{Print Implot Object to a File}

\textbf{Description}

Takes a stored Implot object of class mm and prints to a file whose type is implied by the file name.

\textbf{Usage}

\[
\text{## S3 method for class 'mm'} \\
\text{print}(x, \text{name = NULL, res = 300, ...})
\]

\textbf{Arguments}

\begin{itemize}
\item \textbf{x} \text{ name of the Implot object.}
\item \textbf{name} \text{ name of the file to be produced. tiff, png, jpeg, and pdf are recognized.}
\item \textbf{res} \text{ resolution in dpi.}
\item \textbf{...} \text{ Additional arguments. (Currently ignored.)}
\end{itemize}

\textbf{Value}

Returns nothing.

\textbf{Author(s)}

Quinn Payton <Payton.Quinn@epa.gov>
printLMPlot

Print Implot Object to a File

Description

Takes a stored lmplot object and uses the print method for objects of class mm to print to a file whose type is implied by the file name.

Usage

```r
printLMPlot(plobject, name = NULL, res = 300)
```

Arguments

- `plobject`: name of the lmplot object.
- `name`: name of the file to be produced. Tiff, png, jpeg, and pdf are recognized.
- `res`: resolution in dpi.

Value

Returns nothing.

Author(s)

Quinn Payton <Payton.Quinn@epa.gov>

right

Substring Function

Description

Mimics the Excel Function of the Same Name

Usage

```r
right(txt, i)
```

Arguments

- `txt`: string to substring.
- `i`: number of characters to substring.

Value

A character value containing the substring.
sample_att

Author(s)
Quinn Payton <Payton.Quinn@epa.gov>

Sample Attribute List Creator

Description
Creates a sample attribute list for use in the creation of new panel types.

Usage
```
sample_att(
  size = 1,
  type = rep("standard", size),
  ord.by = NA,
  grouping = 5,
  colors = brewer.pal(max(grouping), "Spectral"),
  plot.pGrp.spacing = 0.05,
  plot.panel.margins = c(0, 1, 0, 0),
  panel.data = list(NA),
  median.row = FALSE,
  show = FALSE
)
```

Arguments
- **size**: specify the number of attributes lists to be created.
- **type**: match the attributes to which type of default panel.
- **ord.by**: argument inherited from lmplot/lmGroupedplot.
- **grouping**: argument inherited from lmplot/lmGroupedplot.
- **colors**: argument inherited from lmplot/lmGroupedplot.
- **plot.pGrp.spacing**: argument inherited from lmplot/lmGroupedplot.
- **plot.panel.margins**: argument inherited from lmplot/lmGroupedplot.
- **panel.data**: argument inherited from lmplot/lmGroupedplot.
- **median.row**: argument inherited from lmplot/lmGroupedplot.
- **show**: controls whether to print the resulting attribute list.

Value
A list of attributes to be used in the creation of a panel.
Note

See the Introduction Guide for a full list of the options available for altering micromaps.

Author(s)

Quinn Payton <Payton.Quinn@epa.gov>

statesFlatfile

Example Dataset: A Table of State Polygons

Description

Polygon vertices for each state.

Format

A data frame with 434 rows and the following 4 columns:

- **ID**: abbreviation or state name.
- **coordsx**: x coordinates for each polygon vertice.
- **coordsy**: y coordinates for each polygon vertice.
- **poly**: individual polygon identifier within each state.

Note

This is just an example data set.

Examples

```r
data(statesFlatfile)
head(statesFlatfile)
```
USstates

Example Dataset: U.S. States Polygons

Description
An object of class 'SpatialPolygonsDataFrame' that was created from a shapefile of U.S. state borders.

Format
The format is: Formal class 'SpatialPolygonsDataFrame' [package "sp"].

Note
This is just an example data set.

Examples

data(USstates)
plot(USstates)

vegCov

Example Dataset: Vegetation Coverage Percentages

Description
A subset of a larger vegetation coverage analysis dataset.

Format
A data frame with 12 rows and the following 13 columns:

- **Type**: the population name.
- **Subpopulation**: the subpopulation name, either national or level 3 ecoregion.
- **Indicator**: the ecological variable (indicator)
- **Category**: category of disturbance.
- **NResp**: sample size.
- **Estimate.P**: estimated percentage of vegetation coverage with a given classification.
- **StdError.P**: standard error of the percentage estimate.
- **LCB95Pct.P**: lower bound of a 95 percent confidence interval for the estimated percentage.
- **UCB95Pct.P**: upper bound of a 95 percent confidence interval for the estimated percentage.
Estimate.U estimated area of vegetation coverage with a given classification.

StdError.U standard error of the area estimate.

LCB95Pct.U lower bound of a 95 percent confidence interval for the estimated area.

UCB95Pct.U upper bound of a 95 percent confidence interval for the estimated area.

Note

This is just an example data set.

Examples

```r
data(vegCov)
head(vegCov)
```

WSA3
Example Dataset: Major U.S. EcoRegions

Description

An object of class 'SpatialPolygonsDataFrame' that was created from a shapefile of the U.S. level 3 ecoregion boundaries.

Format

The format is: Formal class 'SpatialPointsDataFrame' [package "sp"].

Note

This is just an example data set.

Examples

```r
data(WSA3)
spplot(WSA3, zcol="WSA_3_NM", col.regions=rainbow(3, s=0.75))
```
Index

* datasets
 edPov, 4
 lungMort, 13
 OrEcoLevel3, 14
 statesFlatfile, 18
 USstates, 19
 vegCov, 19
 WSA3, 20

* hplot
 lmgroupedplot, 6

alterForMedian, 2
assimilatePlot, 3

bar_att (labels_att), 5
bar_build (labels_build), 5
bar_cl_att (labels_att), 5
bar_cl_build (labels_build), 5
box_summary_att (labels_att), 5
box_summary_build (labels_build), 5

colorRampPalette, 9
create_map_table, 3

dot_att (labels_att), 5
dot_build (labels_build), 5
dot_cl_att (labels_att), 5
dot_cl_build (labels_build), 5

edPov, 4

labels_att, 5
labels_build, 5
lmgroupedplot, 6
lmplot (lmgroupedplot), 6
lungMort, 13

map_att (labels_att), 5
mmgroupedplot (lmgroupedplot), 6
mmplot (lmgroupedplot), 6

OrEcoLevel3, 14
print.mm, 15
printLMPlot, 16
ranks_att (labels_att), 5
ranks_build (labels_build), 5
right, 16
sample_att, 17
scale_x_continuous, 11
standard_att (labels_att), 5
statesFlatfile, 18

USstates, 19

vegCov, 19

WSA3, 20

21