Package ‘midasml’

February 15, 2022

Type Package

Title Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data

Version 0.1.9-1

Maintainer Jonas Striaukas <jonas.striaukas@gmail.com>

Description The ‘midasml’ package implements estimation and prediction methods for high-dimensional mixed-frequency (MIDAS) time-series and panel data regression models. The regularized MIDAS models are estimated using orthogonal (e.g. Legendre) polynomials and sparse-group LASSO (sg-LASSO) estimator. For more information on the 'midasml' approach see Babii, Ghysels, and Striaukas (2021, JBES forthcoming) <doi:10.1080/07350015.2021.1899933>. The package is equipped with the fast implementation of the sg-LASSO estimator by means of proximal block coordinate descent. High-dimensional mixed frequency time-series data can also be easily manipulated with functions provided in the package.

BugReports https://github.com/jstriaukas/midasml/issues

License GPL (>= 2)

Depends Matrix, R (>= 3.5.0)

Imports doRNG, doParallel, foreach, graphics, mcGlobaloptim, methods, lubridate, stats

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation yes

Author Jonas Striaukas [cre, aut], Andrii Babii [aut], Eric Ghysels [aut], Alex Kostrov [ctb] (Contributions to analytical gradients for non-linear low-dimensional MIDAS estimation code)

Repository CRAN

Date/Publication 2022-02-15 19:20:02 UTC
Description

Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data

Author(s)

Jonas Striaukas (maintainer) <jonas.striaukas@gmail.com>, Andrii Babii <andrii@email.unc.edu>,
Eric Ghysels <eghysele@unc.edu>
Description

ALFRED monthly and quarterly series vintages

Usage

data(alfred_vintages)

Format

A list objects

Source

ALFRED

Examples

data(alfred_vintages)
i <- 1
alfred_vintages[[i]] # ith variable

cv.panel.sglfit
Cross-validation fit for panel sg-LASSO

Description

Does k-fold cross-validation for panel data sg-LASSO regression model.

The function runs sglfit nfolds+1 times; the first to get the path solution in lambda sequence, the rest to compute the fit with each of the folds omitted. The average error and standard deviation over the folds is computed, and the optimal regression coefficients are returned for lam.min and lam.1se. Solutions are computed for a fixed γ.

Usage

cv.panel.sglfit(x, y, lambda = NULL, gamma = 1.0, gindex = 1:p, nfolds = 10, foldid, method = c("pooled", "fe"), nf = NULL, parallel = FALSE, ...
Arguments

- **x**: NT by p data matrix, where NT and p respectively denote the sample size of pooled data and the number of regressors.
- **y**: NT by 1 response variable.
- **lambda**: a user-supplied lambda sequence. By leaving this option unspecified (recommended), users can have the program compute its own λ sequence based on nlambda and γ lambda.factor. It is better to supply, if necessary, a decreasing sequence of lambda values than a single (small) value, as warm-starts are used in the optimization algorithm. The program will ensure that the user-supplied lambda sequence is sorted in decreasing order before fitting the model.
- **gamma**: sg-LASSO mixing parameter. γ = 1 gives LASSO solution and γ = 0 gives group LASSO solution.
- **gindex**: p by 1 vector indicating group membership of each covariate.
- **nfolds**: number of folds of the cv loop. Default set to 10.
- **foldid**: the fold assignments used.
- **method**: choose between 'pooled' and 'fe'; 'pooled' forces the intercept to be fitted in sglfit, 'fe' computes the fixed effects. User must input the number of fixed effects nf for method = 'fe', and it is recommended to do so for method = 'pooled'. Program uses supplied nf to construct foldsid. Default is set to method = 'pooled'.
- **nf**: number of fixed effects. Used only if method = 'fe'.
- **parallel**: if TRUE, use parallel foreach to fit each fold. Must register parallel before hand, such as doMC or others. See the example below.
- **...**: Other arguments that can be passed to sglfit.

Details

The cross-validation is run for sg-LASSO linear model. The sequence of linear regression models implied by λ vector is fit by block coordinate-descent. The objective function is either (case method='pooled')

$$\| y - \iota \alpha - x \beta \|_{NT}^2 + 2 \lambda \Omega_\gamma(\beta),$$

where \(\iota \in R^{NT} \) and \(\alpha \) is common intercept to all N items or (case method='fe')

$$\| y - B \alpha - x \beta \|_{NT}^2 + 2 \lambda \Omega_\gamma(\beta),$$

where \(B = I_N \times \iota \) and \(\| u \|_{NT}^2 = \langle u, u \rangle / NT \) is the empirical inner product. The penalty function \(\Omega_\gamma(.) \) is applied on \(\beta \) coefficients and is

$$\Omega_\gamma(\beta) = \gamma |\beta|_1 + (1 - \gamma) |\beta|_{2,1},$$

a convex combination of LASSO and group LASSO penalty functions.

Value

cv.panel.sglfit object.
cv.sglfit

Cross-validation fit for sg-LASSO

Description

Does k-fold cross-validation for sg-LASSO regression model.

The function runs sglfit nfolds+1 times; the first to get the path solution in lambda sequence, the rest to compute the fit with each of the folds omitted. The average error and standard deviation over the folds is computed, and the optimal regression coefficients are returned for lam.min and lam.1se. Solutions are computed for a fixed γ.

Usage

\[
\text{cv.sglfit}(x, y, \lambda = \text{NULL}, \gamma = 1.0, \text{gindex} = 1:p, \\
\text{nfvolds = 10}, \text{foldid}, \text{parallel} = \text{FALSE}, \ldots)
\]

Arguments

- **x**: T by p data matrix, where T and p respectively denote the sample size and the number of regressors.
- **y**: T by 1 response variable.
lambda a user-supplied lambda sequence. By leaving this option unspecified (recommended), users can have the program compute its own \(\lambda \) sequence based on `nlambda` and `lambda.factor`. It is better to supply, if necessary, a decreasing sequence of lambda values than a single (small) value, as warm-starts are used in the optimization algorithm. The program will ensure that the user-supplied lambda sequence is sorted in decreasing order before fitting the model.

gamma sg-LASSO mixing parameter. \(\gamma = 1 \) gives LASSO solution and \(\gamma = 0 \) gives group LASSO solution.

gindex p by 1 vector indicating group membership of each covariate.

nfolds number of folds of the cv loop. Default set to 10.

foldid the fold assignments used.

parallel if TRUE, use parallel foreach to fit each fold. Must register parallel before hand, such as doMC or others. See the example below.

... Other arguments that can be passed to sglfit.

Details

The cross-validation is run for sg-LASSO linear model. The sequence of linear regression models implied by \(\lambda \) vector is fit by block coordinate-descent. The objective function is

\[
\| y - \iota \alpha - x\beta \|_T^2 + 2\lambda \Omega_{\gamma}(\beta),
\]

where \(\iota \in \mathbb{R}^T \) and \(\| u \|_T^2 = \langle u, u \rangle / T \) is the empirical inner product. The penalty function \(\Omega_{\gamma}(\cdot) \) is applied on \(\beta \) coefficients and is

\[
\Omega_{\gamma}(\beta) = \gamma |\beta|_1 + (1 - \gamma) |\beta|_{2,1},
\]

a convex combination of LASSO and group LASSO penalty functions.

Value

cv.sglfit object.

Author(s)

Jonas Striaukas

Examples

```r
set.seed(1)
x = matrix(rnorm(100 * 20), 100, 20)
beta = c(5,4,3,2,1,rep(0, times = 15))
y = x%*%beta + rnorm(100)
gindex = sort(rep(1:4, times=5))
cv.sglfit(x = x, y = y, gindex = gindex, gamma = 0.5,
           standardize = FALSE, intercept = FALSE)
```

Not run:
Parallel
require(doMC)
registerDoMC(cores = 2)
x = matrix(rnorm(1000 * 20), 1000, 20)
beta = c(5, 4, 3, 2, 1, rep(0, times = 15))
y = x%*%beta + rnorm(1000)
gindex = sort(rep(1:4, times=5))
system.time(cv.sglfit(x = x, y = y, gindex = gindex, gamma = 0.5,
 standardize = FALSE, intercept = FALSE))
system.time(cv.sglfit(x = x, y = y, gindex = gindex, gamma = 0.5,
 standardize = FALSE, intercept = FALSE, parallel = TRUE))

End(Not run)

dateMatch

<table>
<thead>
<tr>
<th>dateMatch</th>
<th>Match dates</th>
</tr>
</thead>
</table>

Description

Change the date to the beginning of the month date.

Usage

dateMatch(x, y)

Arguments

- **x**: date vector to match with y date vector.
- **y**: date vector.

Value

changed date vector.

Author(s)

Jonas Striaukas

Examples

```r
x <- seq(as.Date("2020-01-01"), as.Date("2020-12-01"), by = "day")
set.seed(100)
x <- x[-sample(1:336, 100)]
y <- seq(as.Date("2020-01-01"), as.Date("2020-12-01"), by = "month")
dateMatch(x, y)
```
Description

For a given set of points in X, computes the orthonormal Gegenbauer polynomials basis of L2 [a,b] for a given degree and \(\alpha \) parameter. The Gegenbauer polynomials are a special case of more general Jacobi polynomials. In turn, you may get Legendre polynomials from Gegenbauer by setting \(\alpha = 0 \), or Chebychev’s polynomials by setting \(\alpha = 1/2 \) or \(-1/2\).

Usage

```r
gb(degree, alpha, a = 0, b = 1, jmax = NULL, X = NULL)
```

Arguments

- `degree` polynomial degree.
- `alpha` Gegenbauer polynomials parameter.
- `a` lower shift value (default - 0).
- `b` upper shift value (default - 1).
- `jmax` number of high-frequency lags.
- `X` optional evaluation grid vector.

Value

Psi weight matrix with Gegenbauer functions upto `degree`.

Author(s)

Jonas Striaukas

Examples

```r
degree <- 3
alpha <- 1
jmax <- 66
gb(degree = degree, alpha = alpha, a = 0, b = 1, jmax = jmax)
```
Description

Does information criteria for panel data sg-LASSO regression model.

The function runs sglfit 1 time; computes the path solution in lambda sequence. Solutions for BIC, AIC and AICc information criteria are returned.

Usage

ic.panel.sglfit(x, y, lambda = NULL, gamma = 1.0, gindex = 1:p, method = c("pooled","fe"), nf = NULL, ...)

Arguments

x
NT by p data matrix, where NT and p respectively denote the sample size of pooled data and the number of regressors.

y
NT by 1 response variable.

lambda
a user-supplied lambda sequence. By leaving this option unspecified (recommended), users can have the program compute its own lambda sequence based on nlambda and lambda.factor. It is better to supply, if necessary, a decreasing sequence of lambda values than a single (small) value, as warm-starts are used in the optimization algorithm. The program will ensure that the user-supplied lambda sequence is sorted in decreasing order before fitting the model.

gamma
sg-LASSO mixing parameter. γ = 1 gives LASSO solution and γ = 0 gives group LASSO solution.

gindex
p by 1 vector indicating group membership of each covariate.

method
choose between 'pooled' and 'fe'; 'pooled' forces the intercept to be fitted in sglfit, 'fe' computes the fixed effects. User must input the number of fixed effects nf for method = 'fe'. Default is set to method = 'pooled'.

nf
number of fixed effects. Used only if method = 'fe'.

...
Other arguments that can be passed to sglfit.

Details

The sequence of linear regression models implied by lambda vector is fit by block coordinate-descent. The objective function is either (case method='pooled')

$$||y - \iota \alpha - x \beta||_{NT}^2 + 2 \lambda \Omega_{\gamma}(\beta),$$

where $$\iota \in \mathbb{R}^{NT}$$ and $$\alpha$$ is common intercept to all N items or (case method='fe')

$$||y - B \alpha - x \beta||_{NT}^2 + 2 \lambda \Omega_{\gamma}(\beta),$$
where \(B = I_N \times I \) and \(\|u\|_{NT}^2 = (u, u)/NT \) is the empirical inner product. The penalty function \(\Omega_\gamma(.) \) is applied on \(\beta \) coefficients and is

\[
\Omega_\gamma(\beta) = \gamma |\beta|_1 + (1 - \gamma) |\beta|_2,1,
\]

a convex combination of LASSO and group LASSO penalty functions.

Value

ic.panel.sglfit object.

Author(s)

Jonas Striaukas

Examples

```r
set.seed(1)
x = matrix(rnorm(100 * 20), 100, 20)
beta = c(5, 4, 3, 2, 1, rep(0, times = 15))
y = x%*%beta + rnorm(100)
gindex = sort(rep(1:4, times=5))
ic.panel.sglfit(x = x, y = y, gindex = gindex, gamma = 0.5,
  standardize = FALSE, intercept = FALSE)
```

Description

Does information criteria for sg-LASSO regression model.

The function runs sglfit 1 time; computes the path solution in lambda sequence. Solutions for BIC, AIC and AICc information criteria are returned.

Usage

```
ic.sglfit(x, y, lambda = NULL, gamma = 1.0, gindex = 1:p, ...)
```

Arguments

- `x` T by p data matrix, where T and p respectively denote the sample size and the number of regressors.
- `y` T by 1 response variable.
- `lambda` a user-supplied lambda sequence. By leaving this option unspecified (recommended), users can have the program compute its own \(\lambda \) sequence based on `nlambda` and `lambda.factor`. It is better to supply, if necessary, a decreasing sequence of lambda values than a single (small) value, as warm-starts are used in the optimization algorithm. The program will ensure that the user-supplied \(\lambda \) sequence is sorted in decreasing order before fitting the model.
gamma sg-LASSO mixing parameter. $\gamma = 1$ gives LASSO solution and $\gamma = 0$ gives group LASSO solution.
gindex p by 1 vector indicating group membership of each covariate.
... Other arguments that can be passed to sglfit.

Details

The sequence of linear regression models implied by λ vector is fit by block coordinate-descent. The objective function is

$$\|y - \iota \alpha - x \beta\|_2^2 + 2\lambda \Omega_\gamma(\beta),$$

where $\iota \in \mathbb{R}^T$ and $\|u\|_T^2 = \langle u, u \rangle / T$ is the empirical inner product. The penalty function $\Omega_\gamma(.)$ is applied on β coefficients and is

$$\Omega_\gamma(\beta) = \gamma |\beta|_1 + (1 - \gamma) |\beta|_2,1,$$

a convex combination of LASSO and group LASSO penalty functions.

Value

ic.sglfit object.

Author(s)

Jonas Striaukas

Examples

```r
set.seed(1)
x = matrix(rnorm(100 * 20), 100, 20)
beta = c(5,4,3,2,1,rep(0, times = 15))
y = x%*%beta + rnorm(100)
gindex = sort(rep(1:4,times=5))
ic.sglfit(x = x, y = y, gindex = gindex, gamma = 0.5,
         standardize = FALSE, intercept = FALSE)
```

Description

For a given set of points in X, computes the orthonormal Legendre polynomials basis of L2 [a,b] for a given degree.

Usage

```r
lb(degree, a = 0, b = 1, jmax = NULL, X = NULL)
```
Arguments

- **degree** polynomial degree.
- **a** lower shift value (default - 0).
- **b** upper shift value (default - 1).
- **jmax** number of high-frequency lags.
- **X** optional evaluation grid vector.

Value

Psi weight matrix with Legendre functions upto degree.

Author(s)

Jonas Striaukas

Examples

```r
degree <- 3
jmax <- 66
lb(degree = degree, a = 0, b = 1, jmax = jmax)
```

market_ret

<table>
<thead>
<tr>
<th>SNP500 returns</th>
</tr>
</thead>
</table>

Description

SNP500 returns

Usage

data(market_ret)

Format

A data.frame object

Source

market_ret - FRED

Examples

```r
data(market_ret)
market_ret$snp500ret
```
Description

Fits MIDAS regression model with single high-frequency covariate. Options include linear-in-parameters polynomials (e.g. Legendre) or non-linear polynomials (e.g. exponential Almon). Non-linear polynomial optimization routines are equipped with analytical gradients, which allows fast and accurate optimization.

Usage

```r
midas.ardl(y, x, z = NULL, loss_choice = c("mse", "logit"),
poly_choice = c("legendre", "expalmon", "beta"),
poly_spec = 0, legendre_degree = 3, nbtrials = 500)
```

Arguments

- **y**
- **x**
 - high-frequency covariate lags.
- **z**
 - other lower-frequency covariate(s) or AR lags (both can be supplied in an appended matrix). Either must be supplied.
- **loss_choice**
 - which loss function to fit: `loss_choice="mse"` fits least squares MIDAS regression, `loss_choice="logit"` fits logit MIDAS regression.
- **poly_choice**
 - which MIDAS lag polynomial function to use: `poly_choice="expalmon"` - exponential Almon polynomials, `poly_choice="beta"` - Beta density function (need to set `poly_spec`), `poly_choice="legendre"` - legendre polynomials (need to set `legendre_degree`). Default is set to `poly_choice="expalmon"`.
- **poly_spec**
 - which Beta density function specification to apply (applicable only for `poly_choice="beta"`).
 - `poly_spec = 0` - all three parameters are fitted, `poly_spec = 1 (\theta_2, \theta_3)` are fitted,
 - `poly_spec = 2 (\theta_1, \theta_2)` are fitted, `poly_spec = 3 (\theta_2)` is fitted. Default is set to `poly_spec = 0`.
- **legendre_degree**
 - the degree of legendre polynomials (applicable only for `legendre="beta"`). Default is set to 3.
- **nbtrials**
 - number of initial values tried in multistart optimization. Default is set to `poly_spec = 500`.

Details

Several polynomial functional forms are available (poly_choice):
- `beta`: Beta polynomial
- `expalmon`: Exp Almon polynomial
- `legendre`: Legendre polynomials.
The ARDL-MIDAS model is:

\[y_t = \mu + \sum_{p} \rho_p y_{t-p} + \beta \sum_{j} \omega_j(\theta)x_{t-1} \]

where \(\mu, \beta, \theta, \rho_p \) are model parameters, \(p \) is number of low-frequency and \(\omega \) is the weight function.

Value

midas.ardl object.

Author(s)

Jonas Striaukas

Examples

```r
set.seed(1)
x = matrix(rnorm(100 * 20), 100, 20)
z = rnorm(100)
y = rnorm(100)
midas.ardl(y = y, x = x, z = z)
```

mixed_freq_data

Description

Creates a MIDAS data structure for a single high-frequency covariate and a single low-frequency dependent variable.

Usage

```r
mixed_freq_data(data.y, data.ydate, data.x, data.xdate, x.lag, y.lag,
                horizon, est.start, est.end, disp.flag = TRUE)
```

Arguments

- **data.y**: \(n \) by 1 low-frequency time series data vector.
- **data.ydate**: \(n \) by 1 low-frequency time series date vector.
- **data.x**: \(m \) by 1 high-frequency time series data vector.
- **data.xdate**: \(m \) by 1 high-frequency time series date vector.
- **x.lag**: number of high-frequency lags to construct in high-frequency time units.
- **y.lag**: number of low-frequency lags to construct in low-frequency time units.
- **horizon**: forecast horizon relative to `data.ydate` date in high-frequency time units.
mixed_freq_data_single

est.start estimation start date, taken as the first ...
est.end estimation end date, taken as the last Remaining data after this date is dropped to out-of-sample evaluation data.
disp.flag display flag to indicate whether or not to display obtained MIDAS data structure in console.

Value

a list of MIDAS data structure.

Author(s)

Jonas Striaukas

Examples

```r
data(us_rgdp)
rgdp <- us_rgdp$rgdp
payems <- us_rgdp$payems
payems[-1, 2] <- log(payems[-1, 2]/payems[-dim(payems)[1], 2]) * 100
payems <- payems[-1, ]
rgdp[-1, 2] <- (rgdp[-1, 2]/rgdp[-dim(rgdp)[1], 2])^4 - 1 * 100
rgdp <- rgdp[-1, ]
est.start <- as.Date("1990-01-01")
est.end <- as.Date("2002-03-01")
mixed_freq_data(rgdp[,2], as.Date(rgdp[,1]), payems[,2],
   as.Date(payems[,1]), x.lag = 9, y.lag = 4, horizon = 1,
est.start, est.end, disp.flag = FALSE)
```

mixed_freq_data_single

MIDAS data structure

Description

Creates a MIDAS data structure for a single high-frequency covariate based on low-frequency reference date.

Usage

```r
mixed_freq_data_single(data.refdate, data.x, data.xdate, x.lag, horizon,
est.start, est.end, disp.flag = TRUE)
```
Arguments

- `data.refdate`
 n by 1 date vector.
- `data.x`
 m by 1 high-frequency time series data vector.
- `data.xdate`
 m by 1 high-frequency time series date vector.
- `x.lag`
 number of high-frequency lags to construct in high-frequency time units.
- `horizon`
 forecast horizon relative to `data.refdate` date in high-frequency time units.
- `est.start`
 estimation start date, taken as the first ...
- `est.end`
 estimation end date, taken as the last Remaining data after this date is dropped to out-of-sample evaluation data.
- `disp.flag`
 display flag to indicate whether or not to display obtained MIDAS data structure in console.

Value

a list of midas data structure.

Author(s)

Jonas Striaukas

Examples

```r
data(us_rgdp)
rgdp <- us_rgdp$rgdp
cfnai <- us_rgdp$cfnai
data.refdate <- rgdp$date
data.x <- cfnai$cfnai
data.xdate <- cfnai$date
est.start <- as.Date("1990-01-01")
est.end <- as.Date("2002-03-01")
mixed_freq_data_single(data.refdate, data.x, data.xdate, x.lag = 12, horizon = 1, est.start, est.end, disp.flag = FALSE)
```

Description

Change the date to the beginning of the month date.

Usage

```r
monthBegin(x)
```

Arguments

- `x`
 date value.
\textit{monthEnd}

\textbf{Value}

changed date value.

\textbf{Author(s)}

Jonas Striaukas

\textbf{Examples}

\begin{verbatim}
monthEnd(as.Date("2020-05-15"))
\end{verbatim}

\begin{tabular}{ll}
\textbf{monthEnd} & \textit{End of the month date}\tabularnewline
\end{tabular}

\textbf{Description}

Change the date to the end of the month date.

\textbf{Usage}

\begin{verbatim}
monthEnd(x)
\end{verbatim}

\textbf{Arguments}

\begin{verbatim}
x \hspace{1cm} \text{date value.}\tabularnewline
\end{verbatim}

\textbf{Value}

changed date value.

\textbf{Author(s)}

Jonas Striaukas

\textbf{Examples}

\begin{verbatim}
monthEnd(as.Date("2020-05-15"))
\end{verbatim}
computeprediction

Description

Similar to other predict methods, this function predicts fitted values from a fitted sglfit object.

Usage

```r
## S3 method for class 'cv.panel.sglfit'
predict(
  object,
  newx,
  s = c("lam.min", "lam.1se"),
  type = c("response"),
  method = c("pooled", "fe"),
  ...
)
```

Arguments

- `object`: fitted `cv.panel.sglfit` model object.
- `newx`: matrix of new values for x at which predictions are to be made. NOTE: newx must be a matrix, predict function does not accept a vector or other formats of newx.
- `s`: choose between 'lam.min' and 'lam.1se'.
- `type`: type of prediction required. Only response is available. Gives predicted response for regression problems.
- `method`: choose between 'pooled', and 'fe'.
- `...`: Not used. Other arguments to predict.

Details

`s` is the new vector at which predictions are to be made. If `s` is not in the lambda sequence used for fitting the model, the predict function will use linear interpolation to make predictions. The new values are interpolated using a fraction of predicted values from both left and right lambda indices.

Value

The object returned depends on type.
predict.cv.sglfit

Computes prediction

Description

Similar to other predict methods, this functions predicts fitted values from a fitted sglfit object.

Usage

S3 method for class 'cv.sglfit'
predict(object, newx, s = c("lam.min", "lam.1se"), type = c("response"), ...)

Arguments

object fitted cv.sglfit model object.
newx matrix of new values for x at which predictions are to be made. NOTE: newx must be a matrix, predict function does not accept a vector or other formats of newx.
s choose between 'lam.min' and 'lam.1se'.
type type of prediction required. Only response is available. Gives predicted response for regression problems.
... Not used. Other arguments to predict.
method choose between 'single', 'pooled', and 'fe'.

Details

s is the new vector at which predictions are to be made. If s is not in the lambda sequence used for fitting the model, the predict function will use linear interpolation to make predictions. The new values are interpolated using a fraction of predicted values from both left and right lambda indices.

Value

The object returned depends on type.

predict.ic.panel.sglfit

Computes prediction

Description

Similar to other predict methods, this functions predicts fitted values from a fitted sglfit object.
Usage

```r
## S3 method for class 'ic.panel.sglfit'
predict(
  object,
  newx,
  s = c("bic", "aic", "aicc"),
  type = c("response"),
  method = c("pooled", "fe"),
  ...
)
```

Arguments

- **object**: fitted `ic.panel.sglfit` model object.
- **newx**: matrix of new values for x at which predictions are to be made. NOTE: `newx` must be a matrix, predict function does not accept a vector or other formats of `newx`.
- **s**: choose between 'bic', 'aic', and 'aicc'.
- **type**: type of prediction required. Only response is available. Gives predicted response for regression problems.
- **method**: choose between 'pooled', and 'fe'.
- **...**: Not used. Other arguments to predict.

Details

`s` is the new vector at which predictions are to be made. If `s` is not in the lambda sequence used for fitting the model, the predict function will use linear interpolation to make predictions. The new values are interpolated using a fraction of predicted values from both left and right lambda indices.

Value

The object returned depends on type.

Description

Similar to other predict methods, this functions predicts fitted values from a fitted sglfit object.

Usage

```r
## S3 method for class 'ic.sglfit'
predict(object, newx, s = c("bic", "aic", "aicc"), type = c("response"), ...)
```
predict.sglpath

Arguments

object fitted cv.sglfit model object.
newx matrix of new values for x at which predictions are to be made. NOTE: newx must be a matrix, predict function does not accept a vector or other formats of newx.
s choose between 'bic', 'aic', and 'aicc'.
type type of prediction required. Only response is available. Gives predicted response for regression problems.
... Not used. Other arguments to predict.

Details

s is the new vector at which predictions are to be made. If s is not in the lambda sequence used for fitting the model, the predict function will use linear interpolation to make predictions. The new values are interpolated using a fraction of predicted values from both left and right lambda indices.

Value

The object returned depends on type.

predict.sglpath Computes prediction

Description

Similar to other predict methods, this functions predicts fitted values from a fitted sglfit object.

Usage

S3 method for class 'sglpath'
predict(
 object,
 newx,
 s = NULL,
 type = c("response"),
 method = c("single", "pooled", "fe"),
 ...
)

Arguments

object fitted sglfit model object.
newx matrix of new values for x at which predictions are to be made. NOTE: newx must be a matrix, predict function does not accept a vector or other formats of newx.
reg.panel.sgl

s value(s) of the penalty parameter lambda at which predictions are to be made. Default is the entire sequence used to create the model.

type type of prediction required. Only response is available. Gives predicted response for regression problems.

method choose between 'single', 'pooled', and 'fe'.

... Not used. Other arguments to predict.

Details

s is the new vector at which predictions are to be made. If s is not in the lambda sequence used for fitting the model, the predict function will use linear interpolation to make predictions. The new values are interpolated using a fraction of predicted values from both left and right lambda indices.

Value

The object returned depends on type.

reg.panel.sgl Regression fit for panel sg-LASSO

Description

Fits panel data sg-LASSO regression model.

The function fits sg-LASSO regression based on chosen tuning parameter selection method_choice. Options include cross-validation and information criteria.

Usage

reg.panel.sgl(x, y, gamma = NULL, gindex, intercept = TRUE, method_choice = c("ic","cv"), nfolds = 10, method = c("pooled","fe"), nf = NULL, verbose = FALSE, ...)

Arguments

x NT by p data matrix, where NT and p respectively denote the sample size of pooled data and the number of regressors.

y NT by 1 response variable.

gamma sg-LASSO mixing parameter. \(\gamma = 1 \) gives LASSO solution and \(\gamma = 0 \) gives group LASSO solution.

gindex p by 1 vector indicating group membership of each covariate.

intercept whether intercept be fitted (TRUE) or set to zero (FALSE). Default is TRUE.

method_choice choose between ic and cv. ic gives fit based on information criteria (BIC, AIC or AICc) by running ic.fit, while cv gives fit based on cross-validation by running cv.sglfit. If cv is chosen, optional number of folds nfolds can be supplied.
n folds number of folds of the cv loop. Default set to 10.
method choose between 'pooled' and 'fe'; 'pooled' forces the intercept to be fitted in
 sglfit, 'fe' computes the fixed effects. User must input the number of fixed
effects nf for method = 'fe', and it is recommended to do so for method =
'pooled'. Program uses supplied nf to construct foldsid if method_choice =
'cv' is chosen. Default is set to method = 'pooled'.
nf number of fixed effects. Used only if method = 'fe'.
verbose flag to print information.
... Other arguments that can be passed to sglfit.

Details
The sequence of linear regression models implied by λ vector is fit by block coordinate-descent.
The objective function is either (case method='pooled')
\[\| y - \epsilon \alpha - x \beta \|_2^2 + 2 \lambda \Omega_\gamma(\beta), \]
where \(\epsilon \in \mathbb{R}^{NT} \) and \(\alpha \) is common intercept to all N items or (case method='fe')
\[\| y - B \alpha - x \beta \|_2^2 + 2 \lambda \Omega_\gamma(\beta), \]
where \(B = I_N \times \epsilon \) and \(\| u \|_{NT}^2 = \langle u, u \rangle / NT \) is the empirical inner product. The penalty function
\(\Omega_\gamma(.) \) is applied on \(\beta \) coefficients and is
\[\Omega_\gamma(\beta) = \gamma |\beta|_1 + (1-\gamma) |\beta|_2, \]
a convex combination of LASSO and group LASSO penalty functions.

Value
reg.panel.sgl object.

Author(s)
Jonas Striaukas

Examples
set.seed(1)
x = matrix(rnorm(100 * 20), 100, 20)
beta = c(5,4,3,2,1,rep(0, times = 15))
y = x%*%beta + rnorm(100)
gindex = sort(rep(1:4,times=5))
reg.panel.sgl(x = x, y = y,
gindex = gindex, gamma = 0.5,
method = "fe", nf = 10,
standardize = FALSE, intercept = FALSE)
reg.sgl

Fit for sg-LASSO regression

Description

Fits sg-LASSO regression model.

The function fits sg-LASSO regression based on chosen tuning parameter selection method_choice. Options include cross-validation and information criteria.

Usage

```r
reg.sgl(x, y, gamma = NULL, gindex, intercept = TRUE,
        method_choice = c("tscv","ic","cv"), verbose = FALSE, ...)
```

Arguments

- **x**: T by p data matrix, where T and p respectively denote the sample size and the number of regressors.
- **y**: T by 1 response variable.
- **gamma**: sg-LASSO mixing parameter. \(\gamma = 1 \) gives LASSO solution and \(\gamma = 0 \) gives group LASSO solution.
- **gindex**: p by 1 vector indicating group membership of each covariate.
- **intercept**: whether intercept be fitted (TRUE) or set to zero (FALSE). Default is TRUE.
- **method_choice**: choose between tscv ic and cv. tscv fits sg-LASSO based on time series cross-validation (see tscv.sglfit), ic fits sg-LASSO based on information criteria (BIC, AIC or AICc, see ic.sglfit), cv fits sg-LASSO based on cross-validation (see cv.sglfit). Additional arguments for each method choice are passed on to the relevant functions.
- **verbose**: flag to print information.
- **...**: Other arguments that can be passed to sglfit.

Details

The sequence of linear regression models implied by \(\lambda \) vector is fit by block coordinate-descent. The objective function is

\[
\|y - \iota \alpha - x\beta\|_F^2 + 2\lambda \Omega_{\gamma}(\beta),
\]

where \(\iota \in \mathbb{R}^T \) and \(\|u\|_F^2 = \langle u, u \rangle / T \) is the empirical inner product. The penalty function \(\Omega_{\gamma}(\cdot) \) is applied on \(\beta \) coefficients and is

\[
\Omega_{\gamma}(\beta) = \gamma |\beta|_1 + (1 - \gamma) |\beta|_2,1,
\]

a convex combination of LASSO and group LASSO penalty functions.

Value

- reg.sgl object.
rgdp_dates

Author(s)
Jonas Striaukas

Examples
set.seed(1)
x = matrix(rnorm(100 * 20), 100, 20)
beta = c(5, 4, 3, 2, 1, rep(0, times = 15))
y = x%*%beta + rnorm(100)
gindex = sort(rep(1:4, times=5))
reg.sgl(x = x, y = y, gamma = 0.5, gindex = gindex)

rgdp_dates
Real GDP release dates

Description
Real GDP release dates

Usage
data(rgdp_dates)

Format
A list objects

Source
ALFRED

Examples
data(rgdp_dates)
rgdp_dates$Quarter_q # reference quarters in quarters
rgdp_dates$Quarter_m # reference quarters in months
rgdp_dates$Quarter_d # reference quarters in days
rgdp_dates$'First release' # first release date for the reference
rgdp_dates$'Second release' # second release date for the reference
rgdp_dates$'Third release' # third release date for the reference
Real GDP vintages

Usage

data(rgdp_vintages)

Format

A list objects

Source

ALFRED

Examples

data(rgdp_vintages)
rgdp_vintages$date # dates
rgdp_vintages$time_series # series, q-q annual rate
rgdp_vintages$realtime_period # real time dates

Fits sg-LASSO regression

Description

Fits sg-LASSO regression model. The function fits sg-LASSO regression model for a sequence of λ tuning parameter and fixed γ tuning parameter. The optimization is based on block coordinate-descent. Optionally, fixed effects are fitted.

Usage

glf(x, y, gamma = 1.0, nlambda = 100L, method = c("single", "pooled", "fe"),
 nf = NULL, lambda.factor = ifelse(nobs < nvars, 1e-02, 1e-04),
 lambda = NULL, pf = rep(1, nvars), gindex = 1:nvars,
 dfmax = nvars + 1, pmax = min(dfmax * 1.2, nvars), standardize = FALSE,
 intercept = FALSE, eps = 1e-08, maxit = 1000000L, peps = 1e-08)
Arguments

x T by p data matrix, where T and p respectively denote the sample size and the number of regressors.
y T by 1 response variable.
gamma sg-LASSO mixing parameter. $\gamma = 1$ gives LASSO solution and $\gamma = 0$ gives group LASSO solution.
nlambda number of λ's to use in the regularization path; used if lambda = NULL.
method choose between 'single', 'pooled' and 'fe'; 'single' implies standard sg-LASSO regression, 'pooled' forces the intercept to be fitted, 'fe' computes the fixed effects. User needs to input the number of fixed effects nf. Default is set to 'single'.
nf number of fixed effects. Used only if method = 'fe'.
lambda.factor The factor for getting the minimal λ in the λ sequence, where $\min(\lambda) = \lambda_{\text{max}}$. $\max(\lambda)$ is the smallest value of λ for which all coefficients are zero. λ_{max} is determined for each γ tuning parameter separately. The default depends on the relationship between T (the sample size) and p (the number of predictors). If T < p, the default is 0.01. If T > p, the default is 0.0001, closer to zero. The smaller the value of lambda.factor is, the denser is the fit for λ_{min}. Used only if lambda = NULL.
lambda a user-supplied lambda sequence. By leaving this option unspecified (recommended), users can have the program compute its own lambda sequence based on nlambda and lambda.factor. It is better to supply, if necessary, a decreasing sequence of lambda values than a single (small) value, as warm-starts are used in the optimization algorithm. The program will ensure that the user-supplied λ sequence is sorted in decreasing order before fitting the model.
pf the ℓ_1 penalty factor of length p used for the adaptive sg-LASSO. Separate ℓ_1 penalty weights can be applied to each coefficient to allow different $\ell_1 + \ell_2$ shrinkage. Can be 0 for some variables, which imposes no shrinkage, and results in that variable always be included in the model. Default is 1 for all variables.
gindex p by 1 vector indicating group membership of each covariate.
dfmax the maximum number of variables allowed in the model. Useful for very large p when a partial path is desired. Default is p+1. In case method='fe', dfmax is ignored.
pmax the maximum number of coefficients allowed ever to be nonzero. For example, once $\beta_i \neq 0$ for some $i \in [p]$, no matter how many times it exits or re-enters the model through the path, it will be counted only once. Default is $\min(\text{dfmax} \times 1.2, p)$.
standardize logical flag for variable standardization, prior to fitting the model sequence. The coefficients are always returned to the original scale. It is recommended to keep standardize=TRUE. Default is FALSE.
intercept whether intercept be fitted (TRUE) or set to zero (FALSE). Default is FALSE. In case method='pooled', intercept=TRUE is forced. In case method='fe', intercept=FALSE is forced and entity specific intercepts are fitted in a separate output variable a0.
thetafit

eps convergence threshold for block coordinate descent. Each inner block coordinate-descent loop continues until the maximum change in the objective after any coefficient update is less than thresh times the null deviance. Defaults value is 1×10^{-8}.

maxit maximum number of outer-loop iterations allowed at fixed lambda values. Default is 1×10^6. If the algorithm does not converge, consider increasing maxit.

peps convergence threshold for proximal map of sg-LASSO penalty. Each loop continues until G group difference sup-norm, $\|\beta_G^k - \beta_G^{k-1}\|_\infty$, is less than peps. Defaults value is 1×10^{-8}.

Details

The sequence of linear regression models implied by λ vector is fit by block coordinate-descent. The objective function is

$$\|y - \iota \alpha - x\beta\|^2_T + 2\lambda \Omega_{\gamma}(\beta),$$

where $\iota \in \mathbb{R}^T$ and $\|u\|^2_T = \langle u, u \rangle / T$ is the empirical inner product. The penalty function $\Omega_{\gamma}(.)$ is applied on β coefficients and is

$$\Omega_{\gamma}(\beta) = \gamma |\beta|_1 + (1 - \gamma) |\beta|_2,$$

a convex combination of LASSO and group LASSO penalty functions.

Value

sglfit object.

Author(s)

Jonas Striaukas

Examples

```r
set.seed(1)
x = matrix(rnorm(100 * 20), 100, 20)
beta = c(5,4,3,2,1,rep(0, times = 15))
y = x %*% beta + rnorm(100)
gindex = sort(rep(1:4,times=5))
sglfit(x = x, y = y, gindex = gindex, gamma = 0.5)
```

thetafit

Nodewise LASSO regressions to fit the precision matrix Θ

Description

Fits the precision matrix Θ by running nodewise LASSO regressions.
thetafit

Usage

thetafit(x, parallel = FALSE, ncores =getOption("mc.cores", NULL),
intercept = FALSE, K = 20, l = 5, seed = NULL, verbose = FALSE,
registerpar = TRUE, ...)

Arguments

x T by p data matrix, where T and p respectively denote the sample size and the number of regressors.
parallel if TRUE, use parallel foreach to fit nodewise LASSO regressions. Parallel registered within the function.
ncores number of cores used in parallelization
intercept whether intercept be fitted (TRUE) or set to zero (FALSE). Default is FALSE.
K number of folds of the cv loop. Default set to 20.
l the gap used to drop observations round test set data. See tscv.sglfit for more details.
seed set a value for seed to control results replication, i.e. set.seed(seed) is used.
seed is stored in the output list. Default set to as.numeric(Sys.Date()).
verbose if TRUE, prints progress bar. Default set to FALSE.
registerpar if TRUE, register parallelization using registerDoParallel. Default set to TRUE.
... Other arguments that can be passed to tscv.sglfit.

Details

The function runs tscv.sglfit p times by regressing j-th covariate on all other covariates excluding j-th covariate. The precision matrix is then constructed based on LASSO estimates. Each nodewise LASSO regression tuning parameter \(\lambda \) is optimized using time series cross-validation. See tscv.sglfit for more details on cross-validation implementation.

Value

thetafit object.

Author(s)

Jonas Striaukas

Examples

set.seed(1)
x = matrix(rnorm(100 * 20), 100, 20)
thetafit(x = x, parallel = FALSE)
tscv.sglfit
Time series cross-validation fit for sg-LASSO

Description

Does k-fold time series cross-validation for sg-LASSO regression model.

The function runs sglfit \(K+1 \) times; the first to get the path solution in \(\lambda \) sequence, the rest to compute the fit with each of the test observation \(k \in K \). The average error and standard deviation over the folds is computed, and the optimal regression coefficients are returned for \(\text{lam.min} \) and \(\text{lam.1se} \). Solutions are computed for a fixed \(\gamma \).

Usage

```r
tscv.sglfit(x, y, lambda = NULL, gamma = 1.0, gindex = 1:p,
            K = 20, l = 5, parallel = FALSE, seed = NULL, ...)
```

Arguments

- **x**: T by p data matrix, where T and p respectively denote the sample size and the number of regressors.
- **y**: T by 1 response variable.
- **lambda**: a user-supplied lambda sequence. By leaving this option unspecified (recommended), users can have the program compute its own \(\lambda \) sequence based on \(nlambda \) and \(\lambda \) \(\lambda \) \(\lambda \) factor. It is better to supply, if necessary, a decreasing sequence of lambda values than a single (small) value, as warm-starts are used in the optimization algorithm. The program will ensure that the user-supplied lambda sequence is sorted in decreasing order before fitting the model.
- **gamma**: sg-LASSO mixing parameter. \(\gamma = 1 \) gives LASSO solution and \(\gamma = 0 \) gives group LASSO solution.
- **gindex**: p by 1 vector indicating group membership of each covariate.
- **K**: number of observations drawn for the test set. Default set to 20.
- **l**: the gap used to drop observations round the test set data point. Default set to 5.
- **parallel**: if TRUE, use parallel foreach to fit each fold. Must register parallel before hand, such as doMC or others. See the example below.
- **seed**: set a value for seed to control results replication, i.e. set.seed(seed) is used. seed is stored in the output list. Default set to as.numeric(Sys.Date()).
- **...**: Other arguments that can be passed to sglfit.

Details

The cross-validation is run for sg-LASSO linear model. The sequence of linear regression models implied by \(\lambda \) vector is fit by block coordinate-descent. The objective function is

\[
\|y - \iota \alpha - x \beta\|_F^2 + 2\lambda \Omega_\gamma (\beta),
\]
where \(i \in R^T \) and \(\| u \|_T^2 = \langle u, u \rangle / T \) is the empirical inner product. The penalty function \(\Omega(\cdot) \) is applied on \(\beta \) coefficients and is

\[
\Omega(\beta) = \gamma |\beta|_1 + (1 - \gamma) |\beta|_2^2,
\]

a convex combination of LASSO and group LASSO penalty functions.

Value

tscv.sglfit object.

Author(s)

Jonas Striaukas

Examples

```r
set.seed(1)
x = matrix(rnorm(100 * 20), 100, 20)
beta = c(5,4,3,2,1,rep(0, times = 15))
y = x %*% beta + rnorm(100)
gindex = sort(rep(1:4,times=5))
tscv.sglfit(x = x, y = y, gindex = gindex, gamma = 0.5,
standardize = FALSE, intercept = FALSE)
## Not run:
# Parallel
require(doMC)
registerDoMC(cores = 2)
x = matrix(rnorm(1000 * 20), 1000, 20)
beta = c(5,4,3,2,1,rep(0, times = 15))
y = x %*% beta + rnorm(1000)
gindex = sort(rep(1:4,times=5))
system.time(tscv.sglfit(x = x, y = y, gindex = gindex, gamma = 0.5,
standardize = FALSE, intercept = FALSE))
system.time(tscv.sglfit(x = x, y = y, gindex = gindex, gamma = 0.5,
standardize = FALSE, intercept = FALSE, parallel = TRUE))
## End(Not run)
```

Description

US real GDP data with several high-frequency predictors

Usage

data(us_rgdp)
Format

A list object.

Source

rgdp
cfnai
payems
ads

Examples

data(us_rgdp)
us_rgdp$rgdp # - GDP data
us_rgdp$cfnai # - CFNAI predictor data
us_rgdp$payems # - Nonfarm payrolls predictor data
us_rgdp$ads # - ADS predictor data
Index

* datasets
 alfred_vintages, 3
 market_ret, 12
 rgdp_dates, 25
 rgdp_vintages, 26
 us rgdp, 31

* package
 midasml-package, 2

alfred_vintages, 3

cv.panel.sglfit, 3, 18
cv.sglfit, 5, 19, 21, 24

data.frame, 12
dateMatch, 7

gb, 8

ic.panel.sglfit, 9, 20
ic.sglfit, 10, 24

lb, 11
list, 3, 25, 26, 32

market_ret, 12
midas.ardl, 13
midasml (midasml-package), 2
midasml-package, 2
mixed_freq_data, 14
mixed_freq_data_single, 15
monthBegin, 16
monthEnd, 17

predict.cv.panel.sglfit, 18
predict.cv.sglfit, 19
predict.ic.panel.sglfit, 19
predict.ic.sglfit, 20
predict.sglpath, 21

reg.panel.sgl, 22
reg.sgl, 24
rgdp_dates, 25
rgdp_vintages, 26

sglfit, 3–6, 9–11, 21, 23, 26, 30
thetafit, 28
tscv.sglfit, 24, 29, 30
us rgdp, 31